Eine einheitliche, formale Grundlage für dienstbasierte Architekturen

Frank Puhlmann

Business Process Technology
Hasso Plattner Institut
Potsdam, Germany

Gliederung

- Motivation
- Betrachtete Konzepte
 - Interaktionen
 - Prozesse
 - Daten
- Zusammenfassung

Motivation

Pi-Calculus Linkmobilität

Pi-Calculus Linkmobilität

Pi-Calculus Linkmobilität

Pi-Calculus Linkmobilität

Konzepte

Der Pi-Calculus

- Eine Prozessalgebra für Systeme mit Linkmobilität
- Syntax in BNF:

$$P ::= M \mid P \mid P' \mid \mathbf{v}zP \mid !P \mid P(y_1, \dots, y_n)$$

$$M ::= \mathbf{0} \mid \pi . P \mid M + M'$$

$$\pi ::= \overline{x} \langle \tilde{y} \rangle \mid x(\tilde{z}) \mid \tau \mid [x = y]\pi.$$

Dienstaufrufe:

Dienstaufrufe:

$$A = \overline{b}\langle msg \rangle.A'$$
 $B = b(msg).B'$

Dienstaufrufe:

$$A = \overline{b}\langle msg \rangle.A'$$
 $B = b(msg).B'$

Statisches $S = (\mathbf{v}b)(A \mid B)$ Binden:

$$S = (\mathbf{v}b)(A \mid B)$$

Dienstaufrufe:

$$A = \overline{b}\langle msg \rangle.A'$$
 $B = b(msg).B'$

Statisches Binden:
$$S = (\mathbf{v}b)(A \mid B)$$

Dynamisches

Binden:
$$S = (\mathbf{v}lookup)(lookup(b).A \mid ((\mathbf{v}b)B \mid R))$$

Dienstaufrufe:

$$A = \overline{b}\langle msg \rangle.A'$$
 $B = b(msg).B'$

Statisches Binden:
$$S = (\mathbf{v}b)(A \mid B)$$

Dynamisches

Binden:
$$S = (\mathbf{v}lookup)(lookup(b).A \mid ((\mathbf{v}b)B \mid R))$$

$$R = \overline{lookup} \langle b \rangle.R$$

Basierend auf Workflow-Pattern-Formalisierungen:

Basierend auf Workflow-Pattern-Formalisierungen:

Sequence: $A = \tau_A.\bar{b}.\mathbf{0}$ $B = b.\tau_B.B'$

Basierend auf Workflow-Pattern-Formalisierungen:

Sequence:
$$A = \tau_A.\overline{b}.\mathbf{0}$$
 $B = b.\tau_B.B'$ $SYSTEM = (\mathbf{v}b)(A \mid B)$

Basierend auf Workflow-Pattern-Formalisierungen:

Sequence:
$$A = \tau_A.\overline{b}.\mathbf{0}$$
 $B = b.\tau_B.B'$ $SYSTEM = (\mathbf{v}b)(A \mid B)$

Exclusive Choice: $A = \tau_A.(\overline{b}.\mathbf{0} + \overline{c}.\mathbf{0})$

Basierend auf Workflow-Pattern-Formalisierungen:

Sequence:
$$A = \tau_A.\overline{b}.\mathbf{0}$$
 $B = b.\tau_B.B'$ $SYSTEM = (\mathbf{v}b)(A \mid B)$

Exclusive Choice:
$$A = \tau_A.(\overline{b}.\mathbf{0} + \overline{c}.\mathbf{0})$$

Simple Merge:
$$D=d_1.\tau_D.D'+d_2.\tau_D.D'$$
 .

Basierend auf Workflow-Pattern-Formalisierungen:

Sequence:
$$A = \tau_A.\overline{b}.\mathbf{0}$$
 $B = b.\tau_B.B'$ $SYSTEM = (\mathbf{v}b)(A \mid B)$

Exclusive Choice: $A = \tau_A.(\overline{b}.\mathbf{0} + \overline{c}.\mathbf{0})$

Simple Merge: $D=d_1.\tau_D.D'+d_2.\tau_D.D'$.

Deferred Choice: $A = \tau_A.(b_{env}.b.\mathbf{0} + c_{env}.\overline{c}.\mathbf{0})$

Daten

- Keine native Unterstützung
- Allerdings: Lambda-Calculus im Pi-Calculus darstellbar
- Erweiterungen zur direkten Unterstützung von Daten vorhanden; allerdings
 - Auf Kosten der Beweismöglichkeiten
- Beispiele im Papier

Zusammenfassung

Anwendungen

- Grafische Modelierung
 - BPMN nach Pi-Calculus Konvertierer
- Ausführung & Simulation
 - PiVizTool
- Verifikation
 - Verschiedene Soundness-Eigenschaften (MWB, ABC)

Ergebnis

- Der Pi-Calculus unterstützt die formale Modellierung der betrachteten Konzepte
 - Interaktionen inkl. dynamischen Binden,
 - Prozesse sowie
 - Daten
- in einer absteigenden Ausdrucksfähigkeit.

Vielen Dank!