
Using the Pi-Calculus for
Formalizing Workflow

Patterns
Frank Puhlmann

Hasso-Plattner-Institute at the University of Potsdam
http://bpt.hpi.uni-potsdam.de

(Joint work with Mathias Weske)

http://bpt.hpi.uni-potsdam.de
http://bpt.hpi.uni-potsdam.de

Outline
• Motivation

• The Pi-Calculus

• Pattern Representation

• ECA Mapping

• Basic Control Flow Patterns

• Advanced Workflow Pattern:

• Discriminator

• Conclusion

2

Motivation
• The pi-calculus, a process algebra, has been

discussed as the formal foundation for
workflow (The Third Wave, PiHype)

• However, no formal investigations on the
capabilities of the pi-calculus regarding the
workflow domain have been made so far

• Task: Show the capabilities of the pi-calculus
to describe the behavioral perspective of
workflow

• Solution: Investigate the representation of
Workflow Patterns in the pi-calculus

3

The Pi-Calculus
• The pi-calculus consists of names and processes:

• Names represent existing concepts like links,
pointers, references, identifiers, etc.

• Each name has a scope

• Processes are defined as:

• The summations:

• And the prefixes:

P ::= M | P |P ′ | vzP | !P

M ::= 0 | π.P | M + M
′

π ::= x〈y〉 | x(z) | τ | [x = y]π

A B
b

A = b〈x〉.0 B = b(x).τB .0 P = A|B

4

ECA Mapping
• Each workflow activity is mapped to a pi-

calculus process with pre- and
postconditions

• Based on the ECA approach:

5

Event

ActionDo

On

EA-rule

Event

ActionDo

On

ConditionIf

ECA-rule

e
1

a
1

Do

On

...Do

On

e
2

e
2

Sequence

e
1

a
1

Do

On

e
2

...Do

On e
2

...Do

On e
3

e
3

Parallel

x.[a = b]τ.y.0
Precondition

=
Event and Condition

Postcondition
=

Action

Basic Control Flow Patterns 1

6

Synchronization

Sequence

Parallel Split

A

B

C

b

c

A = τa.(b.0|c.0)
B = b.τB .B

′

C = c.τC .C
′

B

C

D

d
1

d
2

B = τB .d1.0

C = τC .d2.0

D = d1.d2.τD.D
′

A B
b A = τA.b.0

B = b.τB .B
′

A

B

C

B

C

D

A B

Basic Control Flow Patterns 2

7

Exclusive Choice

Simple Merge

A

B

C

b

c

A = τA.(b.0 + c.0)
B = b.τB .B

′

C = c.τC .C
′

B

C

D

d B = τB .d.0

C = τC .d.0

D = d.τD.D
′

A

B

C

B

C

D

Discriminator

8

A

C

D

d
1

d
2

B

d
3

A = τA.d1.0 B = τB .d2.0 C = τC .d3.0

D = (vh, exec)(D1|D2)
D1 = d1.h.0 | d2.h.0 | d3.h.0

D2 = h.exec.h.h.D | exec.τD.D
′

N-out-of-M-join:
D = (vh, exec)((

m∏

i=1

di.h.0) | {h}n
1 .exec.{h}m

n+1.D | exec.τD.D′)

Generic Discriminator (1-out-of-M-join):

D = (vh, exec)((
m∏

i=1

di.h.0) | h.exec.{h}m−1

1
.D | exec.τD.D′)

Conclusion
• Our work shows that all Workflow Patterns are

directly representable in the pi-calculus

• Advanced features of the pi-calculus are required
for the more complex patterns

• However, no new patterns have been found this
time

• The results additionally provide a formal semantics
for the Workflow Patterns, making them concise
and unambiguous

• Future research can be based upon these results,
e.g.

• Formal foundation for (graphical) workflow
notations

• Tools for executing pi-calculus workflows
9

Further Information

• The interactive Pi-Workflow Website at:

http://pi-workflow.org

• Based on SnipSnap, a Wiki and Weblog
software

• Everyone is invited to register and
comment the content of the site

• The weblog will contain news about the
research progress

10

http://pi-workflow.org
http://pi-workflow.org

Thank you!

Questions?

11

Multiple Choice
• How does the Multi-Choice Pattern work?

12

A

B

C

b

c

A = (vexec)τA.(A1|A2)

A1 = exec〈b〉.0+

exec〈b〉.exec〈c〉.0
exec〈c〉.0+

A2 =!exec(x).x.0

B = b.τB .B
′

C = c.τC .C
′

OR-Joins
• How is the synchronizing merge handled?

• Pattern representation:

• This pattern does not define how a runtime
actually selects a summation; it just denotes
all possibilities!

• A runtime could use different strategies, e.g.:

• True/False token passing

• Postphoned OR-join (YAWL like)

13

B

C

D

d
1

d
2

B = τB .d1.0

C = τC .d2.0

D = d1.τD.D
′
+ d2.τD.D

′
+ d1.d2.τD.D

′

Multiple Merge
• How does the Multiple Merge Pattern

work?

14

B

C

D

d
B = τB .d.0

C = τC .d.0

D =!d.τD.D
′

Arbitrary Cycles
• How do arbitrary cycles work?

15

A B C D
b c d

a

A =!a.τA.b.0

B =!b.τB .c.0

C =!c.τC .(a.0 + d.0)
D = d.τD.D

′

MI without Synchronization
• Process A can spawn of any amount of

multiple instances of a process B. No
synchronization is required:

16

A B
b * A = τA.!b.0

B =!b.τB .B
′

MI with a priori Design Time Knowledge

• Process A spawns of a design time known
number of instances of B that have to be
synchronized afterwards:

• For n design time copies the pattern is:

17

A B
b * C

c

A = τA.b.b.b.0

B =!b.τB .c.0

C = c.c.c.τC .C
′

A | B | C ≡ τA.{b}n
1 .0 | !b.τB .c.0 | {c}n

1 .τC .C
′

MI with a priori Runtime Knowledge

• A process A can spawn of a runtime known
number of instances of B that are started
after all copies have been created. The
copies of B have to be synchronized before
another process C is activated:

18

A B
b * C

c

A = (vrun)τA.A1(c) | run.!start.0

A1(x) = (vy)b〈y〉.y〈x〉.A1(y) + run.x.0

B =!b(y).y(x).start.τB .y.x.0

C = c.τC .C
′

MI with no priori knowledge
• Process A spawns multiple instances of

another process B that have to be
synchronized before the execution of C:

19

A B
b * C

c

A = τA.A1(c)

A1(x) = (vy)b〈y〉.y〈x〉.A1(y) + x.0

B =!b(y).y(x).τB .y.x.0

C = c.τC .C
′

The pattern works like a dynamic linked-list:
A B

i
CB

2
B
1

...

b
i

b
2

b
1 c

Deferred Choice
• How does the Deferred Choice Pattern

work?

20

A

B

C

b

c

b
env

c
env

A = τA.(b.0 + c.0)

B = b.(benv.kill.τB .B
′ + kill.0)

C = c.(cenv.kill.τC .C
′ + kill.0)

Interleaved Parallel Routing
• How does the Interleaved Parallel Routing

Pattern work?

21

A = τA.x.y.x.y.A′

B = x.τB .y.0

C = x.τC .y.0A C
c

B
b

A B
b

C
c

OR

Milestone
• One possible representation of the

Milestone Pattern:

22

A = check(x).([x = !]τA1.A
′ + [x = ⊥]τA2.A

′′)

B = M(⊥) | b.m 〈#〉 .τB .m 〈⊥〉 .B
′

M(x) = m(x).M(x) + check 〈x〉 .M(x)

Cancel Patterns
• How does the Cancel Activity Pattern

work?

23

A | E ≡ a.τA.A
′ + cancel.0 | !τE .cancel.0

