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A business process containing Discriminator, N-out-of-M, or Multiple 
Instances without Synchronization patterns (called the critical patterns), 
such as
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A, B, and C represent three web service 
interactions.

After two of them have completed, D is 
executed and thereafter the process is 
finished.

However, one of the activities is still active, and clean-up 
work like payment and documentation has to be done.

As the remaining activity contradicts the soundness definition, we can 
not use existing tools to verify the sample business process. Still, 
automated verification regarding deadlocks and livelocks is quite 
important even if you employ one of the critical patterns in your 
business process.

Lazy Soundness proves business processes 
containing the critical patterns (and all others) to 
be free of deadlocks and livelocks. Technically, it 
abstracts from all internals of the process and 
just considers the initial and final node. The 
abstracted process is verified using bisimulation 
techniques.

Demo Presentation:

Thursday, Sep 7 10:30am, Room EI10 

Lazy soundness has been implemented in a prototypical tool chain at 
our research group. We provide a graphical editing of business 
processes using BPMN, automatically formalize BPM diagrams into pi-
calculus expressions, and use existing tools to decide lazy soundness 
for a given business process.

The theoretical background of Lazy Soundness will be presented on 
Tuesday, September 5 16:30am, Room EI9.
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Motivation



Problem

• We would like to investigate the 
compatibility of a service with a given 
environment

• In contrast to existing approaches, only a 
subset of connections between the service 
and the environment is static

• Other connections are acquired during 
runtime using dynamic binding



Conformance vs. Compatibility
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Preliminaries

• A theory capable of directly supporting 
dynamic binding as well as common 
process and interaction patterns

• The Pi-Calculus (DWP‘05)

• An applicable soundness criterion

• Lazy Soundness (BPM‘06)
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Lazy Soundness

• Defined for abstract process graphs

• States that a process graph is 

• Free of deadlocks and livelocks as long as 
the final node has not been reached

• The final node is reached exactly once



Lazy Soundness Example
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Applicability

• Lazy soundness can be proved for pi-
calculus representations of process graphs

• Based on bisimulation techniques

• Bisimulations which consider link passing 
mobility for pi-calculus are available, i.e. late 
and open bisimulation
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Interaction Soundness

• Interaction Soundness is defined for an extension of 
process graphs, called service graphs unified with an 
environment

• A service graph is a process graph enhanced with in- 
and outbound interaction edges

• Static and dynamic 

• An environment E for a service graph SG is given if E 
utilizes at least one static interaction edge of SG



Definition

• A service graph SG is interaction sound 
regarding environment E if and only if SG 
unified with E is lazy sound
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Reasoning

• Interaction soundness can be proved 
formally using

• The pi-calculus representation of the 
service graph combined with

• A pi-calculus process representing an 
environment

• Using weak late/open bisimulation
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Conclusion

• We presented a compatibility notion for services/
environments that supports dynamic binding

• Interaction soundness can be proved formally using 
bisimulation

• Support for common process and interactions 
patterns (published at BPM‘05,BPM‘06)

• Allows checking a large set of  choreographies



Questions?


