
Eine einheitliche, formale
Grundlage für dienstbasierte

Architekturen
Frank Puhlmann

Business Process Technology
Hasso Plattner Institut

Potsdam, Germany

1

Lazy Soundness
A Prototypical Tool-Chain

Lazy Soundness is a new kind of soundness dealing with so called
left-behind or lazy activities. Since these activities can be active while
the final activity of the business process has already been reached,
processes containing these activities can never be sound. Lazy
soundness provides a criterion to prove business processes containing
these activities to be free of deadlocks and livelocks.

Prof. Dr. Mathias Weske
Frank Puhlmann
Business Process Technology Group
Hasso Plattner Institute
Campus Griebnitzsee
14482 Potsdam, Germany

http://bpt.hpi.uni-potsdam.de

A business process containing Discriminator, N-out-of-M, or Multiple
Instances without Synchronization patterns (called the critical patterns),
such as

A

B

C

2 D

Problem

Solution

Structural

Sound Process

Initial

Node

Final

Node

A, B, and C represent three web service
interactions.

After two of them have completed, D is
executed and thereafter the process is
finished.

However, one of the activities is still active, and clean-up
work like payment and documentation has to be done.

As the remaining activity contradicts the soundness definition, we can
not use existing tools to verify the sample business process. Still,
automated verification regarding deadlocks and livelocks is quite
important even if you employ one of the critical patterns in your
business process.

Lazy Soundness proves business processes
containing the critical patterns (and all others) to
be free of deadlocks and livelocks. Technically, it
abstracts from all internals of the process and
just considers the initial and final node. The
abstracted process is verified using bisimulation
techniques.

Demo Presentation:

Thursday, Sep 7 10:30am, Room EI10

Lazy soundness has been implemented in a prototypical tool chain at
our research group. We provide a graphical editing of business
processes using BPMN, automatically formalize BPM diagrams into pi-
calculus expressions, and use existing tools to decide lazy soundness
for a given business process.

The theoretical background of Lazy Soundness will be presented on
Tuesday, September 5 16:30am, Room EI9.

Gliederung

2

• Motivation

• Betrachtete Konzepte

• Interaktionen

• Prozesse

• Daten

• Zusammenfassung

Motivation

3

Dienstbasierte Architektur
4

Dienst-
verzeichnis

Dienst-
nutzer

Dienst-
anbieter

Dienstbasierte Architektur
4

Dienst-
verzeichnis

Dienst-
nutzer

Dienst-
anbieter

Veröffentlichen

Dienstbasierte Architektur
4

Dienst-
verzeichnis

Dienst-
nutzer

Dienst-
anbieter

VeröffentlichenFinden

Dienstbasierte Architektur
4

Dienst-
verzeichnis

Dienst-
nutzer

Dienst-
anbieter

Binden

VeröffentlichenFinden

Pi-Calculus Linkmobilität
5

N A

V

Pi-Calculus Linkmobilität
5

N A

A

A

A

A

A

V

Pi-Calculus Linkmobilität
5

N A

A

A

A

A

A

V

Pi-Calculus Linkmobilität
5

N A

V

B
ro

k
e

r

B
a

n
k

Buy
direct

Find
Bank

Request
Credit

Buy

Reject
Purchase

< !1.000

>= !1.000

Lookup
Banks

Send
Accept

Accept

Reject

Send
Reject

C
u

s
to

m
e

r

Dienstbasierte Architektur
6

Konzepte

7

Der Pi-Calculus

8

• Eine Prozessalgebra für Systeme mit
Linkmobilität

• Syntax in BNF:

purchase. Thereafter, the credit is requested at the Bank. In the considered scenario, the
Bank can send two possible answers, either accept or reject the credit. This is evaluated
in the Customer’s process using a deferred choice. Based on the decision of the Bank, the
purchase is made or rejected.

While the example choreography looks like a static interaction between Customer, Broker,
and Bank, it is indeed an agile one. Only the Broker is known at design time, so it is directly
coded into the Find Bank activity. However, the credit request relies on the answer of the
Broker’s lookup. Thus, the Customer’s process dynamically binds to a certain Bank only
known at runtime. The example contains typical ingredients of a SOA: internal processes
with data (orchestrations) as well as static and dynamic interactions (choreographies).

The example can be discussed using approaches ranging from Petri nets to process alge-
bra as well as existing standards. Petri nets have a long tradition for formalizing business
processes [vAvH02]. They have also been extended to support distribution, e.g. Weske et
al. in [vAW01]. Recent work investigated the representation of services and compatibil-
ity, e.g. Martens using usability in [Mar03], refined by Massuthe et al. using operating
guidelines in [MRS05]. However, regarding distributed business processes, Petri net based
approaches have two major drawbacks. First, they do not support more advanced routing
pattern required for real-world business processes [vAtH03]. Second, they do not sup-
port interaction patterns that require dynamic binding [BDtH05]. Regarding the given
example, only simple routing patterns are contained that cause no problems. However,
the dynamic binding would generate infinite Petri nets if we assume an unknown number
of possible participants. Extensions for special cases are possible but have a low general
adequacy. Process algebra based approaches often neglect mobility aspects [BS05], but
even if they consider it, there exist no investigations on full adequacy regarding advanced
routing patterns. Thus, there exist no process algebra based approach until now that has
been scientifically investigated regarding distributed business processes. Our motivation
on investigating the π-calculus can be found in [Puh06].

3 The π-calculus

The π-calculus is based on a labeled transition system given by (P, T,
t→), where P repre-

sents the set of states, i.e. all possible process descriptions, T is a set of transition labels,
and t→ is a transition relation for each t ∈ T . To get started with the π-calculus, knowl-
edge about process structures is sufficient, while the semantics can be used informally.
Inside π-calculus processes names are used to represent links or pointers. Processes are
denoted by uppercase letters and names by lowercase letters. The processes (i.e. states) of
the π-calculus are given by:

P ::= M | P |P ′ | vzP | !P | P (y1, · · · , yn)
M ::= 0 | π.P | M + M ′

π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π .
(1)

Interaktionen

• Dienstaufrufe:

9

Interaktionen

• Dienstaufrufe:

9

Initially, all nodes are placed in parallel in process BROKER. However, only component
B1 can start immediately, since all other components require preconditions denoted by π-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important π-processes:

S2(s1, s2, s3) = s1.τS2.(s2.0 + s3.0)

S5(s4, s5, s6) = s4.τS5.s6.0 + s5.τS5.s6.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic.1 Again, we showcase the
relevant process:

C2(c1, c2, c3) = c1(value).τC2.([value > 999]c2.0 + [value < 1000]c3.0) .

The π-calculus process C2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtH05]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the π-calculus. A synchronous service
invocation is denoted as follows:

A = b〈msg〉.A′ B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-calculus, we
can model a repository R = lookup〈b〉.R that transmits the link at runtime:

S = (vlookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

1This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

Interaktionen

• Dienstaufrufe:

9

Initially, all nodes are placed in parallel in process BROKER. However, only component
B1 can start immediately, since all other components require preconditions denoted by π-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important π-processes:

S2(s1, s2, s3) = s1.τS2.(s2.0 + s3.0)

S5(s4, s5, s6) = s4.τS5.s6.0 + s5.τS5.s6.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic.1 Again, we showcase the
relevant process:

C2(c1, c2, c3) = c1(value).τC2.([value > 999]c2.0 + [value < 1000]c3.0) .

The π-calculus process C2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtH05]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the π-calculus. A synchronous service
invocation is denoted as follows:

A = b〈msg〉.A′ B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-calculus, we
can model a repository R = lookup〈b〉.R that transmits the link at runtime:

S = (vlookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

1This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

Statisches
Binden:

Initially, all nodes are placed in parallel in process BROKER. However, only component
B1 can start immediately, since all other components require preconditions denoted by π-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important π-processes:

S2(s1, s2, s3) = s1.τS2.(s2.0 + s3.0)

S5(s4, s5, s6) = s4.τS5.s6.0 + s5.τS5.s6.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic.1 Again, we showcase the
relevant process:

C2(c1, c2, c3) = c1(value).τC2.([value > 999]c2.0 + [value < 1000]c3.0) .

The π-calculus process C2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtH05]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the π-calculus. A synchronous service
invocation is denoted as follows:

A = b〈msg〉.A′ B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-calculus, we
can model a repository R = lookup〈b〉.R that transmits the link at runtime:

S = (vlookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

1This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

Interaktionen

• Dienstaufrufe:

9

Initially, all nodes are placed in parallel in process BROKER. However, only component
B1 can start immediately, since all other components require preconditions denoted by π-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important π-processes:

S2(s1, s2, s3) = s1.τS2.(s2.0 + s3.0)

S5(s4, s5, s6) = s4.τS5.s6.0 + s5.τS5.s6.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic.1 Again, we showcase the
relevant process:

C2(c1, c2, c3) = c1(value).τC2.([value > 999]c2.0 + [value < 1000]c3.0) .

The π-calculus process C2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtH05]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the π-calculus. A synchronous service
invocation is denoted as follows:

A = b〈msg〉.A′ B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-calculus, we
can model a repository R = lookup〈b〉.R that transmits the link at runtime:

S = (vlookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

1This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

Statisches
Binden:

Initially, all nodes are placed in parallel in process BROKER. However, only component
B1 can start immediately, since all other components require preconditions denoted by π-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important π-processes:

S2(s1, s2, s3) = s1.τS2.(s2.0 + s3.0)

S5(s4, s5, s6) = s4.τS5.s6.0 + s5.τS5.s6.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic.1 Again, we showcase the
relevant process:

C2(c1, c2, c3) = c1(value).τC2.([value > 999]c2.0 + [value < 1000]c3.0) .

The π-calculus process C2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtH05]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the π-calculus. A synchronous service
invocation is denoted as follows:

A = b〈msg〉.A′ B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-calculus, we
can model a repository R = lookup〈b〉.R that transmits the link at runtime:

S = (vlookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

1This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

Initially, all nodes are placed in parallel in process BROKER. However, only component
B1 can start immediately, since all other components require preconditions denoted by π-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important π-processes:

S2(s1, s2, s3) = s1.τS2.(s2.0 + s3.0)

S5(s4, s5, s6) = s4.τS5.s6.0 + s5.τS5.s6.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic.1 Again, we showcase the
relevant process:

C2(c1, c2, c3) = c1(value).τC2.([value > 999]c2.0 + [value < 1000]c3.0) .

The π-calculus process C2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtH05]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the π-calculus. A synchronous service
invocation is denoted as follows:

A = b〈msg〉.A′ B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-calculus, we
can model a repository R = lookup〈b〉.R that transmits the link at runtime:

S = (vlookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

1This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

Dynamisches
Binden:

Interaktionen

• Dienstaufrufe:

9

Initially, all nodes are placed in parallel in process BROKER. However, only component
B1 can start immediately, since all other components require preconditions denoted by π-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important π-processes:

S2(s1, s2, s3) = s1.τS2.(s2.0 + s3.0)

S5(s4, s5, s6) = s4.τS5.s6.0 + s5.τS5.s6.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic.1 Again, we showcase the
relevant process:

C2(c1, c2, c3) = c1(value).τC2.([value > 999]c2.0 + [value < 1000]c3.0) .

The π-calculus process C2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtH05]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the π-calculus. A synchronous service
invocation is denoted as follows:

A = b〈msg〉.A′ B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-calculus, we
can model a repository R = lookup〈b〉.R that transmits the link at runtime:

S = (vlookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

1This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

Statisches
Binden:

Initially, all nodes are placed in parallel in process BROKER. However, only component
B1 can start immediately, since all other components require preconditions denoted by π-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important π-processes:

S2(s1, s2, s3) = s1.τS2.(s2.0 + s3.0)

S5(s4, s5, s6) = s4.τS5.s6.0 + s5.τS5.s6.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic.1 Again, we showcase the
relevant process:

C2(c1, c2, c3) = c1(value).τC2.([value > 999]c2.0 + [value < 1000]c3.0) .

The π-calculus process C2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtH05]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the π-calculus. A synchronous service
invocation is denoted as follows:

A = b〈msg〉.A′ B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-calculus, we
can model a repository R = lookup〈b〉.R that transmits the link at runtime:

S = (vlookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

1This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

Initially, all nodes are placed in parallel in process BROKER. However, only component
B1 can start immediately, since all other components require preconditions denoted by π-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important π-processes:

S2(s1, s2, s3) = s1.τS2.(s2.0 + s3.0)

S5(s4, s5, s6) = s4.τS5.s6.0 + s5.τS5.s6.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic.1 Again, we showcase the
relevant process:

C2(c1, c2, c3) = c1(value).τC2.([value > 999]c2.0 + [value < 1000]c3.0) .

The π-calculus process C2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtH05]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the π-calculus. A synchronous service
invocation is denoted as follows:

A = b〈msg〉.A′ B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-calculus, we
can model a repository R = lookup〈b〉.R that transmits the link at runtime:

S = (vlookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

1This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

Dynamisches
Binden:

Initially, all nodes are placed in parallel in process BROKER. However, only component
B1 can start immediately, since all other components require preconditions denoted by π-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important π-processes:

S2(s1, s2, s3) = s1.τS2.(s2.0 + s3.0)

S5(s4, s5, s6) = s4.τS5.s6.0 + s5.τS5.s6.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic.1 Again, we showcase the
relevant process:

C2(c1, c2, c3) = c1(value).τC2.([value > 999]c2.0 + [value < 1000]c3.0) .

The π-calculus process C2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtH05]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the π-calculus. A synchronous service
invocation is denoted as follows:

A = b〈msg〉.A′ B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-calculus, we
can model a repository R = lookup〈b〉.R that transmits the link at runtime:

S = (vlookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

1This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

Prozesse

• Basierend auf Workflow-Pattern-Formalisierungen:

10

Prozesse

• Basierend auf Workflow-Pattern-Formalisierungen:

10

Sequence:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Prozesse

• Basierend auf Workflow-Pattern-Formalisierungen:

10

Sequence:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Prozesse

• Basierend auf Workflow-Pattern-Formalisierungen:

10

Sequence:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Exclusive Choice:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Prozesse

• Basierend auf Workflow-Pattern-Formalisierungen:

10

Sequence:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Exclusive Choice:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Simple Merge:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Prozesse

• Basierend auf Workflow-Pattern-Formalisierungen:

10

Sequence:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Exclusive Choice:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Simple Merge:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Deferred Choice:

van der Aalst et al. [vAtHKB00] as Workflow Patterns. In [PW05] we have shown how
all these patterns can be represented in the π-calculus. In [OPW05] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a π-calculus process, according to the following structure:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

Curly brackets are used to denote a static sequence of actions, the same holds for
∏

and
∑

for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using π-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action τ . The precondition is split into two
part: (1) {xi}m

i=1 denotes that the activity waits for m incoming names, and (2) {[a = b]}n
1

denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {yi}o

i=1. It is notable that the π-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in π-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure 2 are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different π-calculus processes:

A = τA.b.0 B = b.τB .B′ ,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SY STEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C after an activity A is represented by:

A = τA.(b.0 + c.0) B = b.τB .B′ C = c.τC .C ′ .

Note that the pattern given makes a non–deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C:

B = τB .d1.0 C = τC .d2.0 D = d1.τD.D′ + d2.τD.D′ .

A Deferred Choice pattern defers the decision until an external event occurs:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

After all patterns required for the example have been defined, the orchestrations from
figure 2 can be formalized in π-calculus. Basically, each orchestration can be seen as a

Daten

11

• Keine native Unterstützung

• Allerdings: Lambda-Calculus im Pi-Calculus
darstellbar

• Erweiterungen zur direkten Unterstützung
von Daten vorhanden; allerdings

• Auf Kosten der Beweismöglichkeiten

• Beispiele im Papier

Zusammenfassung

12

Anwendungen

13

• Grafische Modelierung

• BPMN nach Pi-Calculus Konvertierer

• Ausführung & Simulation

• PiVizTool

• Verifikation

• Verschiedene Soundness-Eigenschaften
(MWB, ABC)

Ergebnis

• Der Pi-Calculus unterstützt die formale
Modellierung der betrachteten Konzepte

• Interaktionen inkl. dynamischen Binden,

• Prozesse sowie

• Daten

• in einer absteigenden Ausdrucksfähigkeit.

14

Vielen Dank!

15

