
Interaction Soundness for
Service Orchestration

Frank Puhlmann
(Joint work with Mathias Weske)

Business Process Technology Group
Hasso Plattner Institut

Potsdam, Germany

Lazy Soundness
A Prototypical Tool-Chain

Lazy Soundness is a new kind of soundness dealing with so called
left-behind or lazy activities. Since these activities can be active while
the final activity of the business process has already been reached,
processes containing these activities can never be sound. Lazy
soundness provides a criterion to prove business processes containing
these activities to be free of deadlocks and livelocks.

Prof. Dr. Mathias Weske
Frank Puhlmann
Business Process Technology Group
Hasso Plattner Institute
Campus Griebnitzsee
14482 Potsdam, Germany

http://bpt.hpi.uni-potsdam.de

A business process containing Discriminator, N-out-of-M, or Multiple
Instances without Synchronization patterns (called the critical patterns),
such as

A

B

C

2 D

Problem

Solution

Structural

Sound Process

Initial

Node

Final

Node

A, B, and C represent three web service
interactions.

After two of them have completed, D is
executed and thereafter the process is
finished.

However, one of the activities is still active, and clean-up
work like payment and documentation has to be done.

As the remaining activity contradicts the soundness definition, we can
not use existing tools to verify the sample business process. Still,
automated verification regarding deadlocks and livelocks is quite
important even if you employ one of the critical patterns in your
business process.

Lazy Soundness proves business processes
containing the critical patterns (and all others) to
be free of deadlocks and livelocks. Technically, it
abstracts from all internals of the process and
just considers the initial and final node. The
abstracted process is verified using bisimulation
techniques.

Demo Presentation:

Thursday, Sep 7 10:30am, Room EI10

Lazy soundness has been implemented in a prototypical tool chain at
our research group. We provide a graphical editing of business
processes using BPMN, automatically formalize BPM diagrams into pi-
calculus expressions, and use existing tools to decide lazy soundness
for a given business process.

The theoretical background of Lazy Soundness will be presented on
Tuesday, September 5 16:30am, Room EI9.

Outline

• Motivation

• Preliminaries

• Interaction Soundness

• Conclusion

Motivation

Problem

• We would like to investigate the
compatibility of a service with a given
environment

• In contrast to existing approaches, only a
subset of connections between the service
and the environment is static

• Other connections are acquired during
runtime using dynamic binding

Conformance vs. Compatibility

<<interface>>
Service A

<<interface>>
Service B

Impl. A Impl. B

Stock Exchange Repository

Stock
Exchange A

Stock
Exchange B

Stock
Exchange C

...

Find & Bind
Stock Exchanges

Bid at first Stock
Exchange

Bid at second
Stock Exchange

1

S
to

c
k
 B

ro
k
e

r

Place
Order

B1 B2

B3

B4

B5
B6

B7 B8
e1 e2

e3

e4

e5

e6

e7 e8

Stock Exchange Choreography

Stock Exchange Repository

Stock
Exchange A

Stock
Exchange B

Stock
Exchange C

...

Find & Bind
Stock Exchanges

Bid at first Stock
Exchange

Bid at second
Stock Exchange

1

S
to

c
k
 B

ro
k
e

r

Place
Order

B1 B2

B3

B4

B5
B6

B7 B8
e1 e2

e3

e4

e5

e6

e7 e8

Stock Exchange Choreography

Service

Stock Exchange Repository

Stock
Exchange A

Stock
Exchange B

Stock
Exchange C

...

Find & Bind
Stock Exchanges

Bid at first Stock
Exchange

Bid at second
Stock Exchange

1

S
to

c
k
 B

ro
k
e

r

Place
Order

B1 B2

B3

B4

B5
B6

B7 B8
e1 e2

e3

e4

e5

e6

e7 e8

Environment

Stock Exchange Choreography

Service

Preliminaries

Preliminaries

• A theory capable of directly supporting
dynamic binding as well as common
process and interaction patterns

• The Pi-Calculus (DWP‘05)

• An applicable soundness criterion

• Lazy Soundness (BPM‘06)

Pi-Calculus Link Passing Mobility

C S

B

Pi-Calculus Link Passing Mobility

C S

S

S

S

S

S

B

Pi-Calculus Link Passing Mobility

C S

S

S

S

S

S

B

Pi-Calculus Link Passing Mobility

C S

B

SOA

Service
Broker

Service
Requester

Service
Provider

PublishFind

SOA

Service
Broker

Service
Requester

Service
Provider

Bind

PublishFind

Lazy Soundness

• Defined for abstract process graphs

• States that a process graph is

• Free of deadlocks and livelocks as long as
the final node has not been reached

• The final node is reached exactly once

Lazy Soundness Example

A

B

C

2 D
3

Applicability

• Lazy soundness can be proved for pi-
calculus representations of process graphs

• Based on bisimulation techniques

• Bisimulations which consider link passing
mobility for pi-calculus are available, i.e. late
and open bisimulation

Interaction Soundness

Interaction Soundness

• Interaction Soundness is defined for an extension of
process graphs, called service graphs unified with an
environment

• A service graph is a process graph enhanced with in-
and outbound interaction edges

• Static and dynamic

• An environment E for a service graph SG is given if E
utilizes at least one static interaction edge of SG

Definition

• A service graph SG is interaction sound
regarding environment E if and only if SG
unified with E is lazy sound

Stock Exchange Choreography

Stock Exchange Repository

Stock
Exchange A

Stock
Exchange B

Stock
Exchange C

...

Find & Bind
Stock Exchanges

Bid at first Stock
Exchange

Bid at second
Stock Exchange

1

S
to

c
k
 B

ro
k
e

r

Place
Order

B1 B2

B3

B4

B5
B6

B7 B8
e1 e2

e3

e4

e5

e6

e7 e8

Stock Exchange Type 1

S
to

c
k
 E

x
.
A

Process

Bid

ch(b)

Send Order

Token

b(o)

Receive

Order

o

Stock Exchange Type 2

S
to

c
k
 E

x
.

B

Process

Bid

ch(b)

Send Order

Token

b(o)

Receive

Order

o

Confirm

Bid

b(confirm)

Reasoning

• Interaction soundness can be proved
formally using

• The pi-calculus representation of the
service graph combined with

• A pi-calculus process representing an
environment

• Using weak late/open bisimulation

Conclusion

Conclusion

• We presented a compatibility notion for services/
environments that supports dynamic binding

• Interaction soundness can be proved formally using
bisimulation

• Support for common process and interactions
patterns (published at BPM‘05,BPM‘06)

• Allows checking a large set of choreographies

Questions?

