

PESOA
Process Family Engineering in Service-Oriented Applications

BMBF-Project

Process Family Engineering
Modeling variant-rich processes

Authors:
Joachim Bayer
Winfried Buhl
Cord Giese
Theresa Lehner
Alexis Ocampo
Frank Puhlmann
Ernst Richter
Arnd Schnieders
Jens Weiland
Mathias Weske

PESOA-Report No. 18/2005
Sep 01, 2005

PESOA is a cooperative project supported by
the federal ministry of education and research
(BMBF). Its aim is the design and prototypical
implementation of a process family engineer-
ing platform and its application in the areas of
e-business and telematics.
The project partners are:

· DaimlerChrysler Inc.
· Delta Software Technology GmbH.
· eHotel AG
· Fraunhofer IESE
· Hasso-Plattner-Institute
· University of Leipzig

PESOA is coordinated by
Prof. Dr. Mathias Weske
Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam

www.pesoa.org

 v

Abstract

In this report, we present the methodological foundation for process family
engineering. The methodological foundation consists of a conceptual model
for variant-rich processes and a process engineering process called the
PESOA process. The conceptual model describes the conceptual require-
ments for defining variant-rich processes in both the e-business and the
automotive domains, whereas the PESOA process embeds the variant-rich
processes in an approach for developing, using, and maintaining families of
processes for such domains.

The methodological foundation constitutes a fundamental achievement with
respect to the main goal of the PESOA project, which is to design and im-
plement a platform for process families of related applications. Such platform
shall support the management of the variant-rich processes contained in a
process family and enable the automatic process-based instantiation of ap-
plications.

Keywords: PESOA, Process, Variant-Rich Processes, Process Variability

 vii

Table of Contents

1 Introduction 1
1.1 Project Context 1
1.2 Goals of the Report 1
1.3 Outline 1

2 Motivation 3
2.1 Goal 3
2.2 Approach 5

3 Conceptual Process Model 6
3.1 Processes 6
3.2 Control Flow 9
3.3 Data Flow 10
3.3.1 Input 10
3.3.2 Output 11
3.3.3 Data source 11
3.3.4 Data sink 11
3.4 Environment 12
3.4.1 Scope 12
3.4.2 Event 12
3.4.3 Exception 13
3.4.4 Variable 13
3.4.5 State 13
3.5 Non-functional Properties 14

4 Integrating Variability in the Conceptual Process
Model 15

4.1 Selected Technique 15
4.2 Conceptual Model Extension 17
4.3 Example 21

5 PESOA Process 23
5.1 Domain Scoping 24
5.2 Domain Analysis 25
5.2.1 Model Features 25
5.2.2 Identify Processes 25
5.3 Domain Design 26
5.3.1 Design Processes 26
5.3.2 Model Configurations 26
5.4 Domain Implementation 27
5.4.1 Implement DS (Domain-specific) Generator 27

 viii

5.4.2 Implement DS (Domain-specific) Components 27
5.5 Application Engineering Processes 28
5.5.1 Specify Product 28
5.5.2 Configure Product 29
5.5.3 Build, Integrate and Test 30
5.5.4 Apply Domain-specific Generator 30
5.6 Products 31
5.6.1 Product Set 31
5.6.2 Scope Definition 31
5.6.3 Feature Model 32
5.6.4 Process Requirements 32
5.6.5 Variant-Rich Process 33
5.6.6 Variation Points Set 34
5.6.7 Configuration Model 34
5.6.8 Domain-specific Generator 35
5.6.9 Domain-specific Components 36
5.6.10 Product Requirements 36
5.6.11 Product Feature Model 36
5.6.12 Not Covered Features 37
5.6.13 Resolution Model 37
5.6.14 Target Code 38
5.6.15 Product 38
5.6.16 Process Family Infrastructure 39

6 Modelling Variant-Rich Processes in the PESOA
Domains 40

6.1 Modelling Variant-Rich Software Based Automotive
Control Processes 40

6.1.1 Mapping of Relevant Concepts to UML Activity Diagrams40
6.1.2 Mapping of Relevant Concepts to UML State Machines 44
6.1.3 Modelling Variability in Software Based Automotive Control

Processes 47
6.2 Modelling Variant-Rich Workflows in the E-Business

Domain 50
6.2.1 Mapping of Relevant Concepts to BPMN 50
6.2.2 Modelling Variability in the E-Business Domain 53

7 Summary 57

8 References 59

1

1 Introduction

1.1 Project Context

PESOA is a cooperative project financed by the German federal ministry of
education and research (BMBF). The goal of the PESOA project is to design
and implement a platform for families of related applications. The envisioned
platform is used to manage process variants for families of applications and
to enable the process-based instantiation of such application families. This
goal is addressed by enhancing the approved technologies from the area of
domain engineering, product line engineering, and software generation with
new methods from the area of workflow management.

1.2 Goals of the Report

In this report, we present the methodological foundation for process family
engineering for applications. The motivation for process family engineering is
to transfer product line engineering approaches to software engineering do-
mains, where processes are the driving software engineering artefact. For
example, the e-business domain, where workflows determine the developed
applications or automotive domain, where embedded control processes play
the same role in the development of software for embedded control units.

The goal of product line engineering is to handle a number of similar soft-
ware systems together, enabling large scale reuse during the development
and maintenance of the different systems covered by the product line. The
transfer of this principal approach to software engineering domains that use
processes as driving software engineering artifact leads to process family
engineering.

In this report, we present the techniques that have been developed in the
PESOA project to realize process family engineering. These techniques
support the definition of processes in the PESOA domain and embed the re-
sulting variant-rich processes in a software engineering approach for proc-
ess families.

1.3 Outline

This report is structured as follows. Chapter 2 motivates process family en-
gineering and describes the techniques required for process family engineer-
ing. Chapter 3 presents a conceptual model that reflects the required con-

 2

cepts for modeling processes in the PESOA domains. In Chapter 4, variabil-
ity is introduced to the conceptual model in order to define the conceptual
basis for modeling variant-rich processes in the PESOA domain. Chapter 5
contains the general PESOA process that embeds the variant-rich proc-
esses in an approach for developing, using, and maintaining families of
processes in the PESOA domains. Both, the conceptual model and the
PESOA process, are defined in a general, domain-independent way. They
need to be adapted to the domain in which they are used. The realization of
the concepts for modeling variant-rich processes in the two PESOA do-
mains, e-business and automotive software engineering, is described in
chapter 6.

3

2 Motivation

2.1 Goal

Business and embedded control processes are often used as a central soft-
ware engineering artifact. Then, processes determine the different character-
istics of the developed systems. This process-based software development
approach has not been taken into great consideration in software product
line engineering. In this report, we take a first step towards an approach for
process-based product line engineering. Using processes as drivers for
product line engineering leads to an approach in which processes are used
to determine the scope of a product line, to differentiate the product line
members, and to specify them.

Product line engineering distinguishes two development phases – domain
and application engineering – as presented in Figure 1. Each phase is pre-
ceded by an activity defining the scope of the product line that identifies the
systems which are members of a product line and the systems outside the
product line. Scoping is done by investigating a set of concrete products that
already exist, are planned, or are envisioned. The result of scoping is a set
of products that make up the product line along with the features of the dif-
ferent product line members. The relationship between product line mem-
bers and features is often documented in so-called product maps [1].

Based on a product map, domain engineering identifies the common fea-
tures (commonalities) and the variable features (variabilities) of the identified
products. Commonalities define the skeleton of the systems in the product
line; variabilities bind the space of required and anticipated variations of the
common skeleton. Each artifact produced during domain engineering con-
tains the commonalities and specially labelled variabilities. These so-called
variant-rich artifacts are stored in the product line infrastructure.

During application engineering the product line infrastructure is instantiated
to create a concrete product; the commonalities are reused and the variabili-
ties are resolved for the specific product.

 4

Figure 1: Product line engineering

In the following, we sketch the envisioned process-based product line engi-
neering approach by presenting the differences in scoping, domain engi-
neering, product line infrastructure, and application engineering when proc-
esses are used as driving software engineering artifact.

Scoping generally elicits the product line members and documents the rela-
tionship between products and their features in a product map. A product
map in process-based product line engineering associates the products,
which provide processes, with the main process functionality and further
process characteristics. The different characteristics of processes are given
in chapter 3.

Domain engineering identifies commonalities and variabilities and docu-
ments them in variant-rich artifacts. In process-based product line engineer-
ing, domain engineering produces a number of variant-rich processes. The
variant-rich processes cover a number of similar processes. Variability in the
processes is explicitly modeled. In [2] we showed that technical processes
and business processes are similar enough to use the same mechanisms for
modeling variability.

Process-based application engineering develops a specific product by in-
stantiating the variant-rich process. The instantiation or rather the resolution
of variabilities is also supported by what we call configuration models that
combine features and process characteristics with variabilities. The resulting

5

specific process can then be used to develop applications/products as done
in traditional process-based software engineering.

2.2 Approach

The concepts that will be described to introduce variability and configuration
modeling to the processes in the PESOA domains are based on a light-
weight approach for facilitating the transition towards product lines [7]. This
is a systematic approach to extend any given asset to be generic, that is, to
enable the explicit modeling of variability in that asset. Once variability is
modeled, a variability management approach enables the extension of arbi-
trary assets to become product line suitable. The approach also enables an
explicit modeling of variability and the derivation of single product line mem-
bers.

 6

3 Conceptual Process Model

In this section the necessary concepts for modeling processes from the e-
business, as well as from the automotive domain are presented. Examples
will be provided with the purpose of illustrating the concepts defined in the
conceptual model.

Figure 2: Conceptual model (UML static structure diagram)

The conceptual model presented in Figure 2 as a UML Static Structure is in-
tended to describe both the requirements on processes in the e-business
and the automotive domain extracted from the analysis performed in [1].

Figure 2 is split into areas i.e., process, control flow, data flow, non-
functional properties, and environment. Each area is characterized by a set
of concepts defined within it. The areas have been used for structuring the
description of the conceptual model, in the following sections.

3.1 Processes

Processes are used for specifying e-business systems and for specifying
control systems in the automotive domain. In e-business, a process is typi-
cally a workflow, while in automotive, an embedded control process de-
scribes possible sequences executing related control functions of a control-

7

ler. Therefore, the process concept constitutes the core of the conceptual
model [3].

The process can be hierarchically refined into smaller activities until an
atomic level is reached that should or cannot be parted anymore. This is the
functional aspect [3] and it consists of composite and atomic activities.

These relationships between process, composite activity, and activity have
been realized in the conceptual model by means of the composite pattern.
The composite pattern is often used to represent recursive data structures
[4]. It allows a client object to treat both single components and collections of
components identically. Looking at Figure 2 this means that if the scope is
considered a client object, then it could be said that a process, a composite
activity, as well as an activity each have an associated scope. The same can
be assumed for other concepts that have an association with the process
concept.

A composite activity groups atomic activities within a process. Thus, in e-
business, a composite activity will group several workflow activities. An ex-
ample can be seen in the “Register Auction Item Process” (see Figure 3),
where the composite activity “Describe item” encompasses (atomic) activi-
ties such as for example: “Search for existing categories”, “Check item char-
acteristics”, “Save item description”. In automotive, a composite activity
groups several sub-processes. One example is the process for controlling
the engine operation. This process comprises (sub-) processes such as
“Controlling Operating Time”, “Controlling Engine Temperature”, and “Con-
trolling Catalytic Converter” (see Figure 4).

An activity is an atomic step in a process. Each process contains at least
one activity. In e-business, an activity belongs to the functional workflow as-
pect [3]. Examples can be seen in Figure 3 : “Reject item”, “Select Auction
Type”, Review fees”. An activity in the context of automotive embedded con-
trol processes constitutes a data transformation. An example of an activity is
reading out a characteristic or calculating function values.

 8

Figure 3: Register auction item process: process, composite activity, and activity (BPMN notation)

Figure 3 presents a BMPN example [5] where the realization of the earlier
presented concepts can be observed. The composite activity “Describe
item”, which is a process as well, is marked specially with a “+” symbol in-
side a square. The remaining are single activities.

Figure 4: Operating engine process: realization of process, composite activity, and activity [14] (UML activ-
ity diagram)

Figure 4 presents an UML Activity Diagram Example [14] with an example of
the automotive domain. Composite activities are: “Controlling Engine Tem-
perature” and “Controlling Catalytic Converter”. The remaining are single ac-
tivities.

9

Roles can be assigned directly either to a process, a composite activity, or a
single activity, since they have been modeled as an attribute of process.

A process execution state shows the defined value of the executed process
at a given point in time. In e-business, each workflow activity keeps a state
like waiting, executed, or completed, as well as states related to variable as-
signment. In automotive, the execution of control functions depends on the
states of the system. These states depend on variable assignments, as well
as on the strategy of scheduling the process execution.

3.2 Control Flow

The control flow describes the topology of a process. The control flow can be
refined to concrete control flow constructs like sequence, parallel, etc. as re-
quired by the specific domains. For example, in e-business, the control flow
represents the behavioural aspect of workflows [3], for which a set of work-
flow patterns have been published in [6] and is widely used. Workflow pat-
terns include for instance sequence, parallel split and join, discriminator, n-
out-of-m join, multiple instances, milestone or cancel. In the automotive do-
main, control flow defines the (open/closed loop) process intrinsically. A con-
trol flow comprises for example sub-processes, which are executed in se-
quence or in parallel. An example of a control flow is coordinating concurrent
torque requests, like traction control, gear-shift, or accelerator position. An-
other example can be seen in Figure 4, where a choice must be taken in or-
der to control the engine’s optimal temperature.

Please note that the concepts shown in the conceptual model in the control
flow rectangle constitute a subset of the mentioned workflow patterns. The
control flow concepts are modeled as a specialization of the composite activ-
ity concept, allowing recurrent structures. One example of what the concep-
tual model allows through this specialization can be seen in Figure 5. The
example uses the BPMN as a concrete modeling notation.

 10

Figure 5: Control flow realization in BPMN

The control flow starts with a “Sequence” between the start end event with a
“Choice” between. The control flow “Choice” contains the control flow “Se-
quence”, which in turn contains single activities and the composite activity
“Describe Item”.

3.3 Data Flow

The concepts necessary for modeling data flow are: input, output, data sink,
data source, process, composite activity, and activity (see Figure 2).

The data flow captures the passing of data within a process. This has been
realized in the conceptual model through the relationship between the input
and output concepts. This in turn implies that the data flow allows arbitrary
connections between activities and composite activities.

In e-business, the data flow belongs to the informational workflow aspect [3].
An example is the forwarding of an “Auction Type” between “Select Auction
Type” and “Describe Item” (see Figure 5). In automotive, data flow com-
prises transferring data from one activity or sub-process to another activity or
sub-process, for example, transferring and computing of the target torque.

3.3.1 Input

11

Input describes data consumed by a process. In the conceptual model, each
process, activity, or composite activity can have inputs assigned. A hierar-
chical structure of inputs (applies for outputs as well) is allowed in the con-
ceptual model. This gives the possibility of grouping inputs/outputs when
needed.

In e-business, input belongs to the informational workflow aspect [3].
Thereby each workflow activity might require incoming data to get started.
An example is the “Item Description” that is required by the workflow activity
“Review Fees” to get started (see Figure 5). In automotive, input data drive
(control-) processes. They are provided as measurements of sensors or as
output data from other processes. Examples of input data are signals from
the clutch control or the accelerator sensor for adjusting the required torque.

3.3.2 Output

In the conceptual model an output describes data generated by the process,
activities, or composite activities. In e-business, output also belongs to the
informational workflow aspect [3]. Thereby each workflow activity might pro-
duce outgoing data as a result. An example is the selected “Auction Type”
during the workflow activity “Select Auction Type” (see Figure 5). In automo-
tive, output data constitute results of (control-) processes. They serve for
driving actuators or as input for subsequent processes. Examples for output
data are the value of the angular ignition spacing or the values for starting in-
jection and the injection period.

3.3.3 Data source

Data sources produce data used as input. An example is the official quota-
tion of a stock index which might be available as a web service or a table in
a database. In automotive, sensors are data sources and actuators are data
sinks. In addition to regular data flow, where data are exchanged between
(sub-) processes, data sources and data sinks serve for the asynchronous
exchange of data (e.g., as memory).

3.3.4 Data sink

Data sinks consume data produced as outputs. In e-business and automo-
tive, data sink is the complement to a data source. Examples of data sinks
are databases that keep the orders. In automotive, data sinks are the actua-
tors (see Figure 6).

Figure 6: Data source and data sink in an embedded closed loop control system

 12

The conceptual model allows visualizing processes either as data sources or
data sinks, since they produce/consume inputs/outputs as well. It is impor-
tant to underline that even though the concepts are similar they need to be
modeled separately. Especially, because data sinks and data sources are
well-established concepts related to hardware (sensors, actuators) in the
automotive domain. The main purpose of having such special concepts
separated is to simplify the model’s interpretation.

3.4 Environment

This section presents the set of concepts and relationships that were mod-
eled in order to define the execution environment of a process.

3.4.1 Scope

In the conceptual model, a process is related to a scope, where a scope
represents an execution environment for a process/composite activ-
ity/activity. Due to the composite pattern, a process can have more than one
scope associated. Events are caught within a scope and influence the set of
associated variables by affecting their values and determining the process
execution state at a point in time.

In e-business, an example is the scope of activities, where the user must be
authenticated. The authentication data is kept inside the scope and events
can be triggered for several reasons, for example, to specify a time-out. In
automotive, engine and gear control are two control systems within the
power train. Both control systems have their own scope. Communication be-
tween these two control systems is carried out by exchanging signals.

3.4.2 Event

An event can be thrown by a data source or a process. In the case of a data
source, an event is thrown, when a special value or threshold defined for the
data source has been reached. Something similar can be assumed for a
process that reaches a certain state and/or exit criteria. Note that events can
not be thrown, unless they are associated to a scope.

control controlled system driver

environment
Actuator
 (data sink)

Sensor
(data source)

13

Figure 7: Message event example in BPMN [5]

An example from the e-business domain can be seen in Figure 7. Here, an
e-mail processing workflow is triggered once a new e-mail is received. The
e-mail is then checked for viruses, spam und further prepared regarding to
custom rules.. In the automotive domain, events are usually classified as
control events (e.g., for switching-on/-off the ignition) and data events (e.g.,
in case the value of a sensor under-/over-runs a threshold). Additionally,
events can be classified as normal events (e.g., switch on/off) and temporal
events (e.g. time synchronous throttle control). These can be modeled as
well, as a specialization of the event concept.

3.4.3 Exception

One special kind of event is the exception. An exception can be used to de-
fine a possible error in the execution of a process.

In e-business, an exception signals an error in the default workflow execu-
tion. It can be handled by special exception handlers which are invoked by a
Workflow Management System (WfMS) [5]. An example is an exception that
is raised if information is invalid to allow further processing. In automotive,
an exception is a condition, often an error, which causes a program or a mi-
croprocessor to branch in a different routine. An example could be the failure
of a sensor, which results into an alternative control strategy, or a window-lift
that stops closing the window once an object is blocked.

3.4.4 Variable

Variables provide the means for holding data. A variable is associated to a
scope and a set of variables defines a state. Variables hold data of process
attributes (i.e., inputs, outputs, data sources, data sinks, roles, and non-
functional properties).

In e-business, variables belong to the informational aspect [3] of workflow
instances. An example is an order identification number. In automotive, con-
trol processes require variables e.g., the engine’s temperature.

3.4.5 State

 14

A state is a situation during the execution of a process, which is character-
ized by the current variable assignments of its contained processes. In the
conceptual model, this is reflected by the aggregation from the state concept
to the variable concept, and through the relationship between the scope and
the process concepts. For example, in e-business the state of a shopping
transaction at a given time could be described by: the process -> “buy prod-
ucts”, the product ->“Book”, and the payment method -> “bank transfer”. In
automotive the state of an intrusion detection process could be described by
variables such as: lock -> “activated”, engine -> “idle”.

3.5 Non-functional Properties

Examples for non-functional properties are real time aspects, security,
safety, or costs. In e-business, for instance, a non-functional property named
costs could group several activities and decide at runtime which to choose
depending on the current prices. In automotive embedded systems real-time
aspects are essential. Besides the correctly computed result, it is crucial that
the result is available in a timely manner. Numerous automotive control
processes have real-time requirements, where time- and crankshaft-
synchronous processes are differentiated. An example for a cyclic execution
of process steps is determining the angular ignition spacing.

The conceptual model reflects these non-functional properties, by the con-
cept named “Quality of Service”. This means that each process, activity, and
composite activity can have properties attached that can be used as con-
straints for execution.

15

4 Integrating Variability in the Conceptual Process
Model

This section presents the approach used for including variability in the con-
ceptual model and thus represents the conceptual basis for modeling vari-
ant-rich processes in PESOA. First, the method selected as basis for build-
ing up the process variability approach will be explained. Additionally, an ex-
ample of a process model illustrating the approach is presented.

The main ideas and thoughts used for elaborating this approach have been
taken from [7]. It is geared towards the decision model based domain engi-
neering. Another alternative, not considered here, is the feature based do-
main engineering approach [12], [26].

4.1 Selected Technique

Variability modeling is not a new concept in software engineering. It has
been investigated and put into practice in the product line engineering area.

Figure 8: Product line engineering two life cycle approach [1]. Refinement of Figure 1

Figure 8 illustrates the product-line engineering approach. The first step is to
define an appropriate scope for the domain. Scoping is done by using the
features of a finite number of concrete (existing, planned, or future) products
developed by a given organization.

 16

Product line engineering focuses on comparing the characteristics of work
products, systematically throughout the execution of a project, analyzing
commonalities and variabilities. Commonalities identify the characteristics
common to a set of products. They provide an enterprise with an under-
standing of the type of applications it produces. Variabilities describe the
characteristics that vary from application to application. In other words, vari-
abilities identify those characteristics that are uncommon to a set of prod-
ucts.

According to [7] the commonality and variability concepts can be captured in
the product line artifact concept. Examples of product line artifacts are: Re-
quirements document, design document, and source code. Product line arti-
facts can be generic or non-generic. Usually, non-generic artifacts represent
commonalities between systems, while generic artifacts represent variabili-
ties.

Figure 9 shows the used meta-model [7] (UML Static Structure), where it can
be visualized how variability is related to the product line artifact concept.

Figure 9: Product line infrastructure (UML static structure diagram)

It can be observed that the variability of a product line artifact is represented
through variation points. A variation point can be associated with choices.
This means that selecting at least one of the choices will resolve the variabil-
ity. The minimum and maximum numbers of choices that resolve a variation
point as well as the default resolution choice are modeled as attributes. Fi-
nally, the resolve method is in charge of resolving the variation point by se-

17

lecting a subset of the choices. This information is enough for modeling vari-
ability in product line artifacts. Some of the existing defined variation types
are: option variation point, alternative variation point, and range variation
point. The option variation point references information that is either relevant
for a product line artifact or not. This means that there are only two choices
and exactly one must be resolved. Alternative variation points represent the
different combination of choices that can resolve the variation point. Finally,
a range variation point represents a finite range of values that can resolve
the variation point. Other sets of variation types can for example be found in
[9] [10] [10].

Another important concept is the variant artifact element. It has been mod-
eled as a concept that inherits from artifact element, and variation point.
Modeling this concept through this mechanism provides a means for mark-
ing explicitly those artifact elements that are considered variable (i.e., those
artifacts where variation points have been located)

A decision is a variation point that constrains the resolution of other variation
points. They are used to document and structure variation points and rela-
tionships between them. The set of decisions is captured in a decision
model. A decision can be of simple or non-simple nature. Simple decisions
are those that do not constrain other decisions. This means that the variation
can be resolved without expecting resolution from dependent variation
points. The relationship between the decision and constrained variation
points is called a resolution constraint. FODA’s feature model can be con-
sidered a special view of a decision model that provides additional informa-
tion on the feature (e.g., references to other sources of information) [7]. In
the feature model, the composition captures the relationships among fea-
tures, which corresponds to the constraints mentioned previously. This con-
cept together with a more detailed description of decision models can be
found in [12].

According to [7] decisions are defined through questions that are related to
concepts from the domain. Such questions must be defined in such a way
that they resolve the variation point. It is not the scope of this report to pre-
sent details on how the variation points are resolved, but to provide an in-
sight on the relationships between the concepts shown in Figure 9.

In the following, the application of the concepts presented above to the con-
ceptual model presented is provided.

4.2 Conceptual Model Extension

In order to understand how to introduce the variability concept into the
PESOA processes on a conceptual level, it is important to make an analogy
between product line engineering and process family engineering.

 18

Figure 10: PESOA process – high level (UML activity diagram)

Figure 10 shows the PESOA process at a high level of abstraction by means
of an UML activity diagram. The approach is based on the product line ap-
proach shown and explained previously (see Figure 1 and Figure 8). Domain
engineering analyzes information on individual processes, integrates it by
consideration of commonalities and variabilities, and stores the integrated in-
formation as part of the process family. Application engineering uses and
specializes the integrated information according to the needs of a particular
set of product requirements. In the following chapter a more detailed de-
scription of the domain and application engineering processes will be pro-
vided. Continuing with the analogy, it can be said that process family engi-
neering focuses on finding the commonalities and variabilities of a set of
processes in a given domain, and integrating them in a process family infra-
structure. Workflow and embedded control processes are the main driving
software engineering artifacts in PESOA. A process family infrastructure
contains variant-rich processes and configuration models.

Table 1: Mapping from product line engineering to process family engineering

Product Line Engineering Process Family Engineering

Product Line Infrastructure Process Family Infrastructure

Product Line Artifact Variant-Rich Process

Artifact
Element

Requirements,
Design, Code.

Variant-Rich
Process
Element

Process and its descendants,
Input, Output, Data Sink, Data
source, Event and its descen-
dants, Quality of service and
its descendants, State, Vari-
able, Scope, Event and its
descendants

19

Product Line Engineering Process Family Engineering

Decision models Configuration models

Finally, a variant-rich process can contain variation points as well. Such
variation points will represent the variability of variant-rich processes. Table
1 and Figure 11 shows how all the concepts of the conceptual model are
considered variant-rich process elements (red-filled circles).

Figure 11: Extended conceptual model (UML static structure diagram)

Process: One example of process variability can be seen in online shops
that support different mechanisms for paying an order. A process “Pay Or-
der” contains a variation point that offers three choices to resolve the vari-
ability. Such choices can be: “Pay order with credit card”, “Pay order with
bank transfer”, “Pay order per telephone”. Depending on the choice selected
by the user the “Pay Order” will be resolved. Please note that the concepts
that inherit from process can contain variation points as well. They are: com-
posite activity, activity, sequence, parallel, choice, and interaction.

Input/Output: Inputs and outputs can be variable as well. Continuing with
the example, assuming a client has selected to pay with bank transfer, the
input form might vary depending on the country where the bank belongs to.
For example, American bank codes might differ from the European ones. In
the case of outputs, the invoices to be generated might have several differ-

 20

ent representations that depend on the country where the order is to be de-
livered.

Data sink/Data source: In automotive, one example of a variable data sink
can be observed in the one used by a sensor that detects an intrusion in the
vehicle. Such data sink can record a different digital signal depending on the
type of intrusion. On the other hand depending on the signal type, an actua-
tor (a data source) will activate either an auto-dialler that calls a remote se-
curity centre, or it will turn on an alarm, or both. The variability will be re-
solved depending on the type of intrusion.

Quality of service: Regarding the quality of service defined in the concep-
tual model, they are susceptible of variability as well. In the case of real time
as used in automotive, the processing of incoming events or internal inter-
rupts may lead to varying execution times and processing sequences for the
software functions. The external events and interrupts are watched by safety
mechanisms that could for example close the gas valve in case of fire. In the
e-business domain, different user security levels, that is, security variability
will influence the privileges of a user in a secure transaction on an e-shop.

Scope: An example in e-Business is the scope of activities depending on
the authenticated user. In a workflow administrators have a different scope
than normal users. In automotive, the car navigation system can be consid-
ered optional and therefore turned-off. This means leaving out of the scope
the processes that are relevant for accomplishing this functionality.

Variable: A variable can be a container of variation points. This can be ob-
served in the e-Business domain in the case of services targeted to several
languages. The values of variables must change depending on the lan-
guage. The same applies for services targeted to different countries. In
automotive safety requirements mandate the safe behaviour of the vehicle in
the event of a failure or malfunction of a component, for example, by includ-
ing a fail-safe mode in the system. They guarantee the operability of the ve-
hicle to a certain degree: if, for example, a sensor should fail, default values
may be assigned to its respective variables for the necessary computations
(an example is the so-called lambda probe) [3].

State: Based on the assumption that the states depend on the variable as-
signments it can be said that states can also contain variation points. For
example in e-Business the state of a transaction might depend on the coun-
try legal requirements. In automotive, the state of the fail-safe mode process
varies according to the sensor information that is being collected while the
auto is on operation. For example a sensor could detect a non-normal situa-
tion and affect the fail-safe mode process execution.

Event: One example of variability in e-Business can be seen when the client
exits a transaction. He can generate the exit event by pushing a button, or

21

the event can be generated automatically by a timer. In the case of automo-
tive, there are events that can be generated either mechanically or automati-
cally. The car’s lights can be turned on automatically once a sensor detects
the lack of light, or the driver can turn them on manually.

4.3 Example

Figure 12 provides an example that illustrates the concepts that introduce
variability in the processes. It shows the flow between the “Create Order”,
“Pay Order”, and “Send Invoice” processes of an online shop. The “Pay Or-
der” process contains three alternatives (telephone, credit card, and bank
transfer). The process has one interface that interacts with the create order
process. At this point three alternatives split, and one of them must be cho-
sen in order to resolve this variation. The resolution of the variation deter-
mines the path taken by the flow. The three alternatives converge in another
interface that joins them. This interface is communicated with the product of
the pay order process. The same can be observed in the case of the “In-
voice” output that contains two alternatives (America, or Europe), and two in-
terfaces. This means that depending on the continent of destination, the in-
voice to be sent to the customer will have different fields of information (e.g.,
currency, address). One variation point can be assigned respectively to the
“Email” and “Printed document” outputs. Each have only two alternatives i.e.,
yes or no. Therefore, once the variation points are resolved, the client has
the possibility of receiving the invoice via Email, as a printed document, or
both. Please note that a variation point as modeled in Figure 9 has a default
value.

 22

Figure 12: Variant-rich process example (BPMN extended notation)

Create Order
Pay Order
via Credit

Card

Pay Order
via Bank
Transfer

Pay Order
via

Telephone
Alt 2.1

Alt 1.1: If payment method = Telephone

Alt 1.2 : If payment method = Credit card

Alt 1.3 : If payment method = Bank transfer

Alt 1.2

Alt 1.3

Variant Rich Process

Alternative
Variation

Point

Configuration
model

Pay Order

Alt 2.2

Invoice

Alt 2.1: If continent = America

Alt 2.2 : If continent = Europe

Alt 1.1

Send Invoice

Alternative
Variation

Point

Opt 1

Opt 2

Opt 1: If media = Email

Opt 2: If media = Printed document

Optional
Variation

Point

Optional
Variation

Point

Email

Printed

Document

Interface Interfaces Interface

Create Order
Pay Order
via Credit

Card

Pay Order
via Bank
Transfer

Pay Order
via

Telephone
Alt 2.1

Alt 1.1: If payment method = Telephone

Alt 1.2 : If payment method = Credit card

Alt 1.3 : If payment method = Bank transfer

Alt 1.2

Alt 1.3

Variant Rich Process

Alternative
Variation

Point

Configuration
model

Pay Order

Alt 2.2

Invoice

Alt 2.1: If continent = America

Alt 2.2 : If continent = Europe

Alt 1.1

Send Invoice

Alternative
Variation

Point

Opt 1

Opt 2

Opt 1: If media = Email

Opt 2: If media = Printed document

Optional
Variation

Point

Optional
Variation

Point

Email

Printed

Document

Interface Interfaces Interface

Examples that show the realization of these concepts in the e-business and
the automotive domain will be provided in chapter 6.

23

5 PESOA Process

This section presents in more detail the PESOA process. Figure 13 presents
a product flow view of the PESOA process.

Figure 13: PESOA process (UML activity diagram)

 24

In the following section, the processes and products are described as well as
the product flow among them.

Each process is described as follows:

• Purpose: What has to be done?
• Description: How shall it be done?
• Input criteria: List of products needed for the process
• Output criteria: List of products produced by the process
• Product flow: Which are the products consumed and/or produced by the

process

Each product is described as follows:

• Purpose: What is the product intended for?
• Description: What are the contents of the product?
• Possible notation: How can the product be described?

5.1 Domain Scoping

Purpose

The purpose of this process is to determine the appropriate bounds of the
process family infrastructure [7].

Description

Scoping shall be based on the premise that one shall obtain as much return
on investment as possible from effort of establishing a process family infra-
structure. Using as input an existing or a planned set of process family infra-
structure products a subset of such products is selected. Afterwards, the se-
lected products are mapped to the features that they should offer. This in-
formation is recorded in a domain scope definition. In product line engineer-
ing such scope definition is often documented as product map [7].

Input Criteria

An existing or planned set of products

Output Criteria

A completed domain scope definition

25

5.2 Domain Analysis

5.2.1 Model Features

Purpose

The purpose of this process is to model the features to be part of the proc-
ess family infrastructure.

Description

The domain scope definition is used as input for identifying consists-of rela-
tionships among features. Afterwards, such relationships must be described
in a model e.g., a hierarchical structure [25], or a tabular representation [2].

Input Criteria

A completed domain scope definition

Output Criteria

A completed feature model

5.2.2 Identify Processes

Purpose

The purpose of this process is to define the set requirements for those proc-
esses that will constitute the process family infrastructure.

Description

The feature model can be used as basis for identifying and documenting the
requirements for those processes that will be part of the process family in-
frastructure. Such processes shall be conceived as unique building blocks in
order to reuse them with no major problems.

Input Criteria

A completed feature model

Output Criteria

A completed description of processes requirements

 26

5.3 Domain Design

5.3.1 Design Processes

Purpose

The purpose of this process is to model the existent commonalities and vari-
abilities among the previously identified processes.

Description

Using as input the list of identified processes, a commonality analysis among
processes shall be performed in order to identify variant-rich process ele-
ments. At the moment there are not many techniques or approaches on how
to perform such a comparison. One idea can be taken from [8], where a sys-
tematic comparison of a set of software process models is illustrated. The
commonalities and variabilities detected among variant-rich process ele-
ments are then integrated into their respective variant-rich process.

Input Criteria

A completed list of processes

Output Criteria

An integrated set of variant-rich processes

5.3.2 Model Configurations

Purpose

The purpose of this process is to establish the dependencies between newly
modeled variation points, as well as among new variation points and existing
variation points.

Description

Initially, relationships among new variation points are identified and docu-
mented in what is called the configuration model. Afterwards, the model is
updated with relationships between new variation points and existing ones,
which in some cases can produce a new high-level relationship that groups
them.

27

Input Criteria

An integrated set of variant-rich processes

Output Criteria

A configuration model

5.4 Domain Implementation

5.4.1 Implement DS (Domain-specific) Generator

Purpose

The purpose of this process is to implement a mapping from configurations
for variant-rich processes to their implementation.

Description

Based on the commonalities and variabilities contained in the variant-rich
process, the domain-specific functionalities to be covered by the generator
are identified. Code fragments implementing these functionalities are de-
fined. They are connected to the process’ variabilities, i.e. each variation
point is annotated by one or more code fragments. Dependencies and con-
straints given by a configuration model and a feature model are considered
for this implementation process.

Input Criteria

A completed variant-rich process.

A completed configuration model.

A completed feature model.

Output Criteria

A completed DS (domain-specific) generator.

5.4.2 Implement DS (Domain-specific) Components

 28

Purpose

The purpose of this process is to implement generic components which are
either part of the resulting application or used for building it.

Description

There are two kinds of domain-specific generic components:

Based on the implementation of a domain-specific generator, components
that are needed to process the generator’s output are identified. They are re-
ferred to as infrastructure components. Infrastructure components that are
specific for the selected domain are being identified and implemented within
this process.

Based on the commonalities contained in the variant-rich process and the
functionalities already covered by a domain-specific generator, the function-
alities are identified which are to be implemented by generic components.
Such components are referred to as runtime components. Runtime compo-
nents that are specific for the selected domain are being identified and im-
plemented within this process.

Input Criteria

A completed variant-rich process.

An existing DS (domain-specific) generator.

Output Criteria

Completed DS (domain-specific) components.

5.5 Application Engineering Processes

5.5.1 Specify Product

Purpose

The purpose of this process is to specify a new product based on the scope
definition of the existent reusable process family infrastructure.

29

Description

New market/customer requests are used as input for specifying a new prod-
uct. Such requests must be analyzed using as a basis the existing process
family scope definition, and the feature model. Those features that are esti-
mated to be realizable are mapped to the actual products from the process
family infrastructure. Such mapping must be documented in a product fea-
ture model. Those features that are not yet planned in the process family
shall be documented in a list of not covered features, which will be later inte-
grated in the scope of the process family.

Input Criteria

A completed domain scope definition

A completed set of product requirements

A completed feature model

Output Criteria

A completed product feature model

A completed list of not covered features

5.5.2 Configure Product

Purpose

The purpose of this process is to configure the product to be instantiated
from the process family infrastructure.

Description

The list of features to be implemented characterizes the new product. In or-
der to reuse the existing process family, such characteristics must be identi-
fied. The process family is configured regarding the product characteristics
by using the configuration model. The configuration model allows resolving
the variation points based on the product features. The resolution of the
variation points and their relationships are documented in the resolution
model.

Input Criteria

A completed product feature model

 30

A completed configuration model

An integrated set of variant-rich processes

Output Criteria

A resolution model

5.5.3 Build, Integrate and Test

Purpose

The purpose of this process is to perform the final implementation work,
consisting of building, integrating and testing the product.

Description

The generated target code is subject to further processing by the use of in-
frastructure components, including domain-specific ones. The resulting ex-
ecutables have to be integrated with the needed runtime components, which
comprise domain-specific ones as well. Together they form the product,
whose implementation is completed by testing it.

Input Criteria

Completed target code.

Completed (DS) domain-specific components.

Output Criteria

Completed product

5.5.4 Apply Domain-specific Generator

Purpose

The purpose of this process is to automatically perform the mapping of re-
solved variation points from variant-rich processes to concrete target code.

Description

The appliance of the domain-specific generator starts with importing data
from a process or a resolution model, followed by triggering the generation

31

of target code. If there are additional variabilities that are not part of the vari-
ant-rich process, e.g. technical ones specific for the target platform, they can
be configured and resolved before triggering the code generation.

Input Criteria

A completed (DS) domain-specific generator.

A completed process and a completed resolution model, respectively.

Output Criteria

Completed target code.

5.6 Products

5.6.1 Product Set

Purpose

The purpose is to contain the set of existing or planned products of the or-
ganization’s process family infrastructure.

Description

The product set can be described as a repository of products. Each product
is generally described with its purpose, applicable context, and representa-
tion (e.g., diagram, model, code).

Possible notation

The notation of the elements of the product set depends on its nature. For
example: Requirements might be specified with normal prose or a standard
could be used (e.g., IEEE Std 830-1998; IEEE recommended practice for
software requirements specification).

5.6.2 Scope Definition

Purpose

The purpose of this product is to hold the relationships between the product
set and their features.

 32

Description

The scope is defined by the relationships among a set of existing and
planned features and the product set.

Possible notation

According to [7] the scope can be described with a table like the following:

Table 2: Product map

Products Features

Product 1 Product 2 Product … Product n

Feature 1 x x x

Feature 2 x

Feature … x x

Feature n x x x

Other notations for describing the scope can be found in [15].

5.6.3 Feature Model

Purpose

The purpose of the feature model is to represent a set of features and their
inter-relationships.

Description

The feature model captures the functionality expected to be found in the
process family infrastructure.

Possible notation

Feature models can be represented by using hierarchical based diagrams,
where the root node represents the basic concept or product and the leaves
represent the single features as proposed by the FODA approach [25].

5.6.4 Process Requirements

33

Purpose

The purpose of this product is to hold the requirements of processes that be-
long to a process family.

Description

Each process requirements must be described with the following attributes:

• Purpose: What is to be done by the process?

• Description: How should it be done?

• Inputs: What is the list of needed inputs?

• Outputs: What is the list of needed outputs?

• Data sinks: What is the list of produced data sinks?

• Data sources: What is the list of consumed data sources?

• Scope: Which is the environment in which the process will be exe-
cuted?

• Quality: Which are the quality attribute constraints?

Possible notation

The process requirements can be described using tables that comprise all
the previous information.

5.6.5 Variant-Rich Process

Purpose

The purpose of this product is to hold the processes that make up the proc-
ess family. These contain the commonality and variability relationships
among variant-rich process elements.

Description

Variant-rich processes are processes that conform to the conceptual model
presented in chapter 3. A variant-rich process can be defined as a process
family infrastructure element and the variation points it contains.

 34

Possible notation

Variant-rich processes in the PESOA domains are represented as described
in chapter 6.

5.6.6 Variation Points Set

Purpose

The purpose of this product is to hold the variation points of each variant-rich
process element.

Description

A variation point contains a set of choices that resolve the variability of a
variant-rich process element. A set of variation points are the union of all the
variation points contained in a variant-rich process element.

Possible notation

The variation point concept is represented in the PESOA domains as de-
scribed in chapter 6. Please note that in Chapter 6, the variation point has
been separated from its choices (choices are called variants in Chapter 6).

This separation is needed for representing graphically, either in UML Activity
Diagrams, UML State Machines, or BPMN, the variability mechanism (e.g.,
extension, parameterization, and inheritance) that realizes such variabilities
(i.e., alternatives, options, or ranges).

5.6.7 Configuration Model

Purpose

The purpose of this product is to hold the relationships among variation
points in a process family infrastructure.

Description

A configuration model can be defined as a set of dependencies. Each one is
a variation point that constrains other variation points and that can be explic-
itly related to a domain concept.

35

Possible notation

A configuration model can be captured in a table. Using as an example the
variant-rich process shown in Figure 12, the following is an example:

Table 3: Configuration model of the Pay order variant-rich process

Variant-rich
process

ID Name or question Type Variant-rich
process
element

Constrains

Pay order 1.1 Pay order via
telephone

Alternative Process -

Pay order 1.2 Pay order via
credit card

Alternative Process -

Pay order 1.3 Pay order via
bank transfer

Alternative Process -

Pay order 1 Which mecha-
nism is used to
pay the order?

Alternative-
Decision

- Resolves
variation
points 1.1 to
1.3

5.6.8 Domain-specific Generator

Purpose

The purpose of this product is to map resolved variation points from variant-
rich processes to concrete target code implementing the configured features.

Description

A domain-specific generator consists of target code fragments related to
variation points from a variant-rich process, based on a generation technique
providing an interface to apply the generator. All dependencies and con-
straints related to the target code are implemented in the domain-specific
generator.

Possible notation

The domain-specific generator can be implemented using a model-based
generator development approach. In this case, code fragments are con-
nected to a generator meta-model. The code fragments are defined using
the target code language, enriched by certain constructs defining meta-

 36

model connections and code-related constraints. The meta-model can be
defined using the OMG MOF (Meta Object Facility) standard.

5.6.9 Domain-specific Components

Purpose

The purpose of this product is either to serve as a generic part of the result-
ing application or to be used for building it.

Description

Domain-specific components are infrastructure or runtime components. In-
frastructure components are tools, frameworks or libraries used for building
the application. Runtime components, e.g. runtime libraries, implement some
common functionality of the resulting applications in a generic way.

Possible notation

The notation of domain-specific components is specific for the target plat-
form and can be text or binary code.

5.6.10 Product Requirements

Purpose

The purpose of this document is to hold the new requests of the customer or
the market.

Description

This is a description of the customer or market features to be fulfilled by a
new product.

Possible notation

Requirements could be specified with normal prose or by following any stan-
dard such as e.g., IEEE Std 830-1998; IEEE recommended practice for soft-
ware requirements specification.

5.6.11 Product Feature Model

37

Purpose

The purpose of this product is to hold the set of features to be implemented
in the new product.

Description

For each feature to be implemented the following attributes must be de-
scribed:

Purpose: What is to be done by the feature?

Quality: Which are the quality attribute constraints? e.g., performance issues

Possible notation

The features can be described using tables.

5.6.12 Not Covered Features

Purpose

The purpose of this product is to hold those features that could not be in-
stantiated or derived from the existing process family.

Description

Features that are not yet covered in the existing process family, but that
shall be considered must be described as follows.

Purpose: What is to be done by the feature?

Quality: Which are the quality attribute constrains?

This information will then be used as input for a future process family scop-
ing.

Possible notation

The features can be described using tables.

5.6.13 Resolution Model

 38

Purpose

The resolution model records the configuration information for a specific
product.

Description

The resolution model documents the set of choices that led to the set of fea-
tures and processes encapsulated by a specific product. This is essential for
being able to maintain the product.

Possible notation

The resolution model captures the choices taken in the configuration model.
The notation is, therefore, dependent on the notation of the respective con-
figuration model.

In the case of tabular configuration models, as in the example above (Table
3), the resolution model contains the answers to the questions in the con-
figuration model.

When generators are used, the resolution model additionally contains the
configuration for that generator. Then, XMI is a possible notation.

5.6.14 Target Code

Purpose

The purpose of this product is to implement the configured features, i.e. the
resolved variation points of the variant-rich process.

Description

The target code is specific for the target platform as well as for one resolu-
tion model and one concrete, i.e. not variant-rich, process.

Possible notation

The notation of the target code may be any conventional programming lan-
guage or even a platform-specific execution language. In any case it is pro-
gram text, not binary code.

5.6.15 Product

39

Purpose

The purpose of this product is to hold the instantiated variant-rich process,
and the single products that might be developed from scratch.

Description

This is the final product to be delivered to the customer.

5.6.16 Process Family Infrastructure

Purpose

The process family infrastructure contains all information and tools to de-
velop, use and maintain the product set.

Description

The process family infrastructure consists of the variant-rich processes, the
feature model, and the configuration model, and the different resolution
models for the different instantiated products.

 40

6 Modeling Variant-Rich Processes in the PESOA Domains

The objective of this section is to describe the integration of the representa-
tion of variant-rich processes in the PESOA application domains into the
overall PESOA development process.

To this end, the concepts described in 3 are represented by the process de-
scriptions in the PESOA application domains. This means especially that the
concepts captured by the conceptual model are mapped to the notations
used in the respective domains. The representation of the concepts relevant
in the automotive domain with UML Activity Diagrams [17], [18] and UML
State Machines [18], [19], [20] has already been sketched in [2] and will be
enhanced in this section according to the development of the conceptual
model for PESOA processes, which reflects the concepts for the PESOA
application domain as well as their interrelations.

For modeling variability in automotive and e-business processes variability
mechanisms are applied, which are described extensively in the PESOA
technical report “Process Family Engineering – Variability Mechanisms” [16]
and summarized in this section.

6.1 Modeling Variant-Rich Software Based Automotive Control Processes

The first subsection (6.1) describes the representation of the concepts de-
scribed in the PESOA conceptual model by means of UML Activity Diagram
(6.1.1) and UML State Machine (6.1.2) constructs. The second subsection
(6.2) shows how variant-rich Activity Diagrams and State Machines can be
modeled by means of variability mechanisms.

6.1.1 Mapping of Relevant Concepts to UML Activity Diagrams

In the PESOA conceptual model single execution steps as well as sub-
processes, which are constructed using the routing constructs for modeling
sequences, alternatively, parallel or iteratively executable behaviour are re-
garded as processes.

In the conceptual model sub-processes are represented as composite activi-
ties. In UML Activity Diagrams sub-processes are modeled using activities.
The top level activity in the potential activity hierarchy represents the entire
process. Figure 14 shows an example for the Activity Diagram process
“Monitor Motor Temperature”. As indicated by a small rake-style symbol the

41

actions “Cool down motor” and “warm-up motor” can be decomposed into a
sub-process illustrated in a separate Activity Diagram.

Figure 14: Example for Activity Diagram processes and some basic routing constructs

Monitor Motor Temperature

Torque
adjustm.
required

Torque
adjustm.
required

[tmot >tmotmax] Cool down
motor

Warm-up
motor[tmot <tmotmin]

Concerning the control flow Activity Diagrams provide elements for modeling
the start and end of a process as well as elements for modeling parallel and
alternative flows, which represent the most fundamental routing constructs in
processes. Figure 14 gives an example for an initial node and final node,
which indicate the start and endpoint of the process as well as a decision
and merge node initiating and terminating two alternative flows. Figure 15 il-
lustrates how to model parallel flows (“Initialize motor control unit”, “Check
sensors and actors” and “Start relevant processes”) using fork and join
nodes.

Figure 15: Example for modeling parallel flows in Activity Diagrams

Initialize
motor

control unit

Check
sensors and

actors

Start
relevant

processes

Prepare Motor Start

In basic activities iterations can be realized using a combination of re-
entering arcs and decision and merge nodes. An example for this is shown

 42

in Figure 14. Alternatively with loop nodes and expansion regions structured
activities offer elements dedicated solely for modeling iterative behaviour.
Figure 16 gives an example for the application of a loop node for calculating
an overall external load.

Figure 16: Example for the application of a loop node

Calculate Required Torque
for External Loads

for
T = ExternalLoads

i = 0; Sum = 0

i < n

while

do

i = i + 1 Sum =
Sum + T[i]

n =
numberOf

(ExternalLoads)

Calculate
Torque(Sum)

External
Loads

Concerning the representation of data flow Activity Diagrams offer pins for
modeling the input and output data of actions and activity parameter nodes
for the input and output data of activities. Additionally, complete activities
provide parameter sets for modeling mutually alternative sets of input or out-
put parameters. In order to indicate the name or type of a parameter the re-
spective information can be written close to the corresponding modeling
element representing the input or output parameter. Executable nodes like
actions and activities or object nodes like central buffer nodes in intermedi-
ate activities and data store nodes in complete activities are possible data
sinks and sources in Activity Diagrams. A data store node is a modeling
element for indicating the persistent storage of data. Figure 17 exemplifies
the representation of data flow in Activity Diagrams. The activity parameter
node “Overall Load” provides subsequent activities with the required data for
adjusting the torque. The “monitoring of loads” action either forwards the re-
quested torque and the external air condition load (“Req_To” and
“Load_AC”) or the requested torque together with the external icebox load
(“Req_To” and “Load_IB”) using two parameter sets.

43

Figure 17: Example for modeling data flow in Activity Diagrams

Load_AC

Req_To

Load_IB

Get External Loads Overall
Load

Error

monitoring
of loads

calculation
overall load

A classifier is what best reflects a scope in UML Activity Diagrams. Addition-
ally, in structured activities an activity may contain structured activity nodes,
which have their own scope. Events in Activity Diagrams can be raised using
send signal actions. An accept event action on the other hand is a type of
action that is activated as soon as an event of the indicated type occurs. An
accept event action can be triggered for example by a signal sent by a send
signal action or by a time event. Figure 14 gives an example for an accept
event action (“Torque adjustm. required”).

In Activity Diagrams exceptions can be used to indicate deviations from the
normal flow of control. Exceptions can be handled locally using exception
handlers (extra structured activities). This is shown in Figure 18, where an
exception handler initiates an error handling routine in case an error occurs
while setting the motor state on start.

Figure 18: Example for the application of an exception handler

Motor Startup

Set motor
state on

start
Start motor

Start error
handling
routineError-code

> threshold

Alternatively, exceptions can be forwarded via certain output parameters in-
dicated by the is-exception attribute (complete activities). This is shown in
Figure 17, where an exception is thrown and forwarded via the “Error” is-

 44

exception-activity parameter node in case some locally unsolvable problems
occur during the monitoring of the loads.

Variables in Activity Diagrams are used for example in guards, in decision
input behaviours for making routing decisions, in selection behaviours (in
complete activities) for reading data from a data store node, in the descrip-
tion of local preconditions or local post conditions of actions (in complete ac-
tivities), or in the form of parameter names of pins or activity parameter
nodes.

Concerning the representation of states, in Activity Diagrams there are no
modeling elements explicitly provided for the representation of states. How-
ever, during execution the state of an Activity Diagram can be derived from
the token distributions within the Activity Diagram and the values of the vari-
ables described in the process. Thereby, the execution state of the highest-
level activity can be considered as the execution state of the system (con-
cept system execution state) while the execution state of the sub-processes
contained in the Activity Diagram correspond to the process execution state.

The quality of service properties safety and security, which have been newly
added to the PESOA conceptual model cannot be represented explicitly in
an UML State Machine or Activity Diagram. Instead these non-functional
properties are typically reflected in the structure of the process. For example,
a secure process should of course also be free of deadlocks. Therefore, the
process has to be designed correspondingly and deadlock-freedom cannot
be provided by a single element. Thus, no dedicated elements can be identi-
fied, which provide the non-functional process properties.

6.1.2 Mapping of Relevant Concepts to UML State Machines

In UML State Machines a process is represented by a State Machine. The
State Machine can contain composite and submachine states, which encap-
sulate sub-processes. Sub-processes can be further divided into orthogonal
regions containing sub-processes that are carried out in parallel. Some ex-
amples for simple states (e.g. “Error”) as well as for a submachine state
(“Stop”) are given in Figure 19. The entire State Machine represents the
overall process, while the submachine depicted in Figure 20, which is in-
voked by the submachine state “Error”, is an example for an encapsulated
State Machine sub-process. It consists of two parallel executable regions.

Figure 19: Exemplary UML State Machine process

45

Stop : StopVariant1 «variant»

turn off

turn on

startshutdown

Startup

RunningShutdown

Error

- / -

error

«create»
ignition key

0->I / -

entry / prepare engine to
stop
exit / stop engine +
controlled termination of
processes

ignition key II>I /
controlled termination of

processes

[error-code <=
error-threshold]

[error-code >
error-threshold]

ignition key III->II / get
rotation speed

[rotation speed > 0]

[rotation speed = 0]

ignition key II>I / -

rotation speed = 0 / -

 46

Figure 20: Exemplary submachine

StopVariant2 «immobilizer» {vp=2}

Immobilizer
activated

Immobilizer
deactivated

activation of immobilizer / -

deactivation of immobilizer / -

Stop (II)

Stop (I)

ignition key
I->0 / -

entry / Init

turn off

turn on

start

errorshutdown

ignition key I->II / -
[IS_IN(Immobilizer

deactivated)]

ignition key II>I /
controlled termination of

processes

ignition key II->III /
set engine-state on start

Regarding the control flow, which is represented explicitly, State Machines
provide so called pseudo states for modeling initial states, final states, and
the beginning and end of alternative and parallel processing. The latter is
supported by orthogonal state regions, which can be active at the same
time. Loops can be modeled using re-entering transitions. An example of al-
ternative flows initiated by a choice pseudo state can be found in Figure 19,
where depending on an error-code either the state “Error” or “Startup” is en-
tered.

State Machines are not designed for the explicit modeling of data flows.
Nevertheless there are several ways for integrating actions and activities in
State Machines. A state in a State Machine may for example have entry and
exit activities which are executed when entering or leaving the state. This is
shown in Figure 19, where the action “prepare engine to stop” is carried out
when state “Shutdown” is entered. Once the state is left actions are carried
out that stop the engine and terminate the motor processes. Moreover there
are states which are characterized by the execution of an activity. After hav-
ing finished the execution of the activity the state is normally left via a guard
less transition. Additionally activities may be assigned to a transition. These
Activities are executed when the transition fires. An example for this can be
found in Figure 19 where the action “get rotation speed” is carried out when
event “ignition key III->II” occurs in state “Startup”. The activities integrated
into a State Machine correspond exactly to the activities as specified in the
Activity Diagram meta-model. Hence they can also have input and output pa-

47

rameters of a specific type. In this spirit activities in State Machines are also
data sinks and sources even though the data flow isn’t modeled explicitly.
Therefore, no elements for representing the persistent storage of data are
provided either.

A State Machine describes a classifier, which corresponds to the scope of
the State Machine. It scopes the triggers and attributes available to the State
Machine. Events are one of the core concepts in State Machines. Triggers
define the types of events that may occur leading to transitions between
states. There are triggers that allow for a transition in reaction to an asyn-
chronous signal, triggers for transitions resulting from the invocation of an
operation, time triggers specifying a deadline at which a transition must take
place, and triggers recognizing the change in the values of some attributes
of the object modeled by the State Machine. The change of attribute values
is recognized by evaluating Boolean expressions. Figure 19 shows some
examples of triggers. The trigger “ignition key II>I” for example leads to the
transition from state “Error” to state “Stop”. In contrast to Activity Diagrams
State Machines don’t support exceptions. In State Machines variables can
be used for example in input and output parameters of Activities or in transi-
tion guards. Examples for variables in guards are shown in Figure 19. For
example, the transition from “Startup” to “Error” is only performed if the vari-
able “rotation speed” has a value equal to zero. As the name suggests in
State Machines one major modeling concept are different forms of states.
The state of a State Machine (process execution state) during execution re-
sults from the combination of the states concurrently active in the State Ma-
chine, from the values of the variables defined in the State Machine and
from the activities currently active in the State Machine. The system execu-
tion state is the execution state of the top level State Machine.

6.1.3 Modeling Variability in Software Based Automotive Control Processes

In order to describe variations within a process model, the process model
has to contain the following information:

 the point in the process model where the variability occurs, i.e. the varia-
tion points have to be identified

 which variants can be bound to the variation point in dependence of the
product feature to be implemented

 how the variants are bound to the variation point, i.e. the variability
mechanism to apply for realizing the system variability

Variation points in UML State Machines and Activity Diagrams are identified
using the stereotype <<VarPoint>> and a corresponding tagged value “vp”
that assigns a unique identification number to the variation point. Variants
are connected to a variation point using UML dependency relations. This

 48

corresponds to the association of choices with a variation point as generi-
cally described in 4. Every variant disposes of a stereotype that relates the
variant to the product feature that is (partly) implemented by the variant. For
UML State Machines and Activity Diagrams a set of variability mechanisms
have been defined in [16], which allow for a flexible implementation of vari-
ability into the process model. Variability mechanisms are referred to generi-
cally as resolve methods in 4. An example for the notation of variability in
Activity Diagrams is shown in Figure 21. In this case “Action 1” is the variant
which can be bound to the variation point represented by a null-activity. For
binding “Action 1” to the variation point the variability mechanism
“Extensions” is used as indicated by the respective stereotype assigned to
the dependency relation connecting the variation point with the variant.
“Action 1” is used to implement “Feature 1” as suggested by its stereotype.

Figure 21: Notation of variability in Activity Diagrams considering an extension as example

Null
<<VarPoint>>

{id=1}

Action 1
<<Feature 1>>

<<Extension>>

In order to indicate the correlation to the developed concepts for modeling
variant-rich processes in PESOA product line development process, the
variability mechanisms described in [16] are categorized into variability
mechanisms for realizing option, alternative and range variation points as
described in chapter 4.This is analyzed for every variability mechanism in
the remainder of this subsection.

Encapsulation of sub-processes. Encapsulation of sub-processes allows
for hiding variant sub-processes behind an invariant interface. Thereby, a
member of a predefined set of sub-process variants with a compatible inter-
face can be inserted as an interface implementation thus supporting alterna-
tive and optional (i.e. with “real”- and “default”-variants) variation points.

Replacement/omission of encapsulated sub-processes supported by in-
terface separation. The omission of encapsulated sub-processes allows for
realizing optional variation points, while by replacing sub-processes alterna-
tive variation points can be realized.

Parameterization. Parameterized sub-process paths can be used for realiz-
ing optional or alternative variation points. Using parameterization a sub-

49

process path can be activated/deactivated for example. In this case parame-
terization is used for realizing optional variation points. Alternatively, there
might also be a set of alternative paths, from which only one is activated if a
corresponding parameter is set. In this case an alternative variation point
has been represented. Parameterization also allows for parameterizing en-
capsulated sub-processes. The alternative parameters allowed for configur-
ing the sub-process represent a range variation point.

Templates. Templates refers to the techniques that support variability in
data types. The data flow between activities may be optional (optional varia-
tion point) or only certain data types may be exchanged (alternative variation
point).

Inheritance. Inheritance comprises the addition and replacement of sub-
processes or individual elements. This allows for realizing alternative varia-
tion points.

Design patterns. Up to now the strategy pattern has been adapted for UML
State Machine and Activity Diagram models [16]. The strategy pattern can
be used for realizing alternative variation points.

Extensions/extension points. Extensions/extension points use a combina-
tion of sub-process encapsulation, delegation and aggregation of functional-
ity and null-sub-processes for realizing optional variation points.

Figure 22 gives an overview of the variation point types supported by the
variability mechanisms for the automotive domain.

Figure 22: Overview of relationship between variability mechanisms and variation point types

Variation Point Type
Variability Mechanism optional alternative range

Encapsulation of
sub-processes X X

Replacement of
encapsulated sub-processes X

Omission of
encapsulated sub-processes X

Parameterization X X X

Templates X X

 50

Inheritance X

Strategy pattern X

Extensions/
Extension Points X

6.2 Modeling Variant-Rich Workflows in the E-Business Domain

This section describes the mapping of the concepts introduced in chapter 3
to elements of the Business Process Modeling Notation (BPMN). The ele-
ments of the BPMN are then extended to represent variation points in a vari-
ant-rich business process diagrams.

6.2.1 Mapping of Relevant Concepts to BPMN

Like the conceptual model, also the BPMN is centred on the process defini-
tion. A process in BPMN is represented as a directed, (possibly) cyclic graph
consisting of different node and edge types. The highest level node is of the
type FlowObject, whereas the edges represent sequence, message, or as-
sociational flow. Specializations of FlowObject are i.e. tasks, gateways, or
events. See the PESOA technical report #1 (Process Modeling Techniques)
or the official specification for further details on BPMN [21], [22].

Figure 23: Mapping of the concepts from the conceptual model to BPMN

PESOA Conceptual Model BPMN
Process Process, Pool (for abstract proc-

esses)
Composite Activity Sub-Process

P
ro

ce
ss

Activity Task
Sequence Sequence Flow
Parallel AND Gateway
Choice XOR/OR Gateway

C
on

tro
l

Fl
ow

Iteration Iteration Marker / Sequence Flow
Input InputSets, Inputs Attributes
Output OutputSets, Output Attributes
DataSource (Abstract) Processes

D
at

a
Fl

ow

DataSink (Abstract) Processes
State Status Attribute of Process
Variable Data Object
Scope Process, Sub-Process, Task, Group

E
nv

iro
n-

m
en

t

Event Event

51

Exception Error Event
Transaction1 Transaction
Costs Associations, Text Annotations

N
FP

Security, etc. Represented by the process structure

Figure 23 shows how the elements of the conceptual model can be mapped
to BPMN. The table has been parted into the five areas introduced in chap-
ter 3.

The first area of the conceptual model deals with the concept of a process. A
process in the e-business domain is represented by a workflow; a technical
description of how to achieve a specific outcome for a customer. The steps
inside a workflow could be coarse or fine granular, i.e. ranging from compos-
ite to atomic activities. In BPMN, one or more processes are placed inside a
pool, which represents a participant of the domain. A pool is also used at a
higher-level concept as it can hide its inside processes, those defining an
abstract process. A BPMN process is refined into sub-processes as well as
tasks as the atomic unit of work.

Control flows between different activities as well as other elements of the
BPMN (together called FlowObjects) are represented by sequence flows and
gateways. Sequence flow can connect FlowObjects sequentially. Parallelism
and choice is represented by different BPMN gateways, which route the se-
quence flow. Allowing more than one incoming our outgoing sequence flow
from a sub-process or task also represents parallelism. Multiple incoming
sequence flows are interpreted as an AND-join, whereas multiple outgoing
sequence flows act as an AND-split. Iterations as well as other kinds of cy-
cles are supported by backward sequence flows (the BPMN makes no re-
strictions on cycles). Sub-process and tasks can also be marked with a loop-
marker, which indicates the sequential, repeated execution. Furthermore,
the BPMN is capable of modeling all major workflow patterns [24], [23] as for
instance different kinds of multiple instances, milestone, or cancellation.

Data flow is only elementary supported in the BPMN. However, all related
concepts from the PESOA conceptual model are supported. Each Activity,
sub-process or task, has attributes called input sets and output sets. Each
set has a number of inputs or outputs assigned. The semantics is related to
UML2 activity diagram parameter sets. An input set defines the data re-
quirements for an activity, whereby each activity can have more than one in-
put set. However, only one input set filled with all inputs is required to exe-
cute the activity (OR-behaviour). The same holds for the output sets – only
one output set will be filled with outputs at the completion of the activity re-
garding to the implementation and so called input-output rules. An input-
output rule defines the relationship between one input and one output set. If

1 Although transactions are not contained in the conceptual model, they are required for the e-business
domain and are therefore contained here.

 52

an input set, specified in an input-output rule, has been used to instantiate
the activity, then the corresponding output set must be produced at the com-
pletion of the activity. The BPMN contains no counterparts to UML2 activity
diagram central buffer or data store nodes. However, other processes, either
concrete or abstract as a black box pool, could represent data sources and
sinks.

The process state concept from the conceptual model is represented by an
attribute status of each BPMN activity. The status is determined and main-
tained by a process engine that executes the corresponding process. The
status of an activity might be used as a part of assignment expressions; e.g.
for the routing of control flow. BPMN data objects represent data structures,
which contain variables. Each data object might have its own state regarding
to the allocated variables. However, this is outside the BPMN specification.
Processes, sub-processes, tasks, and groups represent a scope in BPMN.
Sub-processes and groups can have events attached, so they match the
conceptual model most. Thereby the BPMN supports different kinds of
events, ranging from events that start a sequence flow, over intermediate
events that interrupt sequence flows and activities, as well as events that
end a control flow. An exception is a special kind of event, called error
event.

BPMN directly supports the concept of transactions by marking a sub-
process with a double line as well as some special events. Associations and
text annotations can represent costs and other non-functional properties.
Concepts like security can be only represented by the process structure;
therefore no special elements exist.

The mapping of the described concepts from the conceptual model to the
BPMN are exemplary shown in Figure 1.

53

Figure 24: Example for the mapping of the concepts to BPMN

The sample process describes the workflow of a small software company
called SoftMax Inc. SoftMax receives orders for her products using HTTP
web forms. After a new request has been received, an internal order is cre-
ated. The order is processed, which e.g. includes the billing activities belong
others. Finally it is checked if the customer has ordered a boxed version
(with a printed manual) or a download. If boxed software has been ordered,
the product is shipped. If a download has been ordered, the key is sent to
the customer. The related concepts are annotated in the example.

6.2.2 Modeling Variability in the E-Business Domain

For the visualization of optional and alternative elements of a business proc-
ess diagram, extensions to the representation of variable elements are intro-
duced. Further details can be found in the PESOA technical report #17
(Variability Mechanisms) [16].

A variant-rich business process diagram needs to contain the same informa-
tion to describe variability as stated in section 5.1.2 (Modeling Variability in
the Automotive Domain). Those are the 1) variation points, 2) possible reso-
lutions, as well as 3) the variability mechanisms used to realize the variabil-
ity. In chapter 4, three types of variation points have been identified, which
will also be supported in a business process diagram.

To fulfil requirement 1, the identification of variation points, the concept of a
stereotype from the UML2 specification is adapted to BPMN. Each activity,
association, and artifact can have a stereotype attached. The name of the
stereotype is written in italic letters, placed between two angle brackets at

 54

each side. It is recommended to place the stereotype above the name of the
object if used within an activity or artifact, or beside the association. For sub-
processes, the stereotype can be placed before the name of the sub-
process. For the purposes of a variant-rich business process diagram, the
introduction of a stereotype called <<VarPoint>> is sufficient. This stereo-
type can also be expressed graphically as a puzzle-piece like marker at the
button of an activity. However, if the graphical representation is used, the
textual notation has to be omitted.

For an easier understanding of a variant-rich business process diagram and
the variability mechanisms used, the stereotype variant can be refined with
tagged values, as defined according to the UML2 specification. A tagged
value can be written below a stereotype in curly brackets by using the key-
word type: {tag=value}. Each stereotype can have two predefined tagged
values, feature and type. The feature tag represents the feature the variant
belongs to e.g., alternative, option, or range, whereas the type tag further in-
dicates which kind of variability mechanisms is used e.g., inheritance, exten-
sion, parameterization. The values of the type tag can be optional, abstract,
null, and default. Their semantics will be explained later on.

To safe screen as well as paper space, the four types of the stereotype
<<VarPoint>> , which are represented as tagged values, can also be repre-
sented as own stereotypes, thereby specializing <<VarPoint>>. The corre-
sponding stereotypes are <<Optional>>, <<Abstract>>, <<Null>>, and
<<Default>>. Furthermore, the tagged values of a stereotype can be omitted
in the graphical representation.

Possible resolutions to a variation point are either contained in the graphical
representation of the variation point itself, thereby representing the default
behaviour, as well as by using associations from the variation point to activi-
ties or artefacts which are marked as variant. An example is shown in Figure
25.

Figure 25: An example for representing variability in a business process diagram using inheritance

55

The following variability mechanisms from the UML activity diagram section
(5.1.2) have been adapted to the BPMN. They are described in the remain-
der of this subsection.

Encapsulation of sub-processes. A BPMN sub-process can hide alterna-
tive variant sub-processes behind an invariant interfaces. Thereby, an inter-
face is defined as the set of input and output events of an activity. The inter-
face activity is marked with the stereotype <<Abstract>>. Possible realiza-
tions of the interface are connected using associations marked with <<Im-
plementation>>. The default implementation should be marked with the
<<Default>> stereotype.

Parameterization. Each BPMN attribute can be parameterized to support
optional, alternative, or range variation points. For a graphical representa-
tion, the attribute is written beside the element and surrounded with a group-
ing box. If the connection between the attribute and the element can be mis-
interpreted, an association should be used. Association are also used to link
variant data objects that contain the possible parameters to the grouping box
that surrounds the attribute. The association is marked with the stereotype
<<Parameterization>>.

Inheritance. Inheritance modifies an existing (default) sub-process by add-
ing or removing elements regarding to specific rules. This allows for realizing
alternative variation points. An association represents inheritance from the
child activity to the parent activity when it is marked with the stereotype
<<Inheritance>>.

Extension Points. Extension points use a combination of encapsulation and
null sub-processes to realize optional variation points. An extension point ac-
tivity is marked with the stereotype <<Null>. Associations marked with <<Ex-
tension>> connect optional implementations. If there is only one optional
variant, it can be shown instead of the null activity, marked with an <<Op-
tional>> stereotype.

Figure 26 gives an overview of the variation point types supported by the
variability mechanisms for the e-business domain.

Figure 26: Overview of relationship between BPMN variability mechanisms and variation point types

Variation Point Type
Variability Mechanism optional alternative range

Encapsulation of
sub-processes X

Parameterization X X X

 56

Inheritance X

Extension Points X

57

7 Summary

This report presents the methodological foundation for process family engi-
neering. This has been accomplished by transferring the main principles
from the product line engineering approach to software engineering domains
that use processes as a driving software engineering artifact, since proc-
esses determine the different characteristics of the developed systems in
these domains. By means of establishing analogies between the terms
product-process and feature, the product line engineering approach has
been converted into a process family engineering approach.

In order to understand better what a process is in the e-business and auto-
motive domains, a conceptual model has been defined and documented.
Such conceptual model defines a common process vocabulary for both do-
mains, which can be used as a basis for identifying variability, a central as-
pect in product-line engineering.

The conceptual model presents the process as the core concept, which in
turn is associated to: a) concepts related to the process environment e.g.,
state, variable, scope, event, and exception b) concepts related to the proc-
ess non-functional properties e.g., quality of service, safety, security, and
real time c) concepts related to the data flow e.g., input, output, data sink,
and data source d) concepts related to the control flow e.g., sequence, par-
allel, choice, and iteration.

Since variability modeling is broadly investigated and developed in the prod-
uct line engineering approach, this approach is taken as basis for developing
the process family engineering approach (the PESOA process) and introduc-
ing variability in the PESOA conceptual model. Therefore, it can be said that
process family engineering focuses on finding the commonalities and vari-
abilities of a set of processes in a given domain, and integrating them in a
process family infrastructure. A process family infrastructure consists of vari-
ant-rich processes, feature and configuration models. A variant-rich process
contains variation points that represent its variability. Relationships among
variation points in a process family infrastructure are captured in a configura-
tion model. A dependency is a variation point that constrains the resolution
of other variation points.

The conceptual model and the variability concepts can be used in the
PESOA process in order to either create/maintain the process family infra-
structure (i.e., domain engineering), or create/generate a specific product
(i.e., application engineering). The PESOA process is presented by means
of a product flow, where activities and products are described at a high
granularity level. This process is intended to be instantiated in order to cope

 58

with the goal of the PESOA project, which is to design and implement a plat-
form for process families. The PESOA process serves as a framework for
connecting specific research topics that are investigated and described in
this and other reports, such as scoping definition, and modeling of variant-
rich processes. Other research topics are left open, such as the commonality
analysis of processes.

The applicability of the PESOA concepts has been demonstrated by map-
ping them to the process modeling languages used in PESOA for modeling
processes in the automotive and e-business domain. These are: Activity and
state diagrams for modeling automotive processes; and BPMN for modeling
e-business processes. Examples on how to model concepts like variation
point, variability and variability mechanisms have been introduced, while
modeling variant-rich processes by means of variability mechanisms for
process models is described in detail in the PESOA technical report #17
(Variability Mechanisms) [16].

59

8 References

[1] K. Schmid: Planning Software Reuse - A Disciplined Scoping Ap-
proach for Software Product Lines, Ph.D. Thesis, Fraunhofer IRB
Verlag, 2003.

[2] J. Bayer, M. Eisenbarth, T. Lehner, F. Puhlmann, E. Richter, A.
Schnieders, J. Weiland: Domain Engineering Techniques and Proc-
ess Modeling. PESOA Report TR09/2004.

[3] J. Bayer, W. Buhl, C. Giese, T. Lehner, F. Puhlmann, E. Richter, A.
Schnieders, J. Weiland: Process-based Product Line Engineering.
Submitted to SPLC 05 (Software Product Line Conference 2005).

[4] B. Bruegge, A.H. Dutoit: Object-Oriented Software Engineering. Us-
ing UML, Patterns, and Java. 2nd ed. Upper Saddle River: Pearson
Education (2004)

[5] M. Owen, J. Raj: BPMN and Business Process Management Intro-
duction to the New Business Process Modeling Standard. Available
http://whitepaper.techweb.com/cmptechweb/search/viewabstract/71
885/index.jsp

[6] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, A.P.
Barros: Workflow patterns. Technical Report BETA Working. Paper
Series, WP 47, Eindhoven University of Technology, 2000.

[7] D. Muthig: A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines. Stuttgart: Fraunhofer
IRB Verlag, 2002 (PhD Theses in Experimental Software Enginee-
ring Vol. 11). Kaiserslautern, Univ., Diss., 2002

[8] A. Ocampo, J. Münch, F. Bella: Software Process Commonality
Analysis, Software Process Improvement and Practice, July 2005.

[9] M. Becker: Anpassungsunterstützung in Software-Produktfamilien,
PhD Thesis, Technical University of Kaiserslautern, 2004.

[10] S. Thiel, A. Hein: Systematic Integration of Variability into Product
Line Architecture Design, Proceedings of the Second Software
Product Line Conference, LNCS 2379, Springer, 2002.

[11] J. van Gurp, J. Bosch, M. Svahnberg: On the Notion of Variability in
Software Product Lines, Proceedings of WICSA 2001, 2001.

 60

[12] J. Bayer, T. Forster, T. Lehner, A. Ocampo, E. Richter, J. Weiland:
Feature- und Entscheidungsmodell-basierte Varianteninstanziierung
im PESOA-Prozess. PESOA Report 21/2005

[13] W. Buhl, C. Giese, H. Overdick: Realisierungsstrategien für Pro-
zessfamilien. PESOA Report TR 15/2005

[14] E. Richter, A. Schnieders, J. Weiland: Prozessanalyse und –
modellierung in der Domäne Automotive. PESOA Report TR
07/2004

[15] A. Werner.: Scoping von Geschäftsprozessen und Software-
Produkten eines Zielmarktes. PESOA Report TR 16/2005

[16] A. Schnieders, F. Puhlmann: Process Family Engineering: Variabil-
ity Mechanisms. PESOA Report TR 17/2005.

[17] T. Pender: UML Bible. Wiley Publishing, Inc., Indianapolis, Indiana,
2003.

[18] OMG: Unified Modeling Language: superstructure. Version 2.0.
2003. Available at: http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

[19] M. Born, E. Holz, O. Kath: Softwareentwicklung mit UML 2.
München: Addison-Wesley 2004

[20] J. Rumbaugh, I. Jacobson, G. Booch: The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley 2005

[21] A. Schnieders, F. Puhlmann, M.Weske: Process Modeling Tech-
niques. PESOA Report TR 01/2004.

[22] BPMI.org: Business Process Modeling Notation. Technical Report,
2004

[23] S. White: Workflow Patterns with BPMN and UML. IBM Technical
Report, 2004. Available at:
http://www.bpmn.org/Documents/Notations%20and%20Workflow%2
0Patterns.pdf

[24] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A. Bar-
ros: Workflow Patterns. Distributed and Parallel Databases (5)51,
2003.

[25] K. Kang, S. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson; “Fea-
ture-Oriented Domain Analysis (FODA) Feasibility Study”; Technical
Report CMU/SEI-90-TR-21; 1990

61

[26] K. Czarnecki, U. Eisenecker, Generative Programming – Methods,
Tools, and Applications, Addison-Wesley, Boston, MA, 2000

