Using the Pi-Calculus for
Formalizing Workflow
Patterns

Frank Puhlmann

Hasso-Plattner-Institute at the University of Potsdam
http://bpt.hpi.uni-potsdam.de

(Joint work with Mathias Weske)

http://bpt.hpi.uni-potsdam.de
http://bpt.hpi.uni-potsdam.de

Outline

® Motivation
® The Pi-Calculus
® Pattern Representation
® ECA Mapping
® Basic Control Flow Patterns
® Advanced Workflow Pattern:
® Discriminator

® Conclusion

Motivation

The pi-calculus, a process algebra, has been
discussed as the formal foundation for

workflow (The Third Wave, PiHype)

However, no formal investigations on the
capabilities of the pi-calculus regarding the
workflow domain have been made so far

Task: Show the capabilities of the pi-calculus
to describe the behavioral perspective of
workflow

Solution: Investigate the representation of
Workflow Patterns in the pi-calculus

The Pi-Calculus

® The pi-calculus consists of names and processes:

® Names represent existing concepts like links,
pointers, references, identifiers, etc.

® Each name has a scope

® Processes are defined as:
P:=M|P|P'|vzP|P

® [he summations:
M:=0|n.P| M+ M

® And the prefixes:

ma=T(y) | 2(2) [7]z =yl

O .‘ 1).0 B =b(x).75.0 P = A|B

4

ECA Mapping

® Each workflow activity is mapped to a pi-
calculus process with pre- and
postconditions

® Based on the ECA approach:

On | ey On |eq
On | Event Do |a e
1 Do |a
On | Event 1 ee
If | Condition
Do | Action
Do | Action On e On On e
Do |... Do | ... Do | ...
ECA-rule EA-rule Sequence Parallel
Precondition Postcondition
= r.la = b|T.5.0 =

Event and Condition

Action

Basic Control Flow Patterns

Sequence) _
= 74.0.0
B = brp. B
Parallel Spllt

A—Ta (b.0]¢.0)
S c» B =t
O—Cchl

Synchronization

B :TB-E-O
e C = Tc.dz.()
D = dl.dg.TD.Dl

Basic Control Flow Patterns 2

Exclusive Choice

ﬂ ; A= TA.(E.O—l—E.O)
X ' ° B = b.TB.B,
10 C = ce.C

Simple Merge

n e dB :TB.Q.O
C:Tc.d.o

Discriminator

A=74.d1.0 B=75.d2.0 C = 7-.d3.0
D = (vh,exec)(D1|D>)
Di = dy.h.0 | d2.h.0 | d3.h.0
Dy = h.exec.h.h.D | exec.tp.D’

Generic Discriminator (|-out-of-M-join):

D = (Vh,exec)((H d;.h.0) | h.exzec.{h}""'.D | exec.Tp.D')
i=1
N-out-of-M-join:

D = (vh, eazec)((H d;.h.0) | {h}} ezec.{h}" ,.D | exec.tp.D')
i=1

Conclusion

Our work shows that all Workflow Patterns are
directly representable in the pi-calculus

Advanced features of the pi-calculus are required
for the more complex patterns

However, no new patterns have been found this
time

The results additionally provide a formal semantics
for the Workflow Patterns, making them concise
and unambiguous

Future research can be based upon these results,

e.g.

® Formal foundation for (graphical) workflow
notations

® TJools for executing pi-calculus workflows
9

Further Information

The interactive Pi-Workflow Website at:
http://pi-workflow.org

Based on SnipSnap, a Wiki and Weblog
software

Everyone is invited to register and
comment the content of the site

The weblog will contain news about the
research progress

|0

http://pi-workflow.org
http://pi-workflow.org

Thank you!

Questions!

Multiple Choice

® How does the Multi-Choice Pattern work!?

A = (vexec)Ts.(A1|As)
Ay = exec(dh).0+
exec(c).0+
exec(b). exec(c}.O

a A2 =lexec(x).T

= b. THB. B/

C — C.TC'. C’

12

OR-Joins

® How is the synchronizing merge handled!?

® Pattern representation:
B = TB.d_l.O
C = Tc.d_g.()
D=di.tp.D' +do.7p.D" +di.do.Tp.D’

® This pattern does not define how a runtime

actually selects a summation; it just denotes
all possibilities!

® A runtime could use different strategies, e.g.:

® True/False token passing
® Postphoned OR-join (YAWL like)

13

Multiple Merge

® How does the Multiple Merge Pattern

work!?
e — TB. d 0

Q C—TCdO
e _'dTDD/

| 4

Arbitrary Cycles

® How do arbitrary cycles work!?

w—' OO0
a

A :!a.TA.E.O
B =lb.75.¢.0
C =lc.7¢.(a.0 4+ d.0)
D = d.TD.D/

|5

MI without Synchronization

® Process A can spawn of any amount of
multiple instances of a process B. No
synchronization is required:

b /N A =714.0.0
BZ!ZT?’B.B/

|6

Ml with a priori Desigh Time Knowledge

® Process A spawns of a design time known
number of instances of B that have to be
synchronized afterward5°

— 74.0.0.b.0
B =1b. THB. c.0
C =cc.cro.C’

® For n design time copies the pattern is:
A|B|C=714{b}7.0]|b.753.2.0]| {c}}.7c.C’

|7

M1 with a priori Runtime Knowledge

® A process A can spawn of a runtime known
number of instances of B that are started
after all copies have been created. The
copies of B have to be synchronized before
another process C is activated:

(—C—©

A = (vrun)7t4.A1(c) | run.lstart.0

Aq(z) = (vy)b(y).y(x).A1(y) + Tun.z.0
B =!b(y).y(x).start.75.y.7.0
C = C.Tc.C/

|18

MI with no priori knowledge

® Process A spawns multiple instances of
another process B that have to be
synchronized before the execution of C:

(O—C—©

A = TA.Al (C)

Ay (x) = (Vy’)ﬂw ,-%@-Al(y) +7.0
B =b(yY.y(x}.75.y.7.0
C = C.Tc.C/

The pattern works like a dynamic linked-list:

(=) —)—<)
19

Deferred Choice

® How does the Deferred Choice Pattern

work?

benv

b @ A =74.(b.0 +¢.0)

° B = b.(beny.kill.T.B’

kill.0)

4 a C = C.(Cenv.m.Tc.Cl -
C

env

20

- kill.0)

Interleaved Parallel Routing

® How does the Interleaved Parallel Routing
Pattern work!?

° . Q ; Q A=T1aT9yTYA
OR

B=x15.9.0

° C b C'=x.170.79.0

21

Milestone

® One possible representation of the
Milestone Pattern:

A = check(z).([r = T]ra1. A" + [v = L]7a2.A")
B=M(L)|bm(T).rgm(L).B
M(x) = m(x).M(z) + check (x) .M ()

22

Cancel Patterns

® How does the Cancel Activity Pattern
work!?

Al E =ar1s. A"+ cancel.0 | l1¢.cancel.O

23

