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 Preface  

 

This seminar reader contains the papers of the seminar part of the lecture Business Process Manage-

ment II, held in the winter term 2005/2006 at the Hasso-Plattner-Institute. Master students of IT sys-

tems engineering discussed and researched current topics in the area of business process management. 

Each paper contained in this seminar reader was accompanied by a conference-style talk. 

 

We had a broad range of topics, ranging from theoretical foundations for the representation of choreo-

graphies and orchestrations, over process planning up to methodologies and variant-rich processes. 

Almost all topics are grounded in lectures given beforehand, so the students had a very broad founda-

tion and talks and papers dived right into challenging questions. The lecture had been divided into four 

major parts. Part one introduced advanced concepts of business process management based on service-

oriented architectures. Part two discussed a formal foundation, the pi-calculus. Part three covered ad-

vanced service composition in detail. Part four concluded with an introduction to the European re-

search project Adaptive Services Grid (ASG) that investigates dynamic service composition and en-

actment. 

 

We would like to thank the students that attended our lecture and contributed to this seminar reader – it 

was a very interesting and inspiring experience! Further acknowledgements go to Harald Meyer and 

Guido Laures for giving additional lectures as well as Arnd Schnieders for supervising some of the 

topics. 

 

Frank Puhlmann, Hilmar Schuschel, Mathias Weske 

Potsdam, February 2006 
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Concepts for a π-Calculus Simulator

Anja Bog

Hasso Plattner Institute for Software Systems Engineering
at the University of Potsdam,
D-14482 Potsdam, Germany

Anja.Bog@hpi.uni-potsdam.de

Abstract. This paper elaborates a possible data structure which can be
used in the implementation of a simulator for the π-calculus. The data
structure which is proposed is a tree structure and a mapping of the
different constructs of the π-calculus to structure elements of the tree is
given. Furthermore execution rules are defined in such a way that the
resulting simulator behaves in the same way as the reduction semantics
of the π-calculus.

1 Introduction

The π-calculus is a formal language for concurrent, communicating and mobile
systems. It provides a framework for the representation, analysis, simulation and
verification of these systems. Concurrent processes within a system communicate
with each other via channels sending and receiving messages. The contents of
these messages are names that can also represent channels and can therefore
be used for further communication. Thus new links between active processes
are dynamically created which constantly change the circuits in the system and
thereby make it mobile.

A number of tools which address the π-calculus already exist. Some of them
are for example Another Bisimulation Checker [5], Open Bisimulation Checker [6]
and Mobility Workbench[4]. However those tools are mainly intended for bisim-
ilarity and model checking, which means that instead of watching how a system
may behave internally, they check if two systems have the same observable be-
havior. To some extent these tools are able to do step by step executions or show
execution traces, but they do not offer visual output other than command line
output.

The motivation for investigating concepts of a π-calculus simulator is the ex-
ploration of the internal behavior of π-calculus processes. The simulator should
interact with the user if several ways of further execution are available and it
should also provide the user with expedient visual output for a deeper under-
standing of the systems behavior. Hence the requirements for a simulator can
be deduced. A step by step execution of the process definitions is wanted and
in each step a visualization of the current systems state which shows the inter-
acting agents and their communication channels shall be available. Furthermore
some abstraction levels may be defined that tell the simulator which of these
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processes the user is interested in seeing the internal behavior of and which of
them shall be handled as black box systems. This might be useful if for exam-
ple data structures (e.g. stacks, memory cells) are used that consist of several
agents that have to communicate with each other, but they are not the point of
interest, so the data structures might be presented as abstract processes without
internal behavior in the visualization. Handling some processes as black boxes
also demands of the simulator to be able to make choices internally and to some
extent non deterministically if several ways of execution are possible.

Before a current state of a π-calculus system might be presented to the user,
the simulator has to be able to execute the process definitions. This execution
will be the scope of this paper. A data structure and associated execution rules
will be explored. It is not the focus to discuss how the proposed data structure
might be handled during visualization.

Chapter 2 will give a short overview of two ways the execution of the π-
calculus might be handled and shows some advantages and disadvantages of
the different approaches. For the following chapters one of these approaches
will be chosen and further investigated. Chapter 3 defines the data structure
the π-calculus process definitions can be translated into and also specifies the
execution rules for this data structure in a such a way that the later execution of
the processes shows the same behavior as using the reduction semantics of the
π-calculus. In chapter 4 an example will be introduced that is translated into
the proposed structure and it is shown how it will be processed.

2 Handling the π-Calculus

The π-calculus grammar can be seen as a Domain Specific Language (DSL).
A DSL is a language that is targeted at a particular kind of problem, rather
than a general purpose language that is aimed at any kind of software problem.
In the case of the π-calculus the DSL is intended to describe the behavior of
communicating and mobile systems. Two different approaches of handling DSL’s
will be briefly discussed in this chapter.

2.1 Embedded Domain Specific Languages

Instead of defining a new language, the DSL is weaved into an existing general
purpose language without changing this language. Accordingly the elements of
the DSL have to be expressed in the syntax of the base language. A disadvantage
which evolves from this is that the expressiveness of the base language might
narrow the expressiveness of the DSL and workarounds have to be found to avoid
this. For this reason the language that is going to be used as a base language has
to fulfill some premises[1]. On the one hand it should provide for a lightweight
syntax that stays out of the way when defining problems in the DSL, so complex
twists for expressing certain DSL elements can be avoided. On the other hand
it should offer some control to create new syntax if for example no workaround
can be found to express a certain element in the base language. An advantage



Concepts for a π-Calculus Simulator 3

of using this approach is that the compiler or interpreter of the base language
can be used for the execution. Languages that are appropriate for using as base
languages are for example Ruby, Lisp or Smalltalk.

Concerning the π-calculus Simulator this approach might not be as useful
because process definitions can become very cryptic if one has to care about
not violating the syntax of the base language. Furthermore intermediate results
like step by step execution of the processes, user interaction if several choices
are available and visualization of the systems current state after each step are
wanted. Providing intermediate results using embedded DSL’s might be hard
to supply because this would have to be specified by the user as well or an
intermediate step has to be taken which inserts the processing steps in the process
definitions of the user. A solution for theses problems might be to include another
preprocessor or macro processing step. The advantages which arise from this is
that the user now can specify his process definition in a π-calculus like syntax
and the preprocessor will translate these definitions into the constructs of the
base language and also inserts the execution rules for the intermediate results.
But there is still one disadvantage which also resides in this solution, namely that
errors in the syntax of the user specified processes are not detected immediately
but might cause wrong syntax in the base language which will be detected by
the base languages compiler/interpreter or it causes strange behavior during
execution. In any case the user will be confronted with error messages on the
level of the base language and not on domain level.

2.2 External Domain Specific Languages

This approach is similar to the approach of using a preprocessor beforehand
for embedded DSL’s with the difference, that the preprocessor is integrated in
the interpreter. Therefore type checking on the domain level becomes available
and the user can be provided with domain specific feedback on the errors. For a
dedicated interpreter a parser is needed which translates the input into a usable
data structure for execution. Many tools exist which are able to generate such
a parser based on a grammar specified for the DSL. The decision which one to
use may result from the data structure that will be used during further execu-
tion and to what extend a certain tool assists in building that structure. The
advantage of this approach is that the input is independent of the programming
language used but solely depends on the grammar specified. As a result an al-
ready existing input style might be used and the parser can be tailored to this
format. This is especially useful if there already exists a tool that helps the user
to model processes and whose output are π-calculus process definitions. Using a
general input style also presents the possibility of integrating existing tools like
for example the Mobility Workbench to provide additional functionality. Fur-
thermore the production of intermediate results has to be implemented in the
interpreter anyway therefore no restrictions are applied here. The disadvantage
of this approach is that the whole interpreter aside from the parser which can
be generated has to be implemented from scratch.
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In the following chapters this approach will be further investigated and con-
cepts will be elaborated that lead to a possible implementation of an interpreter
for the π-calculus.

3 Data Structure and Execution

For the execution an appropriate data structure has to be defined which in this
case is a tree structure. It can be applied because the π-calculus consists of
split and decision constructs, but no joins. Synchronization between processes
and process parts is done by using positive and negative prefixes. For the tree
structure to be applied all the structures of the π-calculus have to be mapped
to tree structure elements. Section 3.1 deals with this mapping between the π-
calculus and the tree and section 3.2 defines how these structures are handled
during execution.

First off if a parser is going to be generated, a grammar for the π-calculus
is needed. The grammar which will be used in this paper is the one proposed in
The Polyadic π-Calculus: a Tutorial [3] as follows:

P ::= M | P |P ′ | vzP |!P | A(ỹ)
M ::= 0 | π.P | M + M ′

π ::= x〈y〉 | x(z) | τ | [x = y]π

A different grammar that can produce different constructs is for example the
one suggested in A Calculus of Mobile Processes, Part I [2]. This grammar for
instance allows for less restrictive summations.

Many different tools exist which starting from a given grammar generate a
parser for it. As an example the tools ANTLR (ANother Tool For Language
Recognition)[7] and JavaCC (Java Compiler Compiler)[8] might be useful be-
cause they already support building abstract syntax trees as intermediate struc-
tures and they also provide for functionality to modify these trees with further
information while parsing and while the information is directly available from
the process definitions. These two tools also support building custom structures
if the provided tree structure is not adequate after all. Accordingly no further
actions in translating the tree structure and adding information to it need to be
done after the parsing step and the process execution can start immediately.

3.1 Specification of the Data Structure

The π-calculus consists of the following constructs as are represented in the
grammar

– Summation: M + M ′

– Composition: P | P ′

– Defined Agents: A(ỹ)
– Prefix: x.〈y〉, x(z), τ
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– Match: [x = y]π
– Restriction: vzP
– Replication: !P
– Inaction: 0

For most of these constructs special tree node types will be needed with spe-
cial properties. All tree nodes have one property the process identifier (PID) in
common. The process identifier provides the information, which process or sub
process this node and the whole subtree belongs to. It will be needed for the
scoping of names within and between processes. This sections will define how
the mentioned constructs can be mapped to structures in the tree, properties of
tree nodes and other structures like tables.

Prefix Prefixes do the actual work within the processes. There are three different
types of prefixes. The negative prefix notated as y〈x〉 defines the action of sending
the name x over the channel y. The process which the action is part of will be
blocked as long as there is no other process available that can receive a name on
channel y. The positive prefix notated as y(x) defines the action of receiving a
name x over the channel y. Similar to the negative prefix this process is blocked
as long as there is no other process sending a name on channel y. The silent
prefix τ performs an unobservable action. The unobservable action can always
be performed if it is not blocked by a match, sending or receiving prefix node,
that has to be executed beforehand.

As a result three node types are needed, that are Send, Receive and Tau.
Additionally the Send and Receive nodes need two more fields, the first con-
taining the name of the channel on which a name is sent or received and the
second containing a set of names which are sent/received. Figure 1 shows these
nodes. The names attribute contains a set of names if the polyadic π-calculus
is used. A sequence of actions in a process is represented as the child/parent
relation in the tree. If an action has to be done before another action, the node
that represents the first action will be the parent of the node representing the
second action. An example for a sequence of actions with respect to the process
definition x(y).τ.y.0 is represented in figure 2.

Defined Agents Defined agents may occur within process definitions, if a
process is supposed to behave like another agent further on or start all over
again. An example for using defined agents is to express recursion. A defined
agent holds a list of parameters as placeholders for the names that will be re-
placed by other names in the agents process definition. The notation for a defined
agent in the π-calculus is A(x1, x2, . . . , xn) with A as the identifier of the agent
and x1, x2, . . . , xn as its parameter values. The node of type AgentId is depicted
in Figure 3. Extra properties of the agent node are the name of the agent Agent-
Name and Names, which is a list of the parameters given to that agent.

Summation A summation behaves like one subprocess out of a set of them.
Which subprocess will be picked depends on the actions that can be done right
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Fig. 1. Prefix nodes.
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Fig. 2. Sequence of actions.

away, this includes some non-determinism if more than one action can be done.
Summations in the π-calculus grammar have the syntax M1 +M2 + . . .Mn with
M1,M2, . . . ,Mn as possible subprocesses. The summation is represented as a
special node type “+” in the tree with the choices as this nodes children. Figure
4 represents the process definition

P (a, b) = a〈b〉.0 + a(x).0 + τ.0
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Fig. 3. Defined Agent node.
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Fig. 4. Summation node.

Composition A composition consists of processes or subprocesses which run
in parallel and may interact with each other using channels to exchange names.
The π-calculus notation for composition is P1 | P2 | . . . | Pn with the agents
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P1, P2, . . . , Pn running in parallel. For this construct a new node type Composi-
tion is needed and the concurrent agents are simply inserted as its child nodes.
Figure 5 shows an example of the process definition

A(a, b) = P (a, b) | R(b)
P (a, b) = a(x).0|b.0

R(b) = b.0

Match The syntax for a match is [x = y]π where the action π is done if
the condition x is equal to y is met. The grammar allows for a conjunction
of several match conditions, for this to be represented in the tree a node for
each condition is created and inserted as a child node of the previous condition,
whereas the order of insertion of the match nodes is of no real importance,
because of the commutativity of conjunction. Figure 6(a) shows the match tree
node of the construct [x = y]a〈x〉.0 and Figure 6(b) depicts the process definition
of [a = c][x = y]a〈x〉.0 which is equal to the definition [x = y][a = c]a〈x〉.0
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Fig. 5. Composition node.
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Fig. 6. Match node.

Replication The meaning of the replication construct is that an infinite number
of instances of the replicated process are running in parallel. Since an infinite
number of processes can not be supplied at any point of time a workaround
may be proposed which spawns a replicated process every time the first action
of the replication process is executed. This will assure that no deadlock of an-
other process wanting to use a replicated instance will occur. Replication will
be matched to a new node type Replication with just the property PID and the
contents of the process definition as child node(s). Figure 7 shows the process
definition y.!A(a) as an example.
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Restriction With the help of restriction new unique names are created and
bound to the process(es) they have been created for, which means that they
are private within the scope defined by the Restriction. The restriction in the
π-calculus is notated as vxP where x is a placeholder for the private unique
name to be created for the process P . One or more names can be restricted to
one or more processes, e.g. S = vxvy(P | Q) | R. In this case the names x, y are
private to the agents P and Q. R does not have any access to these names, yet.
It might receive access through scope extrusion during execution later on. The
restriction nodes attributes are the name which will be replaced and the process
ID of the process it belongs to. The restriction node is depicted in Figure 8 for
the process definition of agent S. Additionally a restriction table will be kept
which holds an entry for each restricted name with a list of process identifiers
belonging to the processes the name is restricted to.
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Fig. 7. Replication node.
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Fig. 8. Restriction node.

Free Names and Bound Names Every time a name is received over a channel
a check has to be done beforehand to confirm that no free names become bound
by this action and no bound names become overridden. Hence one more table
may be kept for optimized execution which holds a process identifier, a list of
free names of this process and a list of bound names of this process. Otherwise
every time a name is received the whole subtree has to be checked if this name
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is already contained somewhere in the process. These tables can be obtained
before execution starts.

3.2 Handling of the Data Structure During Execution

After parsing a tree is created which holds the definitions of all defined agents
for future reference and the definition of the process which will be executed.
The definition of the process to be executed can be found under an extra node
called execution node. Another approach would be to receive two trees from the
parser, one which holds the definitions for all the agents and the other holds
the definition of the process that will be executed. Since these approaches are
similar to each other concerning the included information the decision which is
the easiest to use depends on the later implementation. The first approach will
be used in the specifications and examples further on. Figure 9 depicts the basic
structure of the tree. The following execution rules only refer to the part of the
tree that will be executed which is the subtree of the execution node.
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&(&)*#&%

Fig. 9. Basic structure of the tree after parsing.

The execution tree is processed top-down. Actions that are direct children of
the execution node are available for execution. Node Types that may occur as
the execution nodes children are prefix nodes, replication nodes and summation
nodes. Defined agent nodes, composition nodes, match and restriction nodes
will not be encountered as the execution nodes direct children during execution
because they can be resolved right away as will be specified in the associated
execution rules. The only time they might occur as child nodes of the execution
node is right after the parsing step is done, but the first steps of the execution
will involve the immediate replacement or execution of these nodes.

As mentioned before the simulator is supposed to show the same behavior as
the reduction semantics of the π-calculus. The axioms of reduction and structural
congruence as specified in [9] are shown in table 1 and table 2 and will be referred
to in the execution rules of the associated tree nodes.
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Axiom 1 (x〈y〉.P1 + M1) | (x(z).P2 + M2) → P1 | P2 {y/z}
Axiom 2 τ.P + M → P

Table 1. The axioms of reduction.

Sc-Mat [x = x]π.P ≡ π.P
Sc-Sum-Assoc M1 + (M2 + M3) ≡ (M1 + M2) + M3

Sc-Sum-Comm M1 + M2 ≡ M2 + M1

Sc-Sum-Inact M + 0 ≡ M
Sc-Comp-Assoc P1 | (P2 | P3) ≡ (P1 | P2) | P3

Sc-Comp-Comm P1 | P2 ≡ P2 | P1

Sc-Comp-Inact P | 0 ≡ P
Sc-Res vzvwP ≡ vwvzP
Sc-Res-Inact vz0 ≡ 0
Sc-Res-Comp vz(P1 | P2) ≡ P1 | vzP2, if z /∈ fn(P1)
Sc-Rep !P ≡ P | !P

Sc-Unfold A(ỹ) ≡ P{ỹ/x̃}, if A(x̃)
def
= P

Table 2. The axioms of structural congruence.

Execution of Defined Agent Nodes The defined agent node will not become
a first level child of the execution node during execution, because the first action
of a process has to be known for matching prefixes. Doing the resolving late
means to do it every time a matching prefix is looked for instead of only one
time when the defined agent node is first met. Therefore before linking a defined
agent node to the execution node, it has to be resolved. Resolving denotes to
copy the process definitions of that agent from the part of the tree where they are
kept and assigning its parameter values with regard to renaming bound names
if needed. The rule of structural congruence which leads to the same behavior of
renaming the parameters is SC-UNFOLD in table 2. As an effect the resulting
structure will now be linked to the execution node.

The list of parameters for a defined agent has to include all free names that
occur in the process definition of this agent. If this is not the case and the agent is
part of another process, problems might arise because the replacement of names
that have existed in the other process and that are also free names of the agent
has to take effect in the agent, too, but would not if the name is not included in
its list of parameters. In this case the replacement would be lost. As an example
the following process definitions will show the issue:

P (a) = a(x).Q(x)
Q(x) = x.0

Process P for example receives the name d over the channel a, now x is replaced
by d everywhere in P and also x will be replaced by d in Q when the defined
agent is resolved, because P as defined above is structurally congruent to the
definition:

P (a) = a(x).x.0
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If Q does not have this free name x as a parameter value, its x is not replaced
by d regarding the execution rule as defined above and the behavior would not
be consistent with the reduction semantics of the π-calculus.

Execution of Prefix Nodes If a tau node is encountered as a first level child,
the unobservable action can be executed immediately, as can be seen in the
second axiom in table 1, the tau node will be removed and its child node(s) will
be linked to the execution node instead.

For a send prefix node a matching receive prefix node has to be found. Such
a node can be found as a sibling node or as a child of a summation or replication
sibling node. Thus finding such a node demands in the worst case to check all
the sibling subtrees until the first prefix node is found in each. If a matching
node is found in one of the sibling subtrees the current node will be removed
from the tree and its child node will be linked to the execution node instead.
In case of looking for a matching node the scope of the channel name has to be
taken into account additionally. Furthermore in the event of sending a restricted
name the scope has to be expanded whereas the scope has to be reduced if the
sent restricted name does not occur in the sending process any longer. Scope
extrusion, intrusion and reduction will be done by updating the entries in the
restriction table. For this operation the subtree which belongs to this process
has to be traversed.

The receive prefix node basically behaves like the send prefix node during
execution once a matching send prefix node is found. Additional tasks which
have to be performed relate to taking care of the received name, which includes
substitution and renaming if necessary. If a restricted name is received, the
receiving processes identifier will be added to the entry of this name in the
restriction table. After the name is received the node will be replaced by its child
node in the tree. The execution rules for send and receive prefixes correspond to
the first axiom in table 1.

In case a node does not have any more child nodes, which means that this
process becomes inactive, all its entries in the tables will be removed.

Execution of Match Nodes Match nodes will not be linked to the execution
node but are executed before this would happen. Execution in this case means
checking if the two names in the fields Name1 and Name2 are the same or not.
If they represent the same name, according to SC-MAT in table 2 the match
node will be replaced by its child node. Otherwise the whole subtree including
the match can be removed because the process would be blocked from now on,
which is equal to inaction in this case.

Execution of Summation Nodes Summation nodes that are direct children
of the root node can be traversed anytime and if one child node is chosen for
execution, its execution causes the deletion of its sibling nodes together with
their subtrees. The rules of SC-SUM-ASSOC and SC-SUM-COMM are implicitly
given in the tree structure since no order on the sibling nodes has been defined.
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Execution of Composition Nodes A composition node will not be linked to
the root node. Before this would happen it will be executed. The child nodes
of the composition node will receive new distinct process identifiers, the former
processes entries in the table of restriction will be replaced by the set of new
process identifiers and the old processes entries in the tables of bound and free
names will be copied to the entries of the new process identifiers. Afterwards the
changed child nodes are linked to the execution node and the old composition
node is removed. The child nodes have to receive distinct process identifiers, be-
cause otherwise their entries in the tables would not be distinguishable and the
replacement of a name existing in several of the sub processes should only affect
the one sub process that actually received the name. Precisely as the rules of
associativity and commutativity for summations, the respective rules for com-
position SC-COMP-ASSOC and SC-COMP-COMM are also given implicitly.

Execution of Replication Nodes As mentioned before every time the first
action of the replication process is executed, a new replicated process is spawned,
corresponding to the rule SC-REP in table 2. The new process will receive a new
process identifier and its bound and free name lists are copied from the entries
of the old process identifier as well as its process identifier is added to the same
restriction lists the old one occurs in.

Execution of Restriction Nodes As soon as a restriction node is encountered
a new unique name is created and inserted into the restriction table, the scope
of the newly created name will be the process identifier of the process the name
has been created for. The new name also replaces its placeholder in the subtree.

4 Example

This section shows an example π-process definition which represents processes
using memory cells and interacting with each other. The systems representation
as a tree is given and it is shown how the process definitions are executed.

The following system S will be examined:

S(m,hi, hello, cell) = A(m,hi, cell)|B(m,hello, cell)|Cell0(cell)
A(m,hi, cell) = cell(a).a〈hi〉.m〈a〉.0

B(m,hello, cell) = cell(b).b〈hello〉.m(x).x(o).b(p).0
Cell0(cell) = !(vc)cell〈c〉.Cell1(⊥, c)
Cell1(n, c) = c〈n〉.Cell1(n, c) + c(x).Cell1(x, c)

The memory cell is represented by the agents Cell0 and Cell1. Process A
creates a new memory cell, saves the string hi in this cell, sends the accessor to
the memory cell over the channel m and terminates. B also creates a memory
cell and saves the string hello. It then receives a name over the channel m, which
is the accessor to A’s memory cell. B reads the saved names from both cells and
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terminates. In the following lines a description will be given for an exemplary
evolvement of the system. The descriptions can be followed with the help of some
figures, that can be found in the appendix A.

Before starting the execution a tree is build, the tree resulting from the above
process definitions is depicted in figure10. On the left side of the tree the process
definitions of the agents that are part of the system can be seen. These agents
are S, A, B, Cell0 and Cell1. On the right hand side of the tree the execution
node can be seen with the process definitions of agent S as children, this part of
the tree will be executed so it is assigned a valid process identifier, in this case
S.

The first steps of the execution will be to resolve the composition node and
the defined agent nodes. Resolving the composition node leads to its children
being assigned new process identifiers (A, B, C) and resolving the agent nodes
leads to copying the process definitions from the left part of the tree to the places
where the agents have been and assigning the associated process identifiers to
the sub nodes. Also the entries of the tables for free and bound names are copied
to the entries of the new process identifiers. The sub tree under the execution
node is the only part of the tree that will change during the execution, so the
following figures will focus on this part. What the execution subtree and the
table look like after these steps is depicted in figure 11.

Subsequently two ways of execution are possible, either process A or process
B might initialize a memory cell. Figure 12 shows what the execution subtree
looks like after process A has done the initialization. A new replicated process
has been spawned off with a new process identifier C1 and a new name d for
accessing the memory cell C has been created. This name is shared between
the processes C and A, as can be read from the restriction table. For further
execution the defined agent Cell1 has to be resolved in process C, this is shown
in figure 13.

Now process B is still able to initialize a memory cell and process A might
write the name hi in its own memory cell C using the private channel d. Figures
14 and 15 show the execution subtree during the steps of process A writing in
the memory cell. Figures 16 and 17 show how process B initializes a memory
cell, where a new replicated process C2 is spawned off and a new name e is
created and shared between the processes B and C1, which is used by B to save
the name hello in the memory cell.

Process A’s last step is to send its accessor for the memory cell to process B,
which enables B to use this memory cell. Afterwards A becomes inactive and its
entries are deleted from the tables, depicted in figure 18. Further actions that
are available now are for process B to read from both memory cells.

As an interesting issue to point out after processes A and B have become
inactive is, that processes C, C1 and C2 are still in the system but no further
actions can be done. This shows another topic that has to be investigated, which
is memory management. The question that has to be answered is if a process
like the memory cell can be removed, since there is no other process in the
system that holds an accessor to it. This problem might become interesting if
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long running processes that use certain data structures are inspected whereas
system ressources have to be taken into account.

5 Conclusion

In this paper two ways of handling the π-calculus as a domain specific language
have been discussed and one of these approaches, the approach of implementing
a dedicated interpreter has been further investigated. For the chosen approach
to be applicable for execution a data structure has been defined that represents
the π-calculus process definitions. The data structure that was explored is a tree
structure and mapping rules have been given that construct the tree structure
from the process definitions. Furthermore rules on the structure have been intro-
duced that lead to an execution of the process definitions. The execution rules
are based on the axioms of reduction and structural congruence and therefore
the simulator resulting from the definitions behaves in the same way as reducing
the process definitions considering the reduction semantics of the π-calculus. Se-
cluding an example has been presented to illustrate the defined data structure
and rules.

Further investigations will have to deal with the visual representation of the
current systems state and how information for this representation can be deduced
from the tree structure. Additionally the option for defining abstraction levels
by the user has to be investigated and how the given data structure can be
enriched with this information, so the component for visualizing the system is
able to interpret and display processes and process parts as black and white box
systems according to the users specifications. Additionally some research has to
be done on memory management. Cases have to be detected when processes do
not have any more influence on the future evolvement of the system and can
therefore be cleared.
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Fig. 17. B’s memory cell after initializing.
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Fig. 18. A sends its accessor to B.
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Abstract. An important aspect of cross-organizational business process
integration is the identification of the interactions between individual
business partners. In order to unambiguously describe these interaction
protocols (choreographies) and to allow for reasoning we need a formal
grounding for every interaction type.
This paper shows how the Service Interaction Patterns can be formalized
using π-calculus. A small set of formalizations based on Petri nets is also
provided.
Since mobility is a central aspect of service choreographies we argue
that π-calculus is better suited for formalizing service interactions than
place/transition Petri Nets and Colored Petri Nets.

1 Introduction

Service-oriented architectures (SOA) as described in [1] aim at closely supporting
business processes within a company and between business partners. Services
are employed to perform tasks within these processes and processes themselves
can be exposed as services. We distinguish between orchestrations where one
business partner enacts a set of services in a given order and choreographies
which represent the interaction protocols between several business partners (see
[2]).

In a setting where the different business partners encapsulate their business
logic as services, service interactions are at the center of attention. A lot of
effort has been undertaken to identify the most common interaction scenarios
from a business perspective, which have been published as “Service Interaction
Patterns” in [3]. Barros et al categorize the patterns according to the number of
participants in an interaction (bilateral vs. multi-lateral), the maximum num-
ber of exchanges (single-transmission vs. multi-transmission interactions) and
whether the receiver of a response is necessarily the same as the sender of a
request (round-trip vs. routed interactions).

A textual description is provided for each pattern, together with business
examples and design choices. The authors also come up with implementation
examples using BPEL [4] and other standards from the WS-* stack. However,
formal representations of the patterns are still missing.



Such formalizations could be used for reasoning and simulation. Especially
conformance checking between a given choreography and a set of orchestrations
has gained a lot of interest recently.

When looking into Business Process Management (BPM) literature (e.g. [5])
we see that Petri nets in all their different flavors dominate the research com-
munity. Therefore, we have investigated if Petri nets are suitable for formalizing
the interaction patterns.

In the last years π-calculus, a general purpose process algebra, came up in the
BPM domain. We will analyze if communication and change, the core aspects
of π-calculus, are also at the heart of the interaction patterns.

The next two sections will first cover our formalization approach using π-
calculus and then using different classes of Petri nets. The Related Work section
puts this paper into relation with other publications. Finally, a conclusion will
be drawn and an outlook will be given.

2 Formalizing the Interaction Patterns using π-calculus

At the center of π-calculus we deal with processes that communicate with each
other. The communication channels as well as the messages sent over these chan-
nels are called names. That way, channels can be passed as parameters to other
processes and be used for communication later on. This capability of systems
is called mobility. For more information on π-calculus please refer to [6], [7], [8]
and [9].

In the pattern representations each interaction participant is modeled as a
π-process. In the case of bilateral interactions we named them A and B, in the
case of multi-lateral interactions A, Bi and P where i = 1, 2, . . ..

Since timers and exception handling are explicitly called for in the pat-
terns we introduce an environmental process EX per interaction participant
(X = A,B,Bi, P ). It is left open how timeouts and exception handling are
implemented. settimerEX 〈timer〉 is supposed to set a new timer where a time-
out is thrown by sending on channel timer. Exceptions can be thrown by sending
on channel faultEX .

In the π-calculus a message is sent and received at the same time. I.e. if
a process wants to send a message via a link then it blocks until a receiver
actually receives the message. Therefore, the π-calculus assumes synchronous
communication as well as reliable and guaranteed delivery as the default case.

If we want to model that a message sent from A to B can get lost or that the
delivery can be delayed we might introduce a medium M in the following way:

A = b1 〈msg〉 .0

M = b1(msg).((b2 〈msg〉 .0 + τ0.0) | M)
B = b2(msg).0

The medium decides non-deterministically if the message is either discarded
or forwarded to B. Due to the sequence within M , sending msg in A and receiv-



ing msg in B do not happen at the same point in time, which models a potential
delay as well as asynchronous communication. Another property of the medium
concerning the order of delivery is that FIFO (first in first out) is not guaran-
teed any longer. Introducing such a medium allows for reasoning if a process still
meets its requirements even in the case of delayed or unreliable message delivery.

However, we assume that the underlying infrastructure (represented by the
environmental processes E) guarantees reliable FIFO delivery. In the cases where
this cannot be met we assume that an exception faultE is raised for the whole
composition.

As proposed in [8] we omit the termination symbol 0 in process definitions
and we use the Polyadic π-calculus for better readability. The Polyadic π-calculus
allows for a shorter representation of sending several names over the same chan-
nel such as b〈x, y, z〉.

The following subsections present formalizations for every pattern. The pat-
tern descriptions at the beginning of each subsection are directly taken from
[3].

2.1 Pattern 1: Send

A party sends a message to another party.

The pattern definition distinguishes between blocking send and non-blocking
send. In the case of blocking send the sending process cannot proceed until it
can be sure that the message has been received. As already mentioned above
this blocking behavior is inherent to π-calculus.

Blocking send:

A = b 〈msg〉 .A′

B = b(msg).B′

This pattern formalization leaves it open if the receiver of the message is
known at design-time or not. If we define the system as

S = (ν b)(A | B)

then A knows the link to B at design-time. If we define it as

S = (ν lookup)(lookup(b).A | (ν b)(B | D))

then A would get the link to B at run-time. In this case D could be something
like a UDDI directory where we can lookup the receiver.

A′ and B′ represent the so called continuations mentioned in the pattern
descriptions.



Non-blocking send:

A = b 〈msg〉 | A′

B = b(msg).B′

Strictly speaking we could omit the formalization for B. However, for illus-
tration purposes we provide one possible implementation for B to have a valid
choreography.

Most interaction patterns describe the interactions from the perspective of
one single participant. In order to get a minimal choreography we have to plug
several patterns together (e.g. send for A and receive for B).

2.2 Pattern 2: Receive

A party receives a message from another party.

A = a(msg).A′

B = a 〈msg〉 .B′

2.3 Pattern 3: Send / receive

A party A engages in two causally related interactions: in the first interaction
A sends a message to another party B (the request), while in the second one A
receives a message from B (the response).

In order to keep track of the relation between the two interactions we have
to introduce some kind of correlation mechanism. In π-calculus we can create
an infinite number of new names for a process that are not known to any other
process. We create a new name for every set of correlated interactions. If we then
use new this channel for communication we can be sure that any message that
is sent over this channel is correlated to the other interactions.

In the following example A creates a new name a used for receiving the
response. A blocks until the corresponding message has been received.

Blocking send / receive:

A = (ν a)b 〈a, req〉 .a(resp).A′

B = b(a, req).τB .a 〈resp〉 .B′

As already mentioned above the formalization of B is only one valid example.
E.g. we could imagine interactions with other processes between receiving the
request from A and sending the response.

Non-blocking send / receive:

A = (ν a, h)(A1|A2)

A1 = b 〈a, req〉 .(h | A′
1)

A2 = h.a(resp).A′
2

B = b(a, req).τB .a 〈resp〉 .B′



The new name h has to be introduced since the pattern descriptions demands
that the request has been sent before a response can be received.

2.4 Pattern 4: Racing incoming messages

A party expects to receive one among a set of messages. These messages may
be structurally different (i.e. different types) and may come from different cate-
gories of partners. The way a message is processed depends on its type and/or
the category of partner from which it comes.

Normally names are not typed in π-calculus. In order to retrieve the type of
a message we could explicitly receive a second name representing the type. We
opted for a more elegant way: for each type a channel is created and thus the
channel a message is sent over determines the message’s type.

In the following formalization we assume that there are two different types
of messages. Each Bi can a message over channel a1 if it is of the first type or
over channel a2. Depending on the type of the message the continuation for A
is either A′

1 or A′
2.

The pattern distinguishes between discarding remaining messages and keep-
ing them for further interactions.

Remaining messages are not discarded:

A = (a1(msg).A′
1 + a2(msg).A′

2)
Bi = (a1 〈msg〉 .B′

i + a2 〈msg〉 .B′
i)

Once again the formalization for Bi is just an example. In this case every Bi

can sent messages of every type. If we want to model that the continuation of
A depends on the category of the sender we could define Bi = a1 〈msg〉 .B′

i and
introduce another category Ci = a2 〈msg〉 .C ′

i.
A generic formalization for an arbitrary number of different types / categories

would be
A = Σn

i=1ai(msg).A′
i

In the following formalization all remaining messages are received but not
taken care of. The number of messages is not known at run-time:

A = a1(msg).(A′
1 | Adiscard) + a2(msg).(A′

2 | Adiscard)
Adiscard =!a1(msg) | !a2(msg)

Bi = (a1 〈msg〉 .B′
i + a2 〈msg〉 .B′

i)

In order to be able to receive an arbitrary number of messages we have to
use the !-operator which stands for an infinite number of processes that run
in parallel. Therefore, A never terminates. It can be seen as a drawback of π-
calculus that discarding an unknown number of messages cannot be modeled in
a different way.



2.5 Pattern 5: One-to-many send

A party sends messages to several parties. The messages all have the same type
(although their contents may be different).

Number of recipients known at design-time:

A = (ν h)(Πn
i=1bi 〈msgBi〉 .h | {h}n

1 .A′)
Bi = bi(msg).B′

i

Number of recipients known at run-time:

A =(ν h)(A1(h) | h.A′)
A1(h) =hasnext(hn).

([hn = true]next(b).(ν i)(b 〈msg〉 .i.h | A1(i))

+ [hn = false]h)
Bi =bi(msg).B′

i

For this pattern we have introduced the concept of an iterator that iterates
over a list of recipients. The “operation” hasnext returns either true or false
and tells us if there are more elements in the list. next returns the next recipient
in the list. An iterator could be defined using data structures such as a stack
(see e.g. [10]).

2.6 Pattern 6: One-from-many receive

A party receives a number of logically related messages that arise from au-
tonomous events occurring at different parties. The arrival of messages needs to
be timely so that they can be correlated as a single logical request. The interac-
tion may complete successfully or not depending on the set of messages gathered.

The pattern introduces the notion of a stop condition and a success condi-
tion. In the simplest flavor of the pattern the interaction succeeds if n messages
have been received. In this case we stop the interaction as soon as this success
condition is met or a timeout has occurred:

A =(ν timer, kill)(settimerEA〈timer〉. {a(msg)}n
1 .exec

| (exec.kill.A′ + kill) | (timer.kill.faultEA + kill))
Bi =a 〈msg〉 .B′

i



In order to model arbitrary stop and success conditions we can use non-
deterministic choices:

A =(ν exec, timer)(settimerEA〈timer〉.(!a(msg).( exec + τ0︸ ︷︷ ︸
stop condition

))

| timer.exec | exec.( A′ + faultEA︸ ︷︷ ︸
success condition

))

Bi =a 〈msg〉 .B′
i

An infinite number of messages can be received over channel a. Each time
a message arrives we check if the stop condition is already met. If this is the
case then the process sends over channel exec. Now it is checked if the success
condition is met.

The pattern description defines that the success of the interaction depends
on the set of messages. This is not explicitly modeled in the formalization.

2.7 Pattern 7: One-to-many send / receive

A party sends a request to several other parties, which may all be identical or log-
ically related. Responses are expected within a given timeframe. However, some
responses may not arrive within the timeframe and some parties may even not
respond at all. The interaction may complete successfully or not depending on
the set of responses gathered.

If the recipients are known at design-time and we assume arbitrary stop
and success conditions the formalization of one-to-many send / receive looks as
follows:

A =(ν timer)(settimerEA〈timer〉.Πn
i=1Ai

| timer.exec | exec.(A′ + faultEA))

Ai =(ν a)(bi 〈a, req〉 .a(resp).(exec + τ0))
Bi =bi(a, req).τBi .a 〈resp〉 .B′

i

If the recipients are known at run-time we introduce an iterator once again:

A =(ν timer)(settimerEA〈timer〉.A1 | timer.exec | exec.(A′ + faultEA))
A1 =hasnext(hn).([hn = true]next(b).(A1 | A2(b)) + [hn = false]τ0)

A2(b) =(ν a)(b 〈a, req〉 .a(resp).(exec + τ0))
Bi =bi(a, req).τBi .a 〈resp〉 .B′

i

2.8 Pattern 8: Multi-responses

A party A sends a request to another party B. Subsequently, A receives any num-
ber of responses from B until no further responses are required. The trigger of no



further responses can arise from a temporal condition or message content, and
can arise from either A or B’s side.

In the following formalization we do not explicitly model the temporal con-
dition mentioned in the pattern description:

A = (ν a)b 〈a, req〉 .Areceive

Areceive = a(resp).τA.(Areceive + A′ + b〈stop〉.A′)
B = b(a, req).Bsend

Bsend = τB .(a 〈resp〉 .(Bsend + B′) + b(stop).B′)

In Areceive we see a non-deterministic choice with three alternatives. The
first alternative can be taken if another message arrives from B. The second
alternative is chosen if the message content of the last message indicated the
termination of the interaction. The third option models the possibility that A
decides to stop the interaction.

These three options also appear in Bsend. Either another message is sent or
B decides to terminate the interaction or a stop-message is received from A.

2.9 Pattern 9: Contingent requests

A party A makes a request to another party B1. If A does not receive a response
within a certain timeframe, A alternatively sends a request to another party B2,
and so on.

A retrieves the list of invocation targets at run-time. For that purpose we
use an iterator once again.

An import design issue of this pattern is whether or not responses should be
considered after the timeout has already occurred.

Do not consider responses from services we invoked earlier:

A =hasnext(hn).

([hn = true]next(b).(ν a)b 〈a, req〉 .(ν timer)settimerEA〈timer〉.
(a(resp).A′ + timer.A)

+ [hn = false] faultEA)
Bi =bi(a, req).τBi .a 〈resp〉 .B′

i



Consider responses from services we invoked earlier:

A =(ν exec, h)(hasnext(hn).

([hn = true]next(b).(ν a)b 〈a, req〉 .(ν timer)settimerEA〈timer〉.
(a(resp).exec + timer.(A | (a(resp).exec + h)) + h)

+ [hn = false] faultEA)

| exec.(A′ | !h))
Bi =bi(a, req).τBi .a 〈resp〉 .B′

i

2.10 Pattern 10: Atomic multicast notification

A party sends notifications to several parties such that a certain number of parties
are required to accept the notification within a certain timeframe. For example,
all parties or just one party are required to accept the notification. In general,
the constraint for successful notification applies over a range between a minimum
and maximum number.

We introduce the two names “accept” and “reject”. If A receives a reject-
message, the multicast notification has failed and the continuation A′

2 is taken.
If m accept-messages are received before a reject-message arrives the multicast
notification has succeeded and the continuation A′

1 is taken:

A =(ν a, h, exec)((Πn
i=1bi 〈a, notification〉 .a(resp).

([resp = accept]h + [resp = reject]exec 〈reject〉))
| {h}m

1 .exec 〈accept〉
| exec(resp).(([resp = accept]A′

1 + [resp = reject]A′
2) | Πn

i=1bi 〈resp〉))
Bi =bi(a, notification).τBi .

(a 〈accept〉 .bi(resp).([resp = accept]B′
i1 + [resp = reject]B′

i2)+
a 〈reject〉 .B′

i2 + bi(resp).B′
i2)

2.11 Pattern 11: Request with referral

Party A sends a request to party B indicating that any follow-up response should
be sent to a number of other parties (P1, P2, ..., Pn) depending on the evalua-
tion of certain conditions. While faults are sent by default to these parties, they
could alternatively be sent to another nominated party (which may be party A).

While the pattern descriptions talks about a number of parties Pi, the fol-
lowing formalization only presents the case of one party P for better readability:

A = (ν a)b 〈a, p, req〉 .a(resp).A′

B = b(a, x, req).τB .x 〈a,msg〉 .B′

P = p(a,msg).τP .a 〈resp〉 .P ′



If we want the follow-up responses to be sent to several Pi we could incorpo-
rate the pattern one-to-many send into B.

The following formalization models that all faults are sent to A:

A = (ν a, toa)b 〈a, p, toa, req〉 .(a(resp).A′ + toa.faultEA)

B = b(a, x, faultto, req).τB .(x 〈a, faultto, msg〉 .B′ + (faultto | faultEB ))

P = p(a, faultto, msg).τP .(a 〈resp〉 .P ′ + (faultto | faultEP ))

In this pattern it becomes obvious that every participant needs his own ex-
ception handling mechanism which is implemented in the corresponding envi-
ronmental processes EA, EB and EP .

2.12 Pattern 12: Relayed request

Party A makes a request to party B which delegates the request to other parties
(P1, ..., Pn). Parties P1, ..., Pn then continue interactions with party A while
party B observes a “view” of the interactions including faults. The interacting
parties are aware of this “view” (as part of the condition to interact).

Like we already did it for the last pattern we only model one party P :

A = (ν a)b 〈a, req〉 .a(resp).A′

B = b(a, req).p 〈a, b, req〉 .b(resp).B′

P = p(a, b, req).τP .(ν h)(a 〈resp〉 .h | b 〈resp〉 .h | h.h.P ′)

2.13 Pattern 13: Dynamic routing

A request is required to be routed to several parties based on a routing condition.
The routing order is flexible and more than one party can be activated to receive
a request. When the parties that were issued the request have completed, the next
set of parties are passed the request. Routing can be subject to dynamic condi-
tions based on data contained in the original request or obtained in one of the
“intermediate steps”.

Since the pattern description covers a broad range of possible interactions we
will only focus on two aspects. The first aspect is routing the request to a third
party based on the content of the message. If there are n possible recipients C1

to Cn known at design-time the formalization looks as follows.

A = b 〈req1〉 .A′

B = b(req1).τB .Σn
i=1ci 〈req2〉 .B′

i

Ci = ci(req2).C ′
i

The second aspect that is mentioned in the detailed pattern description covers
routing a document from one participant to another where every participant has



read-only access to the document the whole time but has to retrieve a write-token
when wanting to modify the document.

The following formalization shows how such data structures can be expressed
in π-calculus.

GenD = !(ν read, lock, x)create〈read, lock〉.Dunlocked(x)

Dunlocked(x) = read〈x〉.Dunlocked(x)

+ (ν write, ul)lock〈write, ul〉.Dlocked(x, write, ul)

Dlocked(x,write, ul) = read〈x〉.Dlocked(x,write, ul)
+ write(y).Dlocked(y, write, ul)
+ ul.Dunlocked(x)

GenD is a generator that can create an infinite number of memory cells.
Every participant wanting access to this memory cell needs the read and lock
channels.

As soon as a participant locks the cell, this participant gets the write channel
that he can use in order to modify the contents. He has to unlock the cell before
anyone else can retrieve a write channels.

Every time the cell is locked, new names for the write and unlock channels
are created. That way it is ensured that only the participant who has currently
locked the cell can write on it and can unlock it.

Let us now assume a scenario where a participant A sends a document to
a set of recipients B1 ... Bn. In an inter-leaved parallel routing manner every
participant is asked to modify the document.

A =(ν h)(Πn
i=1bi〈read, lock〉.h | {h}n

1 .A′)

Bi =bi(read, lock).lock(write, unlock).read(doc).τBi .write〈doc〉.unlock.B′

This formalization does not specify how A has received the channels read
and lock.

3 Formalizing the Interaction Patterns using Petri Nets

Petri nets are bipartite graphs consisting of places and transitions that are con-
nected via directed edges. Places can contain tokens that can be consumed and
produced by transitions. Transitions and places can be assigned to different ac-
tors, which is graphically represented by swim lanes.

Tokens represent control flow as well as data flow. Tokens passed from one
actor to another will represent messages in our formalizations.

The send / receive pattern can be modeled as shown in figure 1.
Now imagine that several instances of the interaction take place at the same

time. In this case more tokens flow through the net. However, there is no infor-
mation about which tokens belong to the same instance (if we use simple place
/ transition nets). Therefore, these simple nets do not support correlation.



Fig. 1. Send / receive as state / transition net

Figure 2 illustrates how the one-from-many receive pattern in the basic ver-
sion (stop condition = success condition = n messages received) would be mod-
eled using Petri nets.

Fig. 2. One-from-many receive

Transitions have to be enabled before they can fire. I.e. n tokens have to be
available in place p1 and one token in p2 before t1 can consume these tokens and
produce a token on place p3. Once t1 has fired t2 cannot fire any more because
there is no token in p2.

We have to stress the can fire because t1 is not forced to fire. It could happen
that t1 could fire but does not and then the time out occurs (a token is produced
in place p4) and t2 fires.

This problem also comes up in the racing incoming messages pattern. This
pattern defines that the continuation is activated as soon as the first message
arrives. However, in the case of Petri nets the transition is not forced to consume
the first token but could also consume the second instead.



There is a solution to this problem though: Timed Petri nets introduce a
notion of temporal ordering of tokens.

Diagram 3 shows a formalization for the request with referral pattern using
a place / transition net.

Fig. 3. Request with referral as place / transition net

Since we cannot encode anything in the token we have to indicate the third
interaction partner by putting a token into the appropriate place for B. As we
might face a huge number of potential interaction partners, we have to model a
huge number of places and transitions. This is not feasible.

Another approach is to encode an identifier of the third interaction in the
token, which is supported by Colored Petri nets. That way, we introduce some-
thing like a bus (see place pBus in diagram 4) where every potential interaction
partner is connected to. Guard conditions prevent a transition from consuming
tokens that were not meant to be received by the corresponding actor. Diagram
4 illustrates the idea.

We have drastically reduced the number of places and transitions compared
to the previous formalization using state / transition nets. Nevertheless, there
are still some drawbacks to this approach:

– We still have to model connections between every set of potential interaction
partners. In the web there might be thousands or more potential interaction
partners in every interaction.

– Due to the different combinations of interaction partners in an interaction
the arc and guard expressions might become very complex.

– We cannot model change. Because of the static nature of Petri nets we have
to know every potential interaction at design-time. This does not reflect the
reality where new potential interaction partners appear and also disappear
at run-time.



Fig. 4. Request with referral as Colored Petri net

Ten out of the thirteen service interaction patterns incorporate sending mes-
sages. In all of these cases it is explicitly stated that the receiver might not be
known at design-time. Even using Colored Petri nets we have seen that model-
ing this mobility with the nets is not feasible when dealing with many potential
interaction partners (which has to be assumed).

4 Related work

Recently several papers have been published that deal with formalizing web ser-
vice choreographies ([11], [12], Busi et al: [13]). All these approaches are based
on process algebras (but not the π-calculus). Like in the case of the Web Services
Choreography Description Language (WS-CDL, see [14]), all papers only con-
sider one-way- and simple request-response-interactions. This is heavily critized
by Barros et al in [2].

Busi et al argue that mobility is not needed for describing service choreogra-
phies. They assume that all interaction participants are not at deign-time. They
introduce their own process algebra for service orchestration and choreography
and show how conformance between a set of orchestrations and a choreography
can be proved.

Puhlmann and Weske have formalized all the Workflow Patterns [15] using
the π-calculus in [16]. This allows for translating a huge range of service compo-
sitions into π-processes.

Puhlmann et al have already sketched in [17] how π-calculus could be used for
formalizing service invocations. In this paper the π-representation of correlations
has been introduced.

There has not been a formalization of the Service Interaction Patterns so far.

5 Conclusion and Outlook

In this paper we have seen that mobility is a central aspect of the Service Inter-
action Patterns. As these patterns cover the most common interaction scenarios



in choreographies we can conclude that we need a means to conveniently model
mobility when describing choreographies.

This paper has presented how all of the patterns can be formalized using π-
calculus. We have also mentioned that theoretically all patterns could be modeled
using Petri Nets. However, due to the static nature of Petri nets we have to cope
with huge nets in the case of many potential interaction partners.

Therefore, our final conclusion is that π-calculus is better suited for express-
ing the patterns (see [18] for a definition of suitability).

The formalizations presented in this paper can be the starting point for
further work on a complete formal grounding of the intersection of the domains
Service-oriented Architectures (SOA) and Business Process Management (BPM)
using π-calculus. The very next step would be to show how the formalizations
of the Service Interaction Patterns can be integrated with the formalizations of
the Workflow Patterns provided in [16].

As already stated in [2] existing choreography description languages such as
WS-CDL are not suitable for incorporating complex interactions like we can
find them in real-world business scenarios. Therefore, the final goal of having
established the Service Interactions Patterns is to create a new pattern-based
choreography description language. Once this language has been specified an
algorithm for translating choreography descriptions into π-processes would be
the next step. That way, an unambiguous specification of a choreography is
possible.

As we have seen several interaction patterns can have to be plugged together.
E.g. the formalization for pattern 11 shows how send / receive and request with
referral can be combined. Thus, our formalizations help to identify which pattern
combinations are actually possible.

Once we have both a choreography and corresponding orchestrations avail-
able as π-processes we proceed with introducing conformance checking. I.e. we
want to verify if the behavior of the individual orchestrations comply to the
choreography.

Another area of interest is the investigation of soundness criteria for chore-
ographies. A first starting point could be the soundness criteria for workflows (see
[19]). However, there might be other aspects that arise only in cross-organizational
business process integration settings that are not covered yet.
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Abstract. Today, the BPM-domain is faced with a lot of heterogeneous and 

partly proprietary process modeling languages. As this situation is resulting in a 

lack of interoperability, as well as insufficiency in regard to appropriate 

analysis techniques, common formal foundations, on which application-specific 

solutions can build up, have to be found. This paper compares the capabilities 

for extended Petri nets (i.e. high-level Petri nets extended with self-

modification and recursion) and the Pi-calculus to meet these demands. At first, 

ability for modeling stand-alone processes is evaluated. Since, for the Pi-

calculus, it is claimed that all workflow patterns have already been mapped, the 

focus of this analysis is put on their formalization for extended Petri nets. 

Afterwards, feasibility for defining process orchestration and choreography is 

discussed. 

1 Introduction 

The field of Business Process Management has brought forth a lot of different 

languages for modeling processes (workflows), as well as distributed processes’ 

interaction (orchestration/choreography). Thereby, many of the present approaches 

are building up on insufficient and proprietary formal foundations. The problems 

arising from this situation are multifaceted. On the one hand, it is often unachievable 

to define formal mappings between the concepts of different modeling languages. 

This lack of interoperability again complicates the exchange of process specifications 

among business partners and increases time and costs concerning process integration 

and, thus, process-orientated software integration. On the other hand, missing formal 

foundations are inhibiting reliable process execution within arbitrary workflow 

engines. At the same time, process analysis in terms of soundness often turns out to be 

unworkable. To bridge the these gaps, a general formal grounding has to be found, on 

which domain-specific process definition and process interaction languages can build 

up. According to the current ongoing debate [1, 2], (high-level) Petri nets and the Pi-

calculus constitute the most promising candidates for implementing such a back-end 

concept.  

The appliance of high-level Petri nets (i.e. extended with color [3], time [4] and 

hierarchy) to the challenges of the BPM-domain has already been investigated a lot 
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[5, 6]. Though, large expressive power and feasibility of many analysis techniques 

could be proven, there are still a couple drawbacks left. Especially some aspects 

concerning advanced control flow and orchestration/choreography among arbitrary 

process instances could not be realized sufficiently, yet. Those deficits, which will be 

discussed more detailed later, are leading to the idea of taking additional extensions 

into account. Concretely, this work concentrates on the added value of high-level 

Petri nets in combination with self-modification [7] and recursion [8]. In contrast to 

Petri-net-based modeling languages, the Pi-calculus [9], an algebra specification for 

mobile processes, is a rather new topic for the BPM-domain. Thus, there has been 

little research on this field, so far. A first proposal for the formalization of all 

workflow patterns [10] has been given in [11]. Moreover, in [12] an approach for 

defining service orchestration/choreography has been presented. 

The aim of this paper is the comparison of the capabilities of extended Petri nets 

and the Pi-calculus. Thereby, the introduced weaknesses concerning high-level Petri-

Nets are probed for feasibility with using the mentioned additional extensions. At the 

same time, the results are compared to the proposed Pi-solutions. As it is a proven 

fact, that data of arbitrary structure is both supported by colored Petri nets and the 

polyadic Pi-calculus [13], this topic will not be treated in more detail. 

The structure of this work is as follows: Firstly, the main concepts of self-modifying 

nets and recursive Petri nets are introduced in section 2. Thereby, the focus is also put 

on compatibility issues regarding time, color and hierarchy. While the third section 

deals with the evaluation of coverage and practicability for modeling workflow 

patterns, the discussion switches to the field of orchestration and choreography in 

section 4. Finally a conclusion and an outlook are given.  

2 Self-modifying Nets and Recursive Petri Nets 

This section provides a short overview of the Petri net extensions self-modification 

and recursion. The major characteristics of both concepts are introduced, and finally, 

aspects regarding their compliance to classical high-level Petri Nets are discussed. 

2.1 Self-modifying Nets 

A self-modifying net is an ordinary place/transition net with a rather small extension 

concerning arc inscriptions. 

Let }p,...,p,p{P n21=   be the set of places within a Petri net. 

Then, an arc inscription may either be denoted by a number – as it is the case for 

ordinary place/transition nets – or by using a formal polynomial of the form: 

( )nn2211 p*q...p*qp*qz ++++   with  { }!<"## x0|!xq,z i  

Finally, when applying the enabling rules of transitions, every variable pi is 

substituted by the value of the marking M(pi), i.e. the number of tokens that are 

located at the appropriate place.  



Comparing the Capabilities of the Pi-Calculus and Extended Petri Nets Regarding the BPM-Domain      3 

Such “marking-aware” arc inscriptions are leading to the ability of modeling 

transition enabling rules, which are not only related to the states of the incoming 

places but also to the internal state of the whole net. Figure 1 shows a demonstrative 

example for a concurrent system with the critical states ‘p2’ and ‘p5’. Thereby, the 

transitions ‘A’ or ‘B’ may fire, if and only if the corresponding concurrent thread of 

control is not in the critical state. A further benefit of self-modifying nets is the 

support for inhibitor arcs, i.e. an arc weighting that leads to transition enabling, if and 

only if the according input place contains zero tokens. A possible solution for 

modeling such inhibitor arcs is shown in figure 2 (‘A’ is enabled if and only if ‘p2’ is 

empty). 

                 Fig. 1. A simple concurrent system   Fig. 2.  Modeling inhibitor arcs 

Self-modifying nets provide the expressive power of a Turing machine. However, 

many important soundness properties such as reachability, liveness and boundedness 

are undecidable. On the other hand, if that extension is only used within isolated 

blocks (subnets) which soundness can be proved for, soundness properties of the 

global net would not be affected at all.  

2.2 Recursive Petri Nets 

Recursive Petri nets are again based on ordinary place/transition nets. Thereby, the 

essential innovation is a dynamical three of execution threads, which are connected by 

the fatherhood relation. As illustrated in Figure 3, there exist three different types of 

transitions: 

 

• An elementary transition (‘B’) fires such as defined for ordinary Petri nets. 

• An abstract transition (‘A’) consumes the input tokens according to the enabling 

rule and starts a new thread of execution with an initial marking assigned to it. 

• A final transition (‘C’) terminates the current thread of execution, as well as all 

descendants. Moreover, the output tokens of the abstract transition which gave 

birth to the thread are produced. 

 

The extended marking of a recursive Petri net is structured as a tree: Vertices, 

representing the root thread and all descendant threads of execution, are associated 

with a certain ordinary marking. An edge, leading from a parental vertex to child 
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vertex, is associated with the birth-given abstract transition. One possible firing 

sequence for the net shown in figure 3 is presented in figure 4. Initially, only the root 

thread of execution is active with one token in place ‘p1’. Now, the firing of transition 

‘B’ results in the empty marking for the root thread, as well as in creation of a new 

child thread, which is initialized with the ordinary marking assigned to ‘B’. Finally, if 

the final transition ‘C’ both has fired for the child thread and for the root thread, 

execution terminates. In this case, the extended marking is denoted by an empty tree.  

      Fig. 3. A simple recursive Petri net            Fig. 4.  The extended marking of the net in fig. 3  

As a certain thread of execution mainly behaves like an ordinary Petri net and abstract 

transitions produce exactly one output token, boundedness is still decidable for 

recursive Petri Nets. The same is true for reachability [8]. Thus, assuming a workflow 

net for which the output place is reachable, liveness of the strongly connected 

counterpart (connecting the output place to the input place) can also be inferred. 

2.3 Compliance with classic high-level Petri nets 

Generalized stochastic Petri nets [4] define additional transition enabling constraints 

in the form of firing delays. As this is only leading to a more deterministic behavior 

concerning the resolution of transitions’ concurrency but does not have any impact on 

the remaining execution semantics, the adoption of self-modification and recursion 

can be considered to be fully compliant.  

The hierarchy extension of Petri nets provides feasibility for decomposition of a 

global net into smaller and independent subnets. This approach is a bit harder to 

combine with the concepts of self modifying nets and recursive Petri nets. Since there 

are much more interdependencies between transition execution semantics and the 

marking of arbitrary places (either the actual marking for self-modification or the 

initial marking for a recursive thread of execution), the identification of independent 

subnet candidates turns out to be more complex. Nevertheless, compliance in general 

is not affected. 

Workability of colored Petri nets enriched with self-modification has already been 

proven in [14]. Thereby, place-related arc expressions are evaluated to the multi-sets 

of referenced places in the actual marking. Regarding recursive Petri nets, the color 

extension can be adapted easily, too. As the only additional customization, marking 

assignments to abstract transitions would have to become “color-aware”. 
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3 Control Flow and Workflow Patterns 

In this part of the capability analysis, the ability for modeling single workflows – i.e. 

a process’s internal control flow – should be judged. As a common basis for this 

evaluation the set of workflow patterns that are defined in [10] is utilized. For the Pi-

calculus, it has been claimed, that all appropriate patterns can be supported [11]. In 

contrast to that, there are still some challenges left concerning the usage of high-level 

Petri nets [5]. In particular, those patterns that are dealing with advanced 

synchronization aspects, multiple instance execution or spontaneous cancellation 

could not be realized satisfactory. In the following, the critical patterns will be 

formalized by using the extensions self-modification and recursion. Simultaneously, 

the appropriate results are compared to the proposed Pi-solutions. Thereby, the main 

criterions are completeness regarding the workflow pattern specification, as well as 

practicability and a low complexity.   

3.1 Advanced Synchronization Patterns 

The synchronization of optional branches that are computed in parallel is rather 

complex. At design time, it is not clear which branches will be activated and, 

therefore, have to be merged. Regarding the usage of (high-level) Petri nets, there 

only exist some rather workaround-like solutions that are relying on the forward-

communication of activated branches. Thereby, a multi-choice control structure either 

uses true/false-tokens or alternative bypasses to propagate its execution outcomes. 

However, this approach works poorly with control cycles and, moreover, is often 

resulting in a cluttered net structure. On that account, a backtracking mechanism, 

which is based on the self-modification extension, is proposed for the relevant 

patterns, in the following. 

The workflow net in figure 5 illustrates a simple scenario, which the subsequent 

studies will refer to: Depending on which transition fires in the initial state, either one 

of the parallel branches or both will be activated. This behavior is compliant with the 

Multi Choice pattern. Finally, some kind of synchronization has to be done, which 

results in enacting activity ‘D’.  

Fig. 5. Parallel execution of optional branches 

3.1.1 Synchronizing Merge 

The Synchronizing Merge waits for all active branches to be finished before they are 

converged into a single thread.  

The left part of figure 6 shows the appropriate formalization for self-modifying 

nets. Thereby the places ‘p4’ and ‘p5’ are exactly the same as in figure 5. If the first 
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active branch finishes execution, the firing of either ‘S1’ or ‘S2’ results in enactment 

of the synchronizing block, which then is waiting for all other active branches to be 

also finished. This is ensured by transition ‘S3’, which is enabled if and only if there 

are no tokens remaining within the synchronized part of the net. This backtracking-

like behavior is achieved by the empty place ‘z’ in combination with the inscription of 

the outgoing arc that is leading to ‘S3’. Finally, if transition ‘S3’ hast fired and there 

is a token in place ‘y’, the synchronization block produces one output token for place 

‘p6’ by firing transition ‘S4’. At the same time all tokens in place ‘x’, which possibly 

are remaining from further finished branches, are consumed.  

This solution also works for a scenario, in which transition ‘D’ is either leading to 

the output place or, alternatively, starts a new cycle of execution that is resulting in 

the repetitive enactment of one of the optional branches. Moreover, boundedness and 

liveness could be proven by constructing a reachability graph. Thus, if the self-

modification extension is only used within the synchronisation block, soundness 

properties of the global net are remaining decidable. 

Fig. 6.  Synchronizing Merge for self-modifying nets (left) and the Pi-calculus (right) 

In contrast to that, the Pi-solution, which is shown in the right part of figure 6, does 

not support a backtracking mechanism and, therefore, is not complete regarding the 

pattern definition. Since that approach has no capabilities for taking possible pending 

activities before ‘B’ or ‘C’ into account, it only succeeds for optional branches that 

are containing not more than one single activity. Some kind of backwards 

communication might solve this problem; however, complexity would increase a lot. 

3.1.2 Discriminator 
The Discriminator waits for only one incoming branch to complete before it activates 

the subsequent activity. Possible further branches are ignored. Finally, if all activated 

braches have finished, it resets itself.  

 The left part of figure 7 shows the appropriate formalization for self-modifying 

nets. If the first branch has completed, the synchronization block is enacted with one 

token in place ‘x’. Afterwards transition ‘S3’ fires, and an output token for place ‘p6’ 

is produces immediately. At the same time the Discriminator switches into blocked 

mode and waits for completion of further braches, which will be ignored. Finally, if 

there are no more tokens remaining within the synchronized part of the net, transition 

‘S4’ is enabled and resets the Discriminator on firing (i.e. the tokens of places ‘x’ and 
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‘blocked’ are consumed). As for the Synchronizing Merge, liveness and boundedness 

regarding the synchronization block could be proven.  

Fig. 6.  Discriminator for self-modifying nets (left) and the Pi-calculus (right) 

Again, the corresponding Pi-approach lacks ability for backtracking. Since it is not 

clear, if there are some pending activities before ‘B’ or ‘C’, the Discriminator does 

not know, how long to wait before a resetting should take place. 

3.1.2 N-out-of-M-Join 
For the N-out-of-M-Join, the number of to be synchronized branches (as a subset of 

M optional incoming threads), is arbitrary and denoted by the constant N. Since this 

pattern constitutes a generalization of the Discriminator, a separate comparison for 

extended Petri nets and the Pi-calculus is not necessary at this point. It can be derived, 

that the limitation of the Pi-based Discriminator – resulting from missing 

backtracking support – is also existent regarding the realization of the N-out-of-M-

Join. For the sake of completeness, a formalization approach for self-modifying nets 

is shown in figure 7. 

Fig. 7.  N-out-of-M-Join for self-modifying nets  

Different from the Discriminator, the firing of transition ‘S3’ (which is resulting in 

token generation for output place ‘p6’, as well as blocking mode), occurs if N 

branches have completed. Additionally transition ‘S4’ and ‘S5’ are resetting the 

block, if less than N branches have completed and there are no tokens remaining 

within the synchronized part of the net. The guard expressions, which have been 

attached to some transitions, do not belong to the notation of self-modifying nets. To 
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provide better clearness, the arc expressions of necessary empty control places (such 

as place ‘z’ in figure 6) have already been mapped to the appropriate transition 

enabling constraints.     

3.2 Multiple Instance Patterns 

Multiple instance execution of certain activities within a process in combination with 

supplementary thread synchronization is rather hard to handle. One the one hand, it 

has to be kept track of the number of instances still running; on the other hand 

multiple instances even might be nested. If there is more than one case in execution at 

the same time, different case identities have also to be taken into account. Since for 

the following analysis, exactly one process instance is assumed to be created for each 

possible case, this aggravating factor does not have to be considered.  

(High-level) Petri nets lack support for modeling multiple instances when the 

concrete number of executions is either unbeknown or decided at runtime. Thus, the 

appropriate patterns will be formalized by using extended Petri nets. Because of the 

fact, that the Pi-solutions for handling multiple instances are fully compliant to the 

pattern definition, only the Petri net approaches have to be discussed in the following.  

3.2.1 MI without a-priory Runtime Knowledge with Synchronization 
For the formalization of multiple instances without runtime knowledge, two different 

approaches have been identified. The left part of figure 8 shows the realization with 

using self-modifying nets in combination with the hierarchy extension. If transition 

‘A’, which is supposed to be executable arbitrary times, is firing, the according subnet 

is entered. For each firing of transition ‘Inc’ one additional instance is triggered. If 

transition ‘Exit’ fires right after ‘Enter’, no instances are executed.  

Fig. 8. MI without a-priory RT-knowledge for self modifying nets and recursive Petri nets 

This realization includes the deficit, that only one activity instance can be executed at 

a certain time. This drawback can be avoided by using the recursive Petri net 

approach which is shown in the right part of figure 8. Thereby, if transition ‘Inc’ fires 

for a certain thread of control, creation of a new child thread and enactment of the 

current instance are done in parallel.  
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3.2.2 MI with a-priory Runtime Knowledge with Synchronization 
The formalization for multiple instances with runtime knowledge, which has been 

done by using self-modification, is quite similar to the last solution. As shown in 

figure 8, an extra transition ‘Run’ has been added that may fire, if the number of 

instances that are to be executed has been determined.  

Fig. 8. MI with a-priory RT-knowledge for self modifying nets 

3.3 Cancellation Patterns 

As cancellation might occur spontaneously, it has to be considered for all those parts 

of the process, which extraordinary termination should be enabled for. While the 

Cancel Activity pattern deals with termination of a single activity (what at the same 

time results in termination of the related thread), appliance of the Cancel Case pattern 

is leading to the termination of the whole workflow instance. 

The Pi-solutions are relying on the triggering of cancellation events, which all 

appropriate processes provide receptors for. In that way, either a single process or all 

processes that are belonging to a certain case are triggered and, thus, terminated. 

Regarding (high-level) Petri nets, especially the Cancel Case Pattern is difficult to 

formalize. As some kind of vacuum cleaner for all remaining tokens has to be 

implemented, the net structure would rather explode. The usage of a final transition as 

defined by recursive Petri nets would easily provide the demanded behavior and, 

moreover, is even less complex than the Pi-counterpart. 

4  Orchestration and Choreography 

Today, there is a steady trend from stand-alone applications toward large integrated 

system landscapes. Thus, process modeling languages do not only need to provide 

feasibility for modeling single workflows, but also have to meet the demands for the 

specification of processes’ interaction. Although there has been little research so far, 

process orchestration and choreography constitutes the field of application, for which 

the advocates of the Pi-calculus stress the advantages in comparison to Petri-net-based 

languages. In [12], a model for asynchronous and synchronous interactions between 

Pi-processes, as well as a concept for handling correlations between arbitrary 

processes by exchanging names is proposed. The following example shows an 

appropriate communication scenario for a server ‘A’ and a client ‘B’. In the initial 
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state, the server is waiting for requests. Thereby, the according channel ‘w’ is known 

by the client. Thus, one can say that the client holds a reference to the server. By 

using that channel, the client firstly sends a name ‘c’ to the server, which again acts as 

a reference for the subsequently reply. 

 

 

 

This structural behavior, which is denoted by the term mobility, is not achievable for 

the usage of ordinary Petri nets. Since arcs between places and transitions are static, 

all possible connections between partners involved within the interaction have to be 

modeled in advance. The self-modification extension would not improve this 

situation. Although arc weightings might dynamically change at runtime, the 

connection paths are remaining static. 

At this point the color extension for Petri nets could be used, to allow the modeling 

of processes’ correlations at the type level. Thereby, colored tokens could imitate the 

exchange of names that afterwards act as references. Figure 9 shows the appliance to 

the introduced interaction example.  

Fig. 9. Handling of correlations by using colored Petri nets 

At instantiation time, each subnet ‘A’ and ‘B’ has to be initialized with a starting 

token that both contains the own address, as well as all references to other processes, 

that are considered to be known. These references might also be exchanged during 

communication. Thereby, each interaction step is done by sending a token, which 

contains an identifier for the addressee in the first place. Guard expressions that are 

attached to all incoming transitions are deciding the rooting behavior. 

Obviously, this approach can not be considered to be practical at all. One the one 

hand, the resulting net turns out to be highly complex; on the other hand all process 

instances have to be connected to each other at the instance level, anyway. Moreover, 

more advanced interaction scenarios are hard or impossible to realize. Even a simple 

broadcast would lead to serious difficulties. 
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5 Conclusion 

In this paper, the capabilities of extended Petri nets (i.e. high-level Petri-nets extended 

with self-modification and recursion) and the Pi-calculus have been compared. 

Thereby, it turned out that, depending on the scope of evaluation, each of the concepts 

has certain strengths but, at the same time, also includes a couple of weaknesses. 

When considering the modeling of control flow within a certain process, extended 

Petri nets provide the most applicable foundations. Almost all workflow patterns, 

which could not be realized for (high-level) Petri nets so far, have been formalized by 

adopting the semantics of self-modifying nets. Recursive Petri nets may offer some 

added value when dealing with multiple instances, nevertheless, this extension plays a 

minor role in this regard. At the same time, it has been proven, that self-modification 

does not always imply elimination of decidability for soundness properties such as 

liveness or boundedness. If the usage of this extension is restricted to a certain 

isolated block – as it has been done for the formalized patterns – and soundness for 

that block can be evidenced on the basis of a reachability graph, the soundness 

properties of the global process can still be analyzed by decomposition into safe 

building blocks or the creation of a global reachability graph.   

Though feasibility and completeness regarding the workflow patterns has also been 

claimed for the Pi-calculus, some difficulties in terms of advanced synchronization 

aspects have bee identified (see section 3.1). Since the corresponding pattern 

formalizations do not support the backtracking for possible pending activities, some 

application scenarios cannot be covered. The weaknesses, identified for the Pi 

calculus, are mostly resulting from loose and event-based couplings between single 

Pi-processes. This structural property, on the other hand, is leading to a huge 

expressive power in regard to the definition of orchestration and choreography. Even 

though colored Petri nets might be also used to model correlated communication 

between distributed processes, after all, the appropriate solutions turn out to be 

unpractical when the number of communication partners is arbitrary.  

Taking the evaluation results into account, a universal formal foundation for 

business process languages cannot be proposed. However, depending on the concrete 

field of appliance, both concepts provide a lot of potential to act as some kind of 

backend-model for domain-specific languages and, therefore, may contribute to a 

more homogenous and interoperable BPM-landscape. In this manner extended Petri 

nets could constitute the formal grounding for the specification of single workflows 

and processes’ internals respectively, while the Pi-calculus-based concepts could be 

established for the definition of public processes, i.e. interaction contracts regarding 

distributed processes. 
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Abstract. With the publishing and creation of the Web Services Description 
Language (WS-CDL) and the success of the Pi Calculus it has been stated that 
the former is based on the latter.  A well reasoned answer for or against this 
claim is not to be found.  Here an approach to a well reasoned answer is por-
trayed and criteria on how to evaluate this statement are presented.  An investi-
gation of the relationship of Pi Calculus and WS-CDL based on these criteria is 
carried out.  Finally a conclusion based on the results of the investigation is 
drawn. 

1   Introduction 

A core motivation for creating the Web Services technologies and the Service Ori-
ented Architecture (SOA) has been to fully automate business-to-business interaction 
in a cost effective and reliable way.  In order to achieve this goal the need for an un-
ambiguous and verifiable description of the involved interactions between the parties 
arose.  The Web Services Description Language (WS-CDL) [5] was developed to sat-
isfy this need. 

As it has been published there has been a lot of discussion weather or not WS-CDL 
is based on Pi-Calculus [6]: 

• “WS-CDL Has Sound Industrial and Mathematical Foundations” [7] 

• “WS-CDL, being based on the Pi-Calculus [...]” [8] 

• “WS-CDL is based on a formal model” [9] 
There is not a well reasoned answer to be found.  We would like to contribute to a 
well reasoned answer.   

We will do this by first introducing the concepts of Pi Calculus and WS-CDL (sec-
tion 2). Secondly criteria for evaluating the above statements and the relationship of 
WS-CDL and Pi Calculus are developed (section 3).  Thirdly these are applied and 
investigated in section 4.  Finally from the results a conclusion is drawn in section 5. 

2   Preliminaries 

In this section we will give a short introduction to Pi-Calculus and WS-CDL and their 
main concepts.  We will first start to introduce Pi-Calculus and then shall present WS-
CDL. 
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2.1 The Pi-Calculus and its main concepts 

The Pi-Calculus is a formalism that was developed by Robin Milner, Joachim Parrow 
and David Walker. It was published among other papers in [6].  Milner introduces Pi-
Calculus as “a calculus of communicating systems in which one can naturally express 
processes which have changing structure. Not only may the component agents of a 
system be arbitrarily linked, but a communication between neighbours may carry in-
formation which changes that linkage.” [6, p.5]  The motivation for creating Pi-
Calculus was to be able to express this kind of concept, i.e. the changing structure and 
linkage of processes in a formal, yet simple and explicit way. 

This concept is called mobility in Pi-Calculus.  This mobility exists among the con-
cept of a process or an agent.  A process or agent represents a computational entity.  
Processes communicate names to other processes across links.  A name represents a 
reference to either a link between processes, a piece of data or a variable.  

A name has a scope, i.e. in Pi-Calculus it can be bound or restricted to certain proc-
esses and thus only these processes “know” that name.  The scope of the name is 
changed when a name is sent to another process which did not know that name be-
fore.  Computation is represented as the sending of names across links. 

Changing linkage structure of the involved processes is formally expressed by the 
reduction rules as defined in [12].  This is then called evolution, i.e. the system of the 
involved processes evolves in the sense that the links and processes move in an ab-
stract space of linked processes [2, slide 3a#3].  The control structures that are part of 
Pi-Calculus are parallelism, XOR-choice, recursion and if-then. 

In formula 1 the Pi-Calculus grammar in its polyadic version is shown.  In polyadic 
Pi-Calculus several names at once can be sent.  We will now explain the semantics of 
this grammar informally by an example. 

In figure 1 an example system of Pi-Calculus processes is depicted.  This illustra-
tion is done as an informal flow graph of the processes and links.  Here a process A 
has a link b to process B which is only known to both of them and A has a link c to 
process C.  Process A will either send five to B over b or send the link b over c along 
with five to C which sends it over b to B. 

In Formula 2 this behaviour is written in Pi-Calculus notation.  First we see a name 
SYS defined as the parallelism (notated by the | operator) of A,B and C where the 
name b is bound to the processes A and B. 

P ::== M P P v z P ! P

M ::== 0 . P M M '

::== x y x y x y  

(1) 

SYS b A B C

A v five b five .0 c b , five .0
B b d .0

C c l , m . l m .0  

(2) 

Secondly process A is defined as generating a new name five and behaving as de-
scribed above; the choice is expressed by the + operator.  Sending over a link is no-
tated as an overlined occurrence of its name.  A reception over a link is notated by the 
occurrence of its name. 
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Fig. 1. Pi-Calculus Example of a System of Processes 

2.2   WS-CDL and its main concepts 

The WS-CDL specification [5] states the following summarization of WS-CDL: “The 
Web Services Choreography Description Language (WS-CDL) is an XML-based lan-
guage that describes peer-to-peer collaborations of participants by defining, from a 
global viewpoint, their common and complementary observable behavior; where or-
dered message exchanges result in accomplishing a common business goal.”  So the 
perspective of WS-CDL is a multiparty perspective where only the common and ob-
servable activities of the processes are visible.  The main purpose of defining a chore-
ography is the common business goal of the involved parties in contrast to an orches-
tration where a single entity perspective is taken and only the private business goal of 
the orchestrating party is important.   Once a choreography has been defined and been 
agreed to jointly, it can serve as a contract and a means by which each participant can 
generate their orchestration stubs and  verify the conformance of the resulting real in-
teractions. 

In figure 2 WS-CDL and its concepts, parts and also the structure of the resulting 
XML documents are shown.  For XML elements a new rectangle has been drawn, at-
tributes are enumerated and parent-child relationship is visualized through rectangles 
being contained in one-another.  We will explain the main concepts of WS-CDL now.  

A roleType abstractly represents a role a party takes in a choreography. It is an ab-
straction from concrete behavior certain entities may exhibit.  A roleType is con-
strained by a relationshipType which is an abstract representation of a relationship be-
tween the involved parties.  All interaction in a choreography takes place between 
roleTypes.  A participantType “groups together those parts of the observable behavior  
that must be implemented by the same logical entity or abstract organization” [5], 
represents a participant and is assigned to one or more roles.  WS-CDL is typed and a 
type is modeled by an informationType.  InformationTypes are referenced by vari-
ables and tokens.   A token denotes a reference to an instance of an informationType. 
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package

informationType – name, type

token – name, informationType

tokenLocator – tokenName, informationType

roleType – name, behavior , interface

relationshipType

roleType – typeRef, behaviour

roleType – typeRef, behaviour

participantType – name

channelType

passing – channel, action

roleType – typeRef, behavior

reference

token – name, informationType

identity
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Choreography – name, root, cordination
see right diagram for details

choreography

relationshipType - type

choreography

roleType – name, behavior , interface

variableDefinitions

variable – informationType , roleType

Activity

finalizerBlock

Activity

excpetionBlock

Workunit

Seqence ActivityActivity ...

Choice ActivityActivity ...

Parallel ActivityActivity ...

Interaction
    participate – from-, toRoleType
    exchange
        send – variable
        receive - variable

Workunit – name, guard , repeat

Activity

 

Fig. 2. WS-CDL at a glance 

Tokens are used to correlate information and provide a means of identification for 
channelType instances.  A variable resides at a certain roleType or is accessible by 
several or all roleTypes and contains information which can either be data sent during 
an interaction, a state within a roleType or a channelType instance.  A channelType is 
the abstract representation of a channel between two or more involved parties.  Over 
channels variables are sent or they are used for synchronization (where no actual val-
ues are sent).  Thus channelType instances can be sent from one roleType to another.  
In order to correlate information and as a means to identify a session tokens are used. 

The actual possible interactions between the parties are described in the activity 
part of the choreography element.  An activity can either be a sequence of activities, a 
parallelism of activities, a choice between activities, an interaction or a workunit.  
Sequence, parallelism and choice have the usual semantics as control structures.  An 
interaction actually models the actual exchange of information and observable behav-
ior that takes place.  During an interaction variables are exchanged or synchronization 
between roleTypes takes place.  A workunit contains activities that may be needed for 
finalizing, rolling back, compensating or handling exceptions during a choreography.  
A workunit has a guard condition attached which either enables it or disables it de-
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pending of the value of the variables specified in this condition1.  A workunit may 
have a repetition condition. 

The core concepts of WS-CDL are channelTypes, variables, interactions and 
guarded workunits.  We will discuss these further in section 4. 

3 Criteria for evaluating the relationship of Pi-Calculus and WS-
CDL 

In this section we want to develop the criteria which we will use in the following sec-
tion to evaluate the statement “WS-CDL is based on Pi-Calculus” that were cited in 
the introduction and to analyze the relationship between Pi-Calculus and WS-CDL. 

A general description of based on in the dictionary leads to the following syno-
nyms and explanations: being founded on; to make, form or serve as a base for; built 
on; executed in; grounded on; rooted in; derived from; anchored in.  These give us a 
general idea of the meaning of based on.  More technically speaking the synonyms 
“being founded on” and “derived from” seem to clarify the meaning more.  The words 
“derived from” allude to a software design concept: the concept of inheritance.  These 
two associations lead us to the following illustration depicted in figure 3. 

 

Pi Calculus

WS-CDL

-Mobility
-Scope
-Names
-Processes

Pi Calculus

-------
--------
-----------
------

WS-CDL

 

Fig. 3. Pi-Calculus is the basis for WS-CDL 

The left-hand illustration shows the “WS-CDL house” and its alleged foundation 
the Pi-Calculus.  The right-hand illustration shows a UML-class diagram where the 
class WS-CDL inherits from the class Pi-Calculus. 

There are different understandings for inheritance in software design; yet in all is 
common that the inheriting class will inherit all functionality from the superclass but 
may extend it. Especially all the attributes or properties of the superclass the subclass 
is expected to have yet it may not behave exactly as the superclass. 

When one thing is the foundation of another, let us call it building, it is expected 
that the building is held by the foundation and that all of the building is routed in the 
foundation. 

Because of the statement we want to analyze we have to look from the direction of 
Pi-Calculus to WS-CDL: the other direction would not help us gain information con-
cerning the given statement. 

                                                           
1  The evaluation of a guard conditions is called matching. The specification is unclear about when this oc-

curs.  When several workunit’s guard conditions are matched to true – how this concurrency is resolved 
is also left unclear unless these workunits are part of a choice ordering structure where the first workunit 
which matches to true is taken.   
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These considerations lead us to the following criteria which we will further use to 
evaluate the question at hand. 

3.1 All concepts of  Pi-Calculus should be found in WS-CDL 

If WS-CDL is based on Pi-Calculus then all the concepts that are part of Pi-Calculus 
should be found in WS-CDL.  If there is one concept in Pi-Calculus that does not ex-
ist in WS-CDL then we can conclude that this statement is not true for WS-CDL and 
Pi-Calculus. 

We will investigate weather or not all the main concepts of Pi-Calculus can be ex-
pressed in WS-CDL and how concise this WS-CDL representation of a Pi-Calculus 
concept is. The investigation of this statement will be by example and by general dis-
cussion. 

If it is not possible to represent all concepts of Pi-Calculus in WS-CDL as a weaker 
version of this criterion we will evaluate how many of the Pi-Calculus concept can be 
expressed of WS-CDL and if this is less than 50% we shall conclude that the weaker 
version of this criterion does not hold. 

3.2   All Pi-Calculus systems of processes should be representable as WS-CDL 
choreographies 

If WS-CDL finds its formal grounding in Pi-Calculus then all possible Pi-Calculus 
systems of processes should be representable as a WS-CDL choreography.  This 
amounts to defining a mapping which maps any Pi-Calculus process notation to a 
WS-CDL choreography retaining if possible all of the original semantics. 

Consequently to falsify this statement only one Pi-Calculus system of processes 
has to be found which is not representable as a WS-CDL choreography. 

To provide a complete mapping function, if it is possible to do so, is out of the 
scope of this paper yet we will do partial investigation of this point. 

3.3   All properties that are valid for Pi-Calculus should be valid for WS-CDL 

If WS-CDL is based on Pi-Calculus then all properties and attributes that are valid for 
Pi-Calculus have to be valid for WS-CDL.  Such properties include but are not limited 
to formulation and proveableness of bisimulation, bisimilarity, deadlock and liveness. 

To show how these properties could be proved in WS-CDL or how if WS-CDL is 
rooted in Pi-Calculus the proof in Pi-Calculus can be transferred to WS-CDL is out of 
the scope of this paper. Yet we choose for our investigation a property of Pi-Calculus 
which has been shown in our context: that in Pi-Calculus all Service Interaction Pat-
terns [3] are expressible [1].  This shall serve us as a property we want to investigate 
for WS-CDL.  If in WS-CDL it is possible to express all the service interaction pat-
terns then we have gained no information for the question at hand yet if there is one 
pattern which cannot be expressed in WS-CDL we have falsified the statement 3.3 
and thus are able to deduce a conclusion. 
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4   Evaluation of WS-CDL with respect to Pi-Calculus 

In this section we will investigate the criteria of the preceding section.  In section 4.1 
criterion 3.1 is evaluated by example and by further reasoning about the concepts of 
Pi-Calculus. The second criterion 3.2 is assessed in section 4.2 by general discussion. 
Finally in section 4.3 the last criterion from section 3 is investigated by trying to ex-
press the service interaction patterns [3] in WS-CDL. 

4.1 Evaluation of the concepts of Pi-Calculus in WS-CDL 

To evaluate the relationship of the concepts of Pi-Calculus and WS-CDL we will use 
an example choreography specified in the Business Process Modeling Language 
(BPMN) [4].  From this example we will analyze WS-CDL’s “concept inheritance” 
from Pi-Calculus but will also do a general discussion of the concepts of Pi-Calculus. 

We have chosen an example from the e-business domain, i.e. online hotel broking. 
The BPMN diagram of the example is shown in figure 4. 
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Fig. 4. Simple choreography example 

A collaboration process is shown were each pool name represents a role a participant 
can take in an instance of this overall process description.  The processes depicted 
represent abstract processes were only the public activities are visible.  Hence this is a 
choreography description. 

Three roles are shown: a hotel – wanting its spare rooms rented out, a hotel broker 
– broking spare hotel rooms to customers and a customer – wanting to book a room 
for a good price.  There are biunique names added to those BPMN artifacts which are 
usually not named, e.g. “CInit", “alt1” etc. These are needed for the mapping to Pi-
Calculus according to [2]. 

The hotel does not know any further customers; the hotel broker knows the hotel 
and the customer; the customer does not know any hotel but receives offers from the 
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hotel broker about free rooms and prices for those rooms. The interaction between the 
partners are as follows: 
1. The hotel sends information about available rooms and how these rooms can be 

booked (how the hotel can be reached to book, i.e. booking channel – bookCh) to 
the hotel broker over the broker channel (brokerCh) 

2. The hotel broker constructs an offer from this information and sends it along with 
the bookCh to the customer over the customer channel (custCh) 

3. The customer receives the offer and either will dispose of it or will book a room at 
the hotel over the bookCh 

4.1.2   Example in Pi-Calculus 
We have mapped this choreography description to Pi-Calculus using the method de-
veloped in [2].  All BPMN flow objects are mapped to unique Pi-Calculus processes 
identifiers and each sequence flow to a unique name.  The role names (Hotel, Hotel 
Broker, Customer) are mapped to a Pi-Calculus process where an index i !"# indi-
cates a specific instance of this role. 

The message flow elements (brokerCh, custCh, bookCh) are represented with the 
same name but with an index specific to the implementing instance of the associated 
role.  The special set  denotes 
these names. In formula 3 the choreography is shown as a top-level Pi-Calculus 
process 

CH
i 1

c

Custi
i 1

b

Brokeri
i 1

h

Hoteli

 

(3) 

CH defines a process of c customers, b hotel room brokers and h hotels.  The Hotel 
generates new private names bookChi and roomInfi (available rooms and prices) and 
sends it to a freely choosen broker via the free name brokerChx.  The hotel processes 
are shown in formula 4. 

Hoteli v hInit , sendR , receiveB , bookChi , roomInf i

HInit i SendRi RecieveBi HDonei

HInit i HInit i
. hInit i .0

SendRi hInit. SendRi
. brokerChx bookChi , roomInf i . sendR.0

ReceiveBi sendR.bookChi booking . ReceiveB
i
. receiveB .0

HDonei receiveB. HDonei
.0  

(4) 

The broker receives the bookChz and roomInf from one of the hotels over its corre-
sponding name brokerChi. and sends the private name offer along with bookChz to 
one of its customers custChy (formula 5): 

Brokeri v hbInit , makeO , offer HBInit i MakeOi HBDonei

HBInit i brokerChi bookChz , roomInf . HBInit
i
.hbInit i bookChz , roomInf .0

MakeOi hbInit bookChz , roomInf . MakeOi
.custCh y bookChz , offer . makeO.0

HBDonei makeO. HBDonei
.0

 

(5) 

A customer receives the names offer and bookChz and either finishes or sends the 
name booking over the name bookChz. 

brokerCh x , custChy , bookChz x , y , z
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Custi vcInit , alt1 , alt2 , xorJ , bookingi

CInit i XorS i XorJ i DispOi BookRi CDonei

CInit i custChi bookChz , offer . CInit i
.cInit i offer , bookChz .0

XorSi cInit offer ,bookChz . XorSi
.

alt1 offer ,bookChz .0 alt2 offer , bookChz .0

DispOi alt1 offer ,bookChz . DispO
i
.done .0

BooR alt2 offer , bookChz . BookRi
.bookChz booking .done .0

XorJ i done. XorJ i . xorJ .0

CDonei xorJ. CDonei .0  

(6) 

We observe the following about the Pi-Calculus choreography description: the role 
names are expressed as an arbitrary indexed number of processes with the same 
name2, there are associated free indexed names brokerChi, custChi and private names 
bookChi whose scope is extruded [6, p.15], the private names booking, roomInfi and 
offer are extruded as well, and the corelation of the “right” bookCh and roomInf are 
inherent in polyadic Pi-Calculus. 

4.1.3   Example in WS-CDL and discussion of Pi-Calculus concepts in WS-CDL 
In this section we will express the choreography example from the previous section in 
WS-CDL.  Rather than to converse about the full XML document in detail, which can 
be found in appendix I, we will discuss crucial points of the WS-CDL representation 
of the choreography and how this relates to the concepts of Pi-Calculus. 

Pool names are mapped to roleType names: Hotel, Broker and Customer.  These 
represent the role any involved party may act in and thus abstracts from the actual in-
volved number of parties.  The indexed Pi-Calculus process names are thus repre-
sented. 

The content of the exchanged messages is typed by informationTypes: RefT, Of-
ferT, BookingT, RoomInfoT.  Tokens are defined for later reference and are of the type 
RefT.  They are used to among other things to correlate information during exchanges.  
In Pi-Calculus there are no types.  Information correlation is implicit in Pi-Calculus 
but is made explicit in WS-CDL through tokens. 

The message flow of the BPMN diagram is modeled by three channelTypes: bro-
kerChT, bookChT and custChT.  In order to pass a channelType instance over another 
the passing element is specified expressing which channelType is passed.  Thus the 
mobility concept of Pi-Calculus is represented.   

Variables for channel instances and containing data (including the information a 
token references to) are defined.  In Pi-Calculus there is no distinction between data, 
links and variables – this is all represented as a name.  Thus the concept of a name is 
only in part captured in WS-CDL.  The roleType attribute of variable specifies where 
the variables “resides”, i.e. where it is visible.  This can be thought of as the represen-
tation of the Pi-Calculus scope of a name.  Yet in order to express that initially a name 
is private and its scope is extruded using the same syntactical name three variables 
were specified in WS-CDL, i.e. the private name bookCh is expressed in the WS-

                                                           
2  These processes represent all the possible potential participant that can act in any of the in-

volved roles: customer, hotel room broker and hotel. 
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CDL variables: bookCh, bookCh@Broker, bookCh@Cust.  If the same name had been 
used, the variable would have been in the visibility of all roles [5, §§ 5.2, 6.2.3].  In 
Pi-Calculus the syntactical name in a process might be changed during evolution us-
ing substitution [6, p.10] yet in the initial specification of the processes the syntactical 
name can be the same, not so in WS-CDL. 

The interaction elements contain the information exchanges that may occur.  
Variables are sent and received during an exchange within an interaction.  The WS-
CDL specification states that several such exchanges may happen during an interac-
tion.  Thus the polyadic Pi-Calculus concept of sending several names at once is only 
in part captured3. 

The control structures in WS-CDL are choice, parallelism, sequence, loop and if-
then. The last two are only expressible in a workunit.  Therefore all of the Pi-Calculus 
control structures are expressible in WS-CDL.  Recursion is not directly expressible 
in WS-CDL but recursion can always be transformed to one or several loops but this 
might require some effort. 

The exact concept of a process in Pi-Calculus cannot be captured directly, it can ei-
ther be expressed as roleType, yet this is only feasible in the case of a set of processes 
which are indexed and carry the same “label”, i.e. Hoteli or as a participantType but 
then for this participantType a role as to be modeled because a participantType cannot 
interact in WS-CDL. 

We summarize our investigation in table 1. 

Table 1. Summary of the investigation of Pi-Calculus concepts in WS-CDL 

Pi-Calculus concept Expressible in WS-CDL? 
Process Almost fully 
Name Partially 
Scope of a name Partially 
Mobility Fully 
Control structures Almost Fully 
Polyadic extension Almost fully3 

4.2.  Investigations on a mapping function 

In this section we will investigate on a possible mapping function from a given Pi-
Calculus process to a valid WS-CDL document. 

A complete mapping function would have to map the Pi-Calculus grammar to a 
WS-CDL grammar or template document and in mapping to a document realize the 
semantical reduction rules for Pi-Calculus [12].  Thus the syntax and the semantic of 
any given Pi-Calculus process definition has to be considered. 

In investigating the statement “WS-CDL is based on the Pi-Calculus” it is at first 
obvious that along with such a statement the mapping function we are discussing 
should be provided.  A missing of such a function indicates that the statement may not 

                                                           
3  It is unclear from the specification of WS-CDL weather or not there can be several request-

exchange elements within one interaction element. From the WS-CDL reference implemen-
tation [4] and the examples we glean that only one is allowed, hence the conclusion. 
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be true or not well grounded.  In deed we were not able to find any public official or 
unofficial document which contains a mapping function from Pi-Calculus to WS-
CDL. 

We will try to informally specify a general idea on how to construct a mapping 
from Pi-Calculus to WS-CDL and will indicate from the difficulties we face how pos-
sible a mapping is. 

In a first step the top-level4 (let us call it level 0) process of the given process defi-
nition has to be determined.  This is in our examples: SYS (section 2.1) and CH (sec-
tion 4.1.2). The name of this process can serve as the name for the root choreography 
in WS-CDL. 

The second step involves mapping the next level process names (those referenced 
in the definition of the former), level 1, to either roleTypes and participants or just ro-
leTypes.  Indexed processes names such as Hoteli map to a roleType with the name of 
the process without the index such as Hotel.  Unindexed enumerated process names  
are mapped to new participantTypes with corresponding new roleTypes.  The seman-
tics of the remaining process names (level 2,..,n) has to be analyzed to decide weather 
to map them to roleType / participantTypes or not. 

In a third step Pi-Calculus names have to be mapped to either data variables, chan-
nelType instances or state capturing variables.  Along with these the corresponding 
informationTypes, tokens and tokenLocators have to be modeled.  The decision to 
map a name to a data variable or channelType instance is not trivial and requires 
knowledge of the “Pi-Calculus process modeler” or the intended meaning of the proc-
ess definition is known.  The defined sendings and receptions of names are mapped to 
interaction elements with corresponding exchange elements including the control 
structures of the involved processes.  The recursions have to be analyzed through re-
cursion trees etc. in order to express them in iterative form, i.e. loops which can be 
expressed in WS-CDL through workunits. 

We indicate that to construct a complete mapping function several issues have to 
be resolved which are non-trivial, i.e. mapping 2-nd,...,n-th level processes to role-
Type etc, names to variables or channels and resolving multiple recursion into itera-
tions.  In a full formal investigation it could show to be impossible to do this for cer-
tain Pi-Calculus process systems at least for the former two issues. 

4.3   Investigation on the support of Service Interaction Patterns in WS-CDL 

In this section we will investigate if all of the Service Interaction Patterns as described 
in [3] are expressible in WS-CDL.  We will use the order in which they appear in [3]. 

Pattern 1-3: Send, Receive, Send/Receive. These pattern are successfully expressed 
through a single interaction containing an exchange element with the attribute action 
set to request or respond or  two exchange elements with request and respond sent 
over a channel which has an identity element defined. 

                                                           
4  This already presupposes a structure or hierarchy of the processes where no such thing is part 

of the Pi-Calculus.  We note that without such a presupposition it is not possible to construct 
a mapping function. 
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The next set of patterns involves an arbitrary number of parties to interact with one 
transmission each: Pattern 4: Racing Incoming Messages, Pattern 5: One-to-many 
send, Pattern 6: One-from-many receive and Pattern 7: One-to-many send/receive.  
The support of these patterns in WS-CDL depends on how one interprets a roleType.  
A roleType may stand for an arbitrary number of parties of the same “type”, i.e. for 
the roleType “Hotel” the “Best Western Inn”, “Hilton” etc. or it may represent a sin-
gle party.  In the case of pattern 5 our example of section 4.1 may be interpreted as an 
instance of this pattern but only if for each instance of the process model the hotel 
broker is the same and the customer is different.  Yet in a case where a large number 
of receiving parties have to be enumerated the WS-CDL document would grow larger 
and larger.  It is possible to express but may become unfeasible to do.  In Pi Calculus 
all instances of these patterns are feasible to express. 

Pattern 8 to 10 are of the type where an arbitrary number of transmissions between 
the parties occurs: Pattern 8: Multi-responses, Pattern 9: Contingent Requests and 
Pattern 10: Atomic multicast notification.  Patterns 8 and 9 are supported through 
workunits with appropriate guards set. Pattern 10 is supported through the fault han-
dling and exceptionBlock workunits which realize the transactional nature of this pat-
tern. 

The last set of patterns 11 to 13 is concerned with routing: Pattern 11: Request 
with referral, Pattern 12: Relayed Request, Pattern 13: Dynamic Routing.  Pattern 11 
is successfully captured by specifying a channelType with the appropriate passing at-
tributes.  Pattern 12 is expressible as well with similar constructs.  The description of 
pattern 13 is: “A request is required to be routed to several parties based on a routing 
condition. The routing order is flexible and more than one party can be activated to 
receive a request. When the parties that were issued the request have completed, the 
next set of parties are passed the request.” Routing can be dynamic.  “The set of par-
ties though which the request should circulate might not be known in advance.  The 
specification of ordering should support service/role late binding.”  This pattern can-
not be expressed at all in WS-CDL because current constructs of WS-CDL cannot be 
used to realize the requirements of this pattern. 

We summarize out investigation in table 2. 

Table 2. Support of Service Interaction Patterns [3] in WS-CDL 

Pattern Expressible in WS-CDL? 
Send, Receive, Send / Receive Fully 
Racing Incoming Messages, 
One-to-many send, One-from--
many receive, One-to-many send 
/ receive 

Almost Fully 
Issues: all involved parties have 
to be enumerated and (statically) 
linked 

Multi-responses, Contingent Re-
quests, Atomic multicast notifi-
cation 

Fully 

Request with referral, Relayed 
Request 

Fully 

Dynamic Routing Not expressible 

 



 WS-CDL and Pi-Calculus  13 

5   Conclusion 

Based on the criteria developed in this paper for evaluating the relationship of Pi Cal-
culus and WS-CDL in section 3 we conclude the following. 

Not all concepts of Pi Calculus are found or are expressible in WS-CDL.  The con-
cept of a name in Pi Calculus is not expressible in WS-CDL because WS-CDL differ-
entiates between data, variables and channels.  The scope of a name is not expressible 
in WS-CDL because for one private name whose scope is extruded representations of 
it have to be specified at all receiving roleTypes. 

A mapping function from Pi Calculus to WS-CDL is not specified.  The missing of 
it indicates that it might not be possible to state it.  A mapping function involves the 
non-trivial problems of mapping Pi Calculus names to either data or channel variables 
and of reducing possible multiple recursion to iterations (loops). 

Pi Calculus supports all service interaction patterns but WS-CDL does not support 
pattern 13, dynamic routing, and may not support the multilateral5 interaction pat-
terns.  The properties of provableness of deadlock, livelock etc. are not expressed in 
the WS-CDL specification.  No formal treatment of these properties with respect to 
WS-CDL is published.  We assume it does not exist at the date of this writing. 

Based on these results of our investigation we conclude that the statement “WS-
CDL is based on Pi Calculus” is false, i.e. WS-CDL is not based on Pi Calculus.  Pi-
Calculus and WS-CDL have connections on different levels and some concepts of 
WS-CDL may have been inspired by Pi Calculus.  WS-CDL and Pi Calculus are of 
different abstraction levels and domains therefore a comparison seems unfitting yet 
we did not associate the two but claim about the association of the two. 

Concerning the statement “WS-CDL is based on a formal model” we conclude that 
currently this formal model is at a very early stage in development as seen in [14, 15] 
but seems not to have been there a priori. Thus WS-CDL was hardly based on a  for-
mal model because this model did not exist at the time of creation of WS-CDL.  It 
may become based on a formal model in the future. 

The statement “WS-CDL Has Sound Industrial and Mathematical Foundations” is 
also false in the light of the presented results. 

It remains future work on how Pi Calculus can be used to specify choreographies.  
The global calculus that is suggested in [14]  makes connections between parties ex-
plicit whereas in Pi Calculus these are implicit through name matching. 

                                                           
5  Multilateral [3] means interaction of an arbitrary number of parties greater than 2. 
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Appendix I 

<?xml version="1.0" encoding="UTF-8"?> 

<package xmlns="http://www.w3.org/2005/10/cdl" xmlns:xsd="http://www.w3.org/2001/XMLSchema" au-
thor="paul.bouche" name="BMPN_Example" targetNamespace="bpt.hpi.uni-potsdam.de" version="1.0"> 
  <description type="documentation"> 
    Illustrating Example 
  </description> 
  <informationType name="RefT" type="xsd:string"/> 
  <informationType name="OfferT" type="Offer"/> 
  <informationType name="BookingT" type="Booking"/> 
  <informationType name="RoomInfoT" type="RoomInfo"/> 
  <token informationType="RefT" name="brokerChRef"/> 
  <token informationType="RefT" name="bookChRef"/> 
  <token informationType="RefT" name="custChRef"/> 
  <token informationType="RefT" name="sesID"/> 
  <token informationType="RefT" name="offerID"/> 
  <token informationType="RefT" name="bookID"/> 
  <tokenLocator informationType="BookingT" query="/BO/bookID" tokenName="bookID"/> 
  <tokenLocator informationType="RoomInfoT" query="/Exp/Date" tokenName="sesID"/> 
  <roleType name="Hotel"> 
    <behavior interface="IWebService" name="hotelBehaviour"/> 
  </roleType> 
  <roleType name="HotelRoomBroker"> 
    <behavior interface="IWebService" name="brokerBehaviour"/> 
  </roleType> 
  <roleType name="Customer"> 
    <behavior interface="IWebService" name="customerBehaviour"/> 
  </roleType> 
  <relationshipType name="Hotel_Broker_Rel"> 
    <roleType behavior="hotelBehaviour" typeRef="Hotel"/> 
    <roleType behavior="brokerBehaviour" typeRef="HotelRoomBroker"/> 
  </relationshipType> 
  <relationshipType name="Broker_Cust_Rel"> 
    <roleType behavior="brokerBehaviour" typeRef="HotelRoomBroker"/> 
    <roleType behavior="customerBehaviour" typeRef="Customer"/> 
  </relationshipType> 
  <relationshipType name="Cust_Hotel_Rel"> 
    <roleType behavior="customerBehaviour" typeRef="Customer"/> 
    <roleType behavior="hotelBehaviour" typeRef="Hotel"/> 
  </relationshipType> 
  <channelType action="request" name="brokerChT"> 
    <passing action="request" channel="bookChT"/> 
    <roleType typeRef="HotelRoomBroker"/> 
    <reference> 
      <token name="brokerChRef"/> 
    </reference> 
    <identity type="primary"> 
      <token name="sesID"/> 
    </identity> 
  </channelType> 
  <channelType action="request" name="bookChT"> 
    <roleType typeRef="Hotel"/> 
    <reference> 
      <token name="brokerChRef"/> 
    </reference> 
    <identity type="primary"> 
      <token name="bookID"/> 
    </identity> 
  </channelType> 
  <channelType action="request" name="custChT"> 
    <passing action="request" channel="bookChT"/> 
    <roleType typeRef="Customer"/> 
    <reference> 
      <token name="custChRef"/> 
    </reference> 
    <identity type="primary"> 
      <token name="offerID"/> 
    </identity> 
  </channelType> 
  <choreography name="BPMN_Example" root="true"> 
    <relationship type="Hotel_Broker_Rel"/> 
    <relationship type="Broker_Cust_Rel"/> 
    <relationship type="Cust_Hotel_Rel"/> 
    <variableDefinitions> 
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      <variable informationType="RoomInfoT" name="roomInf" roleTypes="Hotel"/> 
      <variable informationType="RoomInfoT" name="roomInf@Broker" roleTypes="HotelRoomBroker"/> 
      <variable channelType="bookChT" name="bookCh" roleTypes="Hotel"/> 
      <variable channelType="bookChT" name="bookCh@Broker" roleTypes="HotelRoomBroker"/> 
      <variable channelType="bookChT" name="bookCh@Cust" roleTypes="Customer"/> 
      <variable channelType="custChT" name="custCh" roleTypes="HotelRoomBroker Customer"/> 
      <variable channelType="brokerChT" name="brokerCh" roleTypes="Hotel HotelRoomBroker"/> 
      <variable informationType="OfferT" name="offer" roleTypes="HotelRoomBroker"/> 
      <variable informationType="OfferT" name="offer@Cust" roleTypes="Customer"/> 
      <variable informationType="BookingT" name="booking" roleTypes="Customer"/> 
      <variable informationType="BookingT" name="booking@Hotel" roleTypes="Hotel"/> 
    </variableDefinitions> 
    <sequence> 
      <sequence> 
        <description type="documentation"> 
          brokerCh&lt;bookCh,roomInf&gt; 
        </description> 
        <interaction channelVariable="brokerCh" name="sendBookCh" operation="receiveBookCh"> 
          <participate fromRoleTypeRef="Hotel" relationshipType="Hotel_Broker_Rel" toRole-
TypeRef="HotelRoomBroker"/> 
          <exchange action="request" channelType="bookChT" name="transmitCh"> 
            <send variable="cdl:getVariable('bookCh','','')"/> 
            <receive variable="cdl:getVariable('bookCh@Broker','','')"/> 
          </exchange> 
        </interaction> 
        <interaction channelVariable="brokerCh" name="sendRoomInf" operation="receiveRoomInf"> 
          <participate fromRoleTypeRef="Hotel" relationshipType="Hotel_Broker_Rel" toRole-
TypeRef="HotelRoomBroker"/> 
          <exchange action="request" informationType="RoomInfoT" name="transmitRoomInf"> 
            <send variable="cdl:getVariable('roomInf','','')"/> 
            <receive variable="cdl:getVariable('roomInf@Broker','','')"/> 
          </exchange> 
        </interaction> 
      </sequence> 
      <sequence> 
        <description type="documentation"> 
          custCh&lt;bookCh,offer&gt; 
        </description> 
        <interaction channelVariable="custCh" name="sendBookCh" operation="receiveBookCh"> 
          <participate fromRoleTypeRef="HotelRoomBroker" relationshipType="Broker_Cust_Rel" 
toRoleTypeRef="Customer"/> 
          <exchange action="request" channelType="bookChT" name="transmitCh"> 
            <send variable="cdl:getVariable('bookCh@Broker','','')"/> 
            <receive variable="cdl:getVariable('bookCh@Cust','','')"/> 
          </exchange> 
        </interaction> 
        <interaction channelVariable="custCh" name="sendOffer" operation="receiveOffer"> 
          <participate fromRoleTypeRef="HotelRoomBroker" relationshipType="Broker_Cust_Rel" 
toRoleTypeRef="Customer"/> 
          <exchange action="request" name="transmitOffer"> 
            <send variable="cdl:getVariable('offer','','')"/> 
            <receive variable="cdl:getVariable('offer@Cust','','')"/> 
          </exchange> 
        </interaction> 
      </sequence> 
      <choice> 
        <noAction roleType="Customer"> 
          <description type="documentation"> 
            Dispose Offer 
          </description> 
        </noAction> 
        <interaction channelVariable="bookCh@Cust" name="bookCh&lt;booking&gt;" opera-
tion="receiveBooking"> 
          <participate fromRoleTypeRef="Customer" relationshipType="Cust_Hotel_Rel" toRole-
TypeRef="Hotel"/> 
          <exchange action="request" informationType="BookingT" name="bookRoom"> 
            <send variable="cdl:getVariable('booking','','')"/> 
            <receive variable="cdl:getVariable('booking@Hotel','','')"/> 
          </exchange> 
        </interaction> 
      </choice> 
    </sequence> 
  </choreography> 
</package> 
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%$A!N%/;! 5D/%/%9.$:! %$A! ;(7D%/.! E1-<! (-<./! E(/*)! E<1;<! 2).! ).7%$-1;! A.,

);/1D-1($!F%).A!($!O.F!5./C1;.!N(A.'1$9!P$-('(96! QO5NPR!(/!O.F!P$-(',

(96!S%$92%9.!QPOSRH!

5+++61(-)*'/($)1+

O.F! )./C1;.)! F.;(7.! %$! .)).$-1%'! -.;<$1G2.! -<%-! %''(E)! /.2)1$9! ;(7D($.$-)! %$A!

9.--1$9!$.E!%DD'1;%-1($!F6!;(7D()1$9!E.F!)./C1;.)!E<1;<!A.);/1F.!);1.$-131;!(/!F2)1,

$.))!%DD'1;%-1($)H!!

4(A%6!E.F!)./C1;.!;(7D()1-1($! 1)!%!;(7D'.J!-%)*!F.;%2).!%!<29.!%7(2$-!(3!E.F!
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;(7D()1-1($!7%$2%''6H!#$(-<./! A1331;2'-6! 1)!7%A.!F6!A6$%71;!F2)1$.))!.$C1/($7.$-!

E<1;<!A.7%$A)!;/.%-1$9!%$A!2DA%-1$9!(3!E.F!)./C1;.!;(7D()1-1($!($!3'6H!4<.!;(7D(,

)1-1($!)6)-.7!)<(2'A!177.A1%-.'6!A.-.;-!;<%$9.)!%$A!7%*.!%DD/(D/1%-.!2DA%-.)!1$!-<.!

E(/*3'(EH!4<.! '%;*!(3! A.! 3%;-(! )-%$A%/A! 3(/! ).7%$-1;! )./C1;.! )D.;131;%-1($! 1)! %')(! %!

/.%)($! (3! -<.! ;(7D()1-1($! D/(F'.7!F.;%2).! %! '(-! (3!E.F! )./C1;.)! %/.! A.C.'(D.A! F6!

A133./.$-! (/9%$1I%-1($)!2)1$9!A133./.$-! ;($;.D-2%'!7(A.')H! 0-! /.G21/.)!%!2-1'1I%-1($!(3!

/.'.C%$-! ).7%$-1;! 1$3(/7%-1($! 1$! ;/.%-1$9! E.F! )./C1;.! ;(7D()1-1($H! 4<2):! -<.! E.F!

)./C1;.!.$C1/($7.$-!1)!<19<'6!;(7D'.J!%$A!1-!1)!$(-!D/%;-1;%F'.!-(!9.$./%-.!-<.!)./C1;.!

;(7D()1-1($! 1$! %$! %2-(7%-1;! E%6H! T)2%''6:! -<.! <19<'6! %2-(7%-.A! 7.-<(A! )21-)! 3(/!

9.$./%-1$9!%!)*.'.-($!(3!-<.!)./C1;.!;(7D()1-1($!E<1;<!E1''!F.!)D.;131.A!F6!2)./)!'%-./H!

4<.!).71,%2-(7%-.A!;(7D()1-1($!)6)-.7!%''(E)!2)./)!-(!7%*.!E.F!)./C1;.!;(7D()1,

-1($!%$A!)2DD(/-)!-<.7!E1-<!)299.)-1($)H!4<.!)6)-.7!-%*.)!1$-(!%;;(2$-!2)./U)!D/.3./,

.$;.)!%$A!/.G21/.7.$-):!%$A!F%).A!($! -<.7!7%*.)!)299.)-1($)!<(E!-(!;(7F1$.!E.F!

)./C1;.)H!4<2):!-<.!)6)-.7!%''(E)!-<.!2)./!-(!7%*.!-<.!A.;1)1($!/.9%/A1$9!-<.!)./C1;.!

;(7D()1-1($H!!!!



! V!

W6!7%*1$9! %! )./C1;.! ;(7D()1-1($! -<.! 2)./!7%6! 2).! 3(''(E1$9! )-/%-.91.)X! "R! -(D,

A(E$!).'.;-1($!(3!;(7D($.$-):!3(/!1$)-%$;.:!-<.!2)./!A(.)$U-!<%C.!.JD'1;1-!A.);/1D-1($!

(3! -<.!A.)1/.A! /.)2'-:! -<.6!7%6! )-%/-!7%*1$9! %! ;(7D()1-1($! 3/(7!%F)-/%;-!7(A.'! %$A!

-<.$!)D.;136!1-Y!VR!/.)2'-,F%).A!).'.;-1($!(3!;(7D($.$-):!-<.!2)./!<%)!.JD'1;1-!A.);/1D,

-1($! (3! -<.! A.)1/.A! /.)2'-! %$A!E(2'A! '1*.! -(! )172'%-.! -<.! )1-2%-1($! -<%-! '.%A)! -(! -<1)!

A.)1/.A!/.)2'-Y!ZR!)1-2%-1($,F%).A!(3!;(7D($.$-):!-<.!2)./!<%)!($'6!A.);/1D-1($!(3!1$1,

-1%'!)-%-.)!%$A!E%$-)!-(!9.-!%!)172'%-1$9!7(A.'!-<%-!A.);/1F.)!D())1F'.!/.)2'-)H!!

4<2):!-<.!9(%'!(3!).71,%2-(7%-.A!)./C1;.!;(7D()1-1($!)6)-.7!1)!-(!)2DD(/-!2)./)!1$!

;/.%-1$9!)./C1;.!;(7D()1-1($!F6!91C1$9!%!D())1F1'1-6!-(!31'-./:!).'.;-!E.F!)./C1;.)!%$A!

F6!D/(C1A1$9! 1$-.''19.$-! )299.)-1($)H!4<.! )./C1;.!;(7D()1-1($!)6)-.7!)<(2'A!F.!%F'.!

-(!%$%'6I.!%!D%/-1%'!)./C1;.!;(7D()1-1($!;/.%-.A!F6!-<.!2)./:!$(-136!-<.!2)./!(3!1))2.)!

-<%-! <%C.! -(! F.! /.)('C.A! 1$! -<.! ;2//.$-! )1-2%-1($! %$A! )299.)-! -<.! 2)./! E<%-! %;-1($)!

;(2'A!F.!-%*.$!$.J-H!

4<1)!D%D./!1)!(/9%$1I.A!1$!-<.!3(''(E1$9!7%$$./H!0$!5.;-1($!V:!E.!A.);/1F.!%!7(-1,

C%-1$9!.J%7D'.!3(/!;2//.$-! /.).%/;<H! 0$!5.;-1($!Z:!E.!91C.! -<.!F%;*9/(2$A![!).C./%'!

.J1)-1$9!-((')!3(/!).71,%2-(7%-.A!)./C1;.!;(7D()1-1($H!0$!5.;-1($!?:!E.!A1);2))!($.!(3!

-<.).!-((')!1$!A.-%1'!E<1;<!;%''.A!\(7D()1-1($!#$%'6)1)!4(('!A.C.'(D.A!F6!K1<1.!L17:!

M('%$A%! B1':! %$A! N%/;! 5D/%/%9.$H! #$A! 31$%''6:! 5.;-1($! ]! ;($;'2A.)! -<.! E(/*H!

4</(29<(2-! -<1)! D%D./:! E.! 2).! -<.! .J%7D'.! E.! A.);/1F.A! 1$! 5.;-1($! V! -(! 1''2)-/%-.!

)(7.!;($;.D-)!2).A!1$!A133./.$-!-.;<$1G2.)H!

7+++8)($.&($19+":&#0;"+

4<.!;(77($!.J%7D'.!3(/!E.F!)./C1;.!;(7D()1-1($!1)!($'1$.!)<(DD1$9:!-<.!;(/.!)./,

C1;.)!/%$9.!3/(7!D/(A2;-!).%/;<:!(/A./1$9:!D%67.$-!%$A!)<1D7.$-H!

#)!%!E(/*1$9!.J%7D'.!E.!-%*.!F((*!F261$9!A(7%1$H!4<.!2)./!<%)!%!9(%'!,!F261$9!%!

;./-%1$!F((*H!^1/)-!(3!%''!)<._<.!E%$-)!-(!7%*.!%!;(7D()1-1($!3/(7!%C%1'%F'.!)./C1;.)!

($! -<.! E.F! )2;<! %)! F((*! 31$A1$9! )./C1;.:! F((*! (/A./1$9! )./C1;.:! D%67.$-! )./C1;.:!

)<1D7.$-!)./C1;.!%$A!;2//.$;6!.J;<%$9.!)./C1;.H!4<.!F((*!31$A1$9!)./C1;.!1)!/.)D($,

)1F'.!3(/!).%/;<1$9!%!F((*!91C.$!F((*!$%7.H!4<.!/.)2'-!E1''!F.!%!D/1;.!1$!T5`H!O<.$!

-<.!2)./!E%$-)!-(!)..!-<.!D/1;.!1$!8TaP!-<.!;2//.$;6!;($C./-./!)./C1;.!<%)!-(!F.!1$,

)-%$-1%-.AH!4<.!;2//.$;6!;($C./-./!)./C1;.! 1)! /.)D($)1F'.! 3(/! -/%$)3(/7%-1($! -<.!D/1;.!

1$!T5`!1$-(!-<.!D/1;.!1$!8TaPH!4<.!F((*!(/A./1$9!)./C1;.!1)!/.)D($)1F'.!3(/!(/A./1$9!

%!F((*!91C.$!F((*!$%7.:!%2-<(/!%$A!G2%$-1-6!(3!/.G21/.A!F((*)H!4<.!D%67.$-!)./C1;.!

7%*.)! F%$*! -/%$)%;-1($! 91C.$! ;()-H! 4<.! (2-;(7.! 1)! %! /.;.1D-! (3! -<.! (D./%-1($H! 4<.!

)<1DD1$9! )./C1;.! '((*)! 3(/! %DD/(D/1%-.! A.'1C./6! ;(7D%$6! 91C.$! ).''./U:! F26./U)! %A,

A/.)).)!%$A!7%*.)!A.'1C./6!(/A./!-(!A.'1C./!-<.!F((*H!!O.!E(2'A!'1*.!-(!7.$-1($!-<%-!

(2/!E(/*1$9!.J%7D'.!1)! 1$-.$-1($%''6!7%A.!)17D'./!1$!(/A./!-(!*..D!)17D'1;1-6!(3!-<.!

D/.).$-%-1($H!
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0$!-<.!3(''(E1$9!E.!91C.!%$!(C./C1.E!($!).C./%'!.J1)-1$9!-((')!3(/!).71,%2-(7%-.A!

)./C1;.!;(7D()1-1($H!^1/)-!(3!%''!E.!;($)1A./!/.G21/.A!3/%7.E(/*!3(/!)./C1;.!;(7D()1,

-1($!)6)-.7H!4<.!%F)-/%;-!7(A.'!(3!-<.!3/%7.E(/*!3(/!)./C1;.!;(7D()1-1($!)6)-.7!1)!

D/(D().A!1$!b"c!%$A!1''2)-/%-.A!1$!^192/.!"H!

#;;(/A1$9! -(! -<1)!E(/*! -<.! ;(7D()1-1($! )6)-.7! )<(2'A! ;($-%1$! 3(''(E1$9!;(7D(,

$.$-)X! -/%$)'%-(/:! D/(;.))! 9.$./%-(/:! .C%'2%-(/:! .J.;2-1($! .$91$.! %$A! )./C1;.! /.D()1,

-(/6H!4<.!-/%$)'%-(/!-/%$)'%-.)!F.-E..$!-<.!.J-./$%'!'%$92%9.)!2).A!F6!2)./)!-(!.JD/.))!

E<%-! -<.6!E%$-! 1$!.%)6!7%$$./!%$A! -<.! 1$-./$%'! '%$92%9.):! 3(/!.J%7D'.:! '(91;%'!D/(,

9/%771$9! '%$92%9.)! 2).A! F6! -<.! D/(;.))! 9.$./%-(/H! 4<.! D/(;.))! 9.$./%-(/!7%*.)! %!

D/(;.))!7(A.'!QD'%$)R!F6!;(7D()1$9!-<.!%C%1'%F'.!)./C1;.)!3/(7!-<.!)./C1;.!/.D()1-(/6!

-(!32'31''!-<.!2)./U)!/.G2.)-H!4<.!D/(;.))!7(A.'!;($-%1$)!%!).-!(3!).'.;-.A!)./C1;.)!E1-<!

-<.! ;($-/('! %$A! A%-%! %7($9! -<.7H! 4<.! .C%'2%-(/! .C%'2%-.)! %''! D'%$)! 2)1$9! $($,

32$;-1($%'! %--/1F2-.)! %$A! D/(D().)! -<.! F.)-! ($.! 3(/! .J.;2-1($H!4<.! .J.;2-1($! .$91$.!

.J.;2-.)!-<.!D'%$!%$A!/.-2/$)!-<.!/.)2'-!-(!-<.!/.G2.)-(/H!

!

!

@$9'-"+54!!^/%7.E(/*!(3!)./C1;.!;(7D()1-1($!)6)-.7H!

5.71,%2-(7%-.A! )./C1;.! ;(7D()1-1($! 1$A1;%-.)! -<%-! -<.! D/(;.))! 9.$./%-(/! %$A! <2,

7%$!;%$!E(/*!-(9.-<./!-(!9.$./%-.!-<.!;(7D()1-1($!(3!E.F!)./C1;.)!3(/!91C.$!/.G2.)-)H!

4<./.! %/.! %! '(-! (3! A.C.'(D.A! %DD/(%;<.)! 2).A! F6! -<.! D/(;.))! 9.$./%-(/! -(! ;(7D().!

E.F!)./C1;.)H!N()-!(3!-<.7!%/.!/.'%-.A!-(!#0!D'%$$1$9!%$A!A.A2;-1C.!-<.(/.7!D/(C1$9H!

0$!-<1)!D%D./!E.!;($)1A./!)2;<!%DD/(%;<.)X!

!! 5.71,%2-(7%-1;!)./C1;.!;(7D()1-1($!1$!0a5,000!Q0$-./$.-!a.%)($1$9!56)-.7RY!

!! 5.71,%2-(7%-1;!)./C1;.!;(7D()1-1($!2)1$9!POSY!

!! \(7D()1-1($!#$%'6)1)!4(('H!!

4<.!$.J-!-E(!).;-1($)!A.);/1F.!.%;<!(3!-<.).!31/)-!-E(!-.;<$1G2.)!1$!-2/$H!4<.!\#4!

1)!A.);/1F.A!1$!).;-1($!?!1$!7(/.!A.-%1'Y!;/.%-(/)!2).!%$(-<./!E%6!(3!D/.).$-%-1($!-<.!

).71,%2-(7%-.A!)./C1;.!;(7D()1-1($H!
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<45+++!"#$%&'()#&($/+,"-.$/"+/)#0),$($)1+$1+6=!%666+

4<1)!%DD/(%;<! 1)!A.-%1'.A!A.);/1F.A! 1$! bVcH!5.71,%2-(7%-.A!)./C1;.!;(7D()1-1($! -(('!

1$! 0a5,000! 1)! %!9/%D<1;%'! -(('! -<%-! )2DD(/-)!2)./)!A2/1$9! -<.!D/(;.))!(3!A.)19$1$9! -<.!

)./C1;.! ;(7D()1-1($H! 0a5,000! 1)! %! 3/%7.E(/*! 3(/! 5.7%$-1;! O.F! 5./C1;.)! F%).A! ($!

O5NP!)D.;131;%-1($H!4<.!0a5,000!%2-(7%-1;%''6!-/%$)3(/7)!D/(9/%771$9!;(A.!1$-(!%!

E.F!)./C1;.!%$A!)2DD(/-)!;%D%F1'1-6,A/1C.$!)./C1;.!A1);(C./6!%$A!1$C(;%-1($H!

4<.!;(/.!(3! -<1)!%DD/(%;<! 1)!O5NP!A.);/1D-1($! -<%-!;(7F1$.)!)2;<!;(7D($.$-)X!

9(%'):!E.F!)./C1;.):!($-('(91.)!%$A!7.A1%-(/)H!4<.!9(%')!%/.!A.31$.A!%)!D/.,;($A1-1($!

E<1;<!A.);/1F.)!-<.!)-%-.!(3!-<.!A.)1/.A!1$3(/7%-1($!)D%;.!(3!%!91C.$!E.F!)./C1;.!%$A!

D()-,;($A1-1($!E<1;<!A.);/1F.)! -<.!)-%-.!(3! -<.!E(/'A!%3-./!.J.;2-1($!(3!%!91C.$!E.F!

)./C1;.H! 4<.!E.F! )./C1;.! A.);/1D-1($)! %/.! 2).A! 3(/! /.D/.).$-%-1($! 32$;-1($%'! F.<%C,

1(2/)! (3!E.F! )./C1;.)! )2;<! %)! <(E!E.F! )./C1;.)! ;(772$1;%-.![! ;<(/.(9/%D<6!C1.E!

%$A!<(E!-<.6!%/.!;(7D().A![!(/;<.)-/%-1($!C1.EH!!P$-('(91.)!%/.!A.);/1F.A!1$!-./7)!

(3!;($;.D-):!%J1(7):!/.'%-1($)!%$A!1$)-%$;.)H!!4<.!7.A1%-(/)!D'%6!-<.!7%1$!/('.!1$!-<.!

)./C1;.! ;(7D()1-1($Y! -<.6! )D.;136! 1$-./(D./%F1'1-6! 7.;<%$1)7)! %$A! '1$*! 9(%'):! E.F!

)./C1;.)!%$A!($-('(91.)H!N(/.!1$3(/7%-1($!%F(2-!O5NP!;%$!F.!3(2$A!1$!bZcH!

!

!

@$9'-"+74!!8J%7D'.!(3!%!;(7D()1-1($!-/..!3(/!F((*!F261$9!A(7%1$H!

4<.!;(7D()1-1($!-(('!2).)!E.F!;(7D()1-1($!7(A.'!A.31$.A!%)!O5NP!(/;<.)-/%-1($!

%$A!%)!-E(!-6D.)!(3!;(7D($.$-)X!;($-/('!;(7D($.$-)!Q;($;2//.$-:!).G2.$;.:!E<1'.:!13!

-<.$!.').R!%$A!)./C1;.!;(7D($.$-)H!S.-U)!;($)1A./!%!;(7D()1-1($!7(A.'!3(/!F((*!F26,

1$9!.J%7D'.H!4<.!;(7D()1-1($!-/..!3(/!-<1)!.J%7D'.!1)!A.D1;-.A!1$!^192/.!VH!!4<./.!%/.!

-E(!).G2.$;.!;($-/(')H!^1/)-!).G2.$;.!;(7F1$.)!31$A1$9!F((*!;(7D($.$-!%$A!034<.$,

8').!;($-/('!E<1;<!7.%$)!13!3(2$A!F((*:!-<.$!)<(2'A!F.!D./3(/7.A!$.J-!).G2.$;.H!4<.!

$.J-! ).G2.$;.! ;($-%1$)! (3! (/A./1$9! F((*:! D%67.$-! F((*! %$A! )<1D7.$-H! ^1$%''6:! -<.!

D%67.$-!(D./%-1($!;<%/9.)!-<.!;%/A!%$A!-<.!)<1D7.$-!(D./%-1($!%//%$9.)!).$A1$9!-<.!

F((*!3/(7!-<.!F((*)-(/.!-(!-<.!;'1.$-U)!%AA/.))H!

W6!7%*1$9!%!)./C1;.!;(7D()1-1($!-<.!2)./!;%$X!"R!%AA_/.7(C.!9(%')Y!VR!%AA_/.7(C.!

;($-/('!(D./%-1($)Y!ZR!).'.;-!7.A1%-(/)Y!?R!/.;.1C.!/.;(77.$A%-1($)!%;;(/A1$9!-(!-<.!

%2-(7%-1;!7%-;<!(3!1$D2-)!%$A!(2-D2-)!9(%')Y!%$A!]R!;%''!A1);(C./6!3.%-2/.)H!P$.)!-<.!

)./C1;.!;(7D()1-1($!1)!A.31$.A:!-<.!;(7D()1-1($!-(('!1$)-%$-1%-.)!(/;<.)-/%-1($!.$91$.!

3(/!.J.;2-1$9!-<1)!E(/*3'(EH!
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<4A+++!"#$%&'()#&($/+,"-.$/"+/)#0),$($)1+',$19+BCD+

5.71,%2-(7%-.A!)./C1;.!;(7D()1-1($!2)1$9!).7%$-1;!A.);/1D-1($)!1)!D/.).$-.A!F6!51/1$!

%$A!(-<./)!b?cH!4<1)!%DD/(%;<!E(/*)!F%).A!($!32$;-1($%'!%$A!$($,32$;-1($%'!%--/1F2-.)!

D/.).$-.A!F6!POS!;'%)).)H!POS,5!)./C1;.U)!A.);/1D-1($!<%)!-</..!D%/-)X!)./C1;.!D/(,

31'.:! D/(;.))! 7(A.':! %$A! 9/(2$A1$9H! 4<.! )./C1;.! D/(31'.! )D.;131.)! 1$D2-! %$A! (2-D2-!

-6D.):!D/.;($A1-1($)!%$A!.33.;-)H!4<.!D/(;.))!7(A.'!A.);/1F.)!<(E!-<.!)./C1;.!E(/*):!

'1*.!W&aS?O5H!#$A!-<.!9/(2$A1$9+)D.;131.)!1$3(/7%-1($!3(/!.J.;2-1$9!-<.!)./C1;.)!F6!

7%DD1$9!3/(7!POS,5!-(!O5`SH!!

4<.!;(7D()1-1($!)6)-.7!/.9%/A1$9!-<1)!%DD/(%;<!<%)!3(''(E1$9!;(7D($.$-)X!1$3./,

.$;.!.$91$.:!;(7D()./!%$A!9/%D<1;%'!1$-./3%;.:!-<(29<!E<1;<!2)./)!;%$!.)-%F'1)<!-<.1/!

D/.3./.$;.)!3(/!-<.!E(/*3'(E!%$A!7%*.!-<.!)./C1;.!;(7D()1-1($!F6!).'.;-1$9!;(7D(,

$.$-)H! 4<.! 1$3./.$;.! .$91$.! )-(/.)! )./C1;.! %AC./-1).7.$-)! %$A! D/(;.))! /.G2.)-)! %$A!

D./3(/7)! -<.! /('.! (3! POS! /.%)($./H! POS! /.%)($./!7%-;<.)! -E(! )./C1;.)!E<.$! %$!

(2-D2-! D%/%7.-./! (3! ($.! )./C1;.! 1)! -<.! )%7.!POS!;'%))! (/! )2F;'%))! (3! %$! 1$D2-! D%,

/%7.-./! (3! %$(-<./! )./C1;.H! 03! 7(/.! -<%$! ($.!7%-;<! 1)! 3(2$A:! -<.! )6)-.7! 31'-./)! -<.!

)./C1;.)! F%).A! ($! -<.! $($,32$;-1($%'! %--/1F2-.)H! 4<.! ;(7D()./! 9.$./%-.)! -<.! )./C1;.!

;(7D()1-1($!F6!;(772$1;%-1$9!E1-<!1$3./.$;.!.$91$.!%$A!D/.).$-)!2)./)!-<.!D())1F'.!

;<(1;.)!%-!.%;<!)-.DH!

E+++F)#0),$($)1+21&;G,$,+H));+

0$!-<1)!).;-1($!E.!;($)1A./!1$-./%;-1C.!E(/*3'(E!;(7D()1-1($!-(('!;%''.A!%)!\(7D()1,

-1($!#$%'6)1)!4(('! Q\#4R! ;/.%-.A!F6! K1<1.!L17:!M('%$A%!B1':! %$A!N%/;!5D/%/%9.$H!

4<.!A.);/1D-1($!(3!-<1)!%DD/(%;<!;(2'A!F.!3(2$A!1$!b]c:!b@c:!bdcH!4<.!1A.%!1)! -<.!2)./!

)D.;131.)!1$D2-!A%-%!3(/!(C./%''!;(7D()1-1($!%$A!A.)1/.A!/.)2'-):!%$A!7%*.)!-<.!)./C1;.!

;(7D()1-1($!F6!).'.;-1$9!;(7D($.$-)!%$A!.)-%F'1)<1$9!'1$*)!F.-E..$!-<.7H!4<.!\#4!

;<.;*)!-<.!E(/*3'(E!;/.%-.A!F6!-<.!2)./!($!;($)1)-!(3!.//(/)!%$A!)299.)-)!$.J-!)-.D)H!

4<1)!%DD/(%;<!2).)!*$(E'.A9.,F%).A! /.D/.).$-%-1($)!(3!;(7D($.$-)! -<%-!A.);/1F.!

-<.!/.'%-1($)!%$A!;($)-/%1$-)!%7($9!;(7D($.$-)!F6!-<.!-%)*!($-('(96!%$A!-<.!A(7%1$!

($-('(96H!`.);/1D-1($!'(91;!1)!2-1'1I.A!1$!(/A./!-(!/.%)($!%F(2-!-<.).!($-('(91.)H!4<.!

-(('!.JD'(1-)!.//(/);%$!%'9(/1-<7!-(!31$A!.//(/)!1$!-<.!)./C1;.!;(7D()1-1($!%$A!-(!9.$,

./%-.!)299.)-1($)H!

S.-U)!'((*!%-!<(E!-<.!)6)-.7!E(/*)H!4<.!)6)-.7!;(7F1$.)!*$(E'.A9.!F%).:!.//(/,

);%$:! 1$-./%;-1($!7%$%9./! %$A! D'%$$./H! 4<.! 1$-./%;-1($!7%$%9./! D'%6)! %! /('.! (3! -<.!

7.A1%-(/!F.-E..$!2)./)!%$A!-<.!)6)-.7H!4<.!*$(E'.A9.!F%).!;($)1)-)!(3!A.);/1D-1($)!

(3!-<.!-%)*!($-('(96!%$A!-<.!A(7%1$!($-('(96:!-<.!.JD'%$%-1($)!(3!-<.).!-./7)!;(7.)!

)(($H! 5(:! -<.! 2)./!7%*.)! )-.D)! Q%AA! ;(7D($.$-! (/! /.7(C.! ;(7D($.$-:! %AA! '1$*! (/!

/.7(C.!'1$*R!-(E%/A)!-(!-<.!;/.%-1($!(3!-<.!)./C1;.!;(7D()1-1($Y!-<.!1$-./%;-1($!7%$,

%9./!D%)).)! -<1)!E(/*3'(E! -(! -<.! .//(/);%$:! %$A! /.;.1C.)!%! '1)-!(3!.//(/)!%$A!)299.),

-1($)!<(E!-(!31J!-<.).!.//(/)H!4<.!2)./!).'.;-)!%DD/(D/1%-.!)299.)-1($!%$A!-<.!D/(;.))!

(3!-<.!)./C1;.!;(7D()1-1($!;($-1$2.)!2$-1'!;(7D'.-1($!-<.!)./C1;.!;(7D()1-1($!E1-<(2-!

.//(/)H!4<.!D'%$$./!/.;.1C.)!-<.!E(/*3'(E!;/.%-.A!F6!-<.!2)./!%)!1$1-1%'!)-%-.):!%$A!-<.!



! @!

9(%'):!E<1;<! -<.!2)./!E%$-)! -(! %;<1.C.:! %$A! /.-2/$)! -<.!D'%$!E1-<! %! ).-! (3! -%)*)!%$A!

'1$*)!%7($9!-<.7H!4<.!\#4!%/;<1-.;-2/.!1)!D/.).$-.A!1$!^192/.!ZH!!

0$! -<.! $.J-! ).;-1($)!E.!E1''! A1);2))! -<.! *$(E'.A9.! F%).:! -<.! .//(/);%$! %'9(/1-<7!

%$A!-<.!D'%$$./!1$!A.-%1'H!

!"#$

"#$

%&'#$()'*+&

,(&(-#$
.$$+$/)(&

01(&&#$

2&+31#4-#5

6("#

"%&'%()(*!+(*%,%-.

/%&01(!+(*%,%-.

7#65"#$8*)#"
23

415*!)66%65

78--)5*1%(5

23

9%0,5

$05:5

41(:5

;8)61)5

"%&'%()(*

<)58,*

"%&'%()(*

<)58,*

;8)61)5

!

@$9'-"+<4!!\#4!%/;<1-.;-2/.H!

E45+++I1)>;"*9"+J&,"+

L$(E'.A9.,F%).A!A.);/1D-1($)!(3!;(7D($.$-)!;($)1)-!(3!-%)*!($-('(96!%$A!A(7%1$!

($-('(96H! 4<.! -%)*! ($-('(96! 1)! 2-1'1I.A! -(! A.);/1F.! %F)-/%;-! -6D.)! (3! (D./%-1($)! %$A!

)./C1;.)!%$A!F21'-!F%).A!($!;%).!3/%7.):!E<./.!C./F)!%/.!G2%'131.A!F6!;%).)!-<%-!/.3'.;-!

-<.1/!'1$921)-1;!2)%9.H!^(/!1$)-%$;.:!-<.!F((*!F261$9!A(7%1$!;%$!F.!D/.).$-.A!%)!%!).-!

(3! %-(71;! -%)*! -6D.)! )2;<! %)! eP/A./W((*f:! e^1$AW((*&/1;.0$T)Af:! e&%67.$-W6,

\/.A1-\%/Af:!e`.'1C./6W((*f:!e\2//.$;6\($C./-./^/(7T)A4(82/(f!%$A!)(!($H!

!

!

@$9'-"+E4!!8J%7D'.!(3!-<.!-%)*!($-('(96H!

8%;<!%-(71;!-%)*!-6D.!1)!/.'%-.A!-(!%!E.F!)./C1;.!%)!.J.;2-%F'.!;(7D($.$-H!#-(71;!

-%)*)!;%$!F.!;(7F1$.A!1$-(!%F)-/%;-!;'%)):!3(/!.J%7D'.:!eB.-W((*f!-%)*!-6D.!;($)1)-)!

(3!eW(//(EWF((*f!-%)*!-6D.!%$A!eW26W((*f!-%)*!-6D.H!4<.!D%/-1%'!-%)*!($-('(96!3(/!



! d!

F((*!F261$9!A(7%1$!1)!A.D1;-.A!1$!^192/.!?H!4<.!7(/.!1$3(/7%-1($!%F(2-!<(E!-(!F21'A!

-<.!-%)*!($-('(96!;%$!F.!3(2$A!1$!bgcH!!

4<.!A(7%1$!($-('(96! 1)!2-1'1I.A! -(! )D.;136!A%-%! -6D.! 1$!O`5S!A.);/1D-1($H! 0$D2-!

%$A!(2-D2-!D%/%7.-./)!3/(7!O5`S!%/.!7%DD.A!-(!A%-%!-6D.)!1$!-<.!A(7%1$!($-('(96H!

4<.!A%-%!-6D.)!%/.!D/.).$-.A!1$!-<.!A(7%1$!($-('(96!%)!S((7!;'%)).):!-<1)!%DD/(%;<!(3!

D/.).$-%-1($!1)!A.);/1F.A!1$!b=cH!4<.!.J%7D'.!(3!-<.!A(7%1$!($-('(96!3(/!F((*!F261$9!

A(7%1$!1)!D/.).$-.A!1$!^192/.!]H!!

!

9++:;(<#

9=>#$

9=>#$;(<#

9=>#$?4$#""

@=(&'*'>

/#11#$

/#11#$?44$#""

9++:

/#11#$;(<#

9=>#$A$#4*'5
A($4

?='B+$

0$*)#!"( 0$*)#.=$+

0$*)#

/#11#$A$#4*'5

A($4

C$(4#%'#<

!

@$9'-"+A4!!8J%7D'.!(3!-<.!A(7%1$!($-('(96H!

#3-./!-<%-!E.!.)-%F'1)<!/.'%-1($)<1D)!F.-E..$!-<.!-%)*!($-('(96!%$A!-<.!A(7%1$!($,

-('(96!F6!/.'%-1$9!1$D2-)!%$A!(2-D2-)H!4<2):!.%;<!(D./%-1($!1)!/.D/.).$-.A!E1-<!%!-%)*!

-6D.!1$!-<.!-%)*!($-('(96!%$A!1-)!1$D2-!%$A!(2-D2-!D%/%7.-./)!%/.!/.D/.).$-.A!E1-<!A%-%!

-6D.)! 1$! -<.! A(7%1$! ($-('(96H! a.9%/A1$9! (2/! .J%7D'.! -<.! -%)*! -6D.! e^1$AW((*,

&/1;.0$T)Af! <%)! eW((*h%7.f! %)! -<.! 1$D2-! A%-%! -6D.! %$A! e&/1;.T)Af! %)! -<.! (2-D2-!

A%-%!-6D.!3/(7!-<.!A(7%1$!($-('(96H!

h(-.! -<%-! F.;%2).! -<.! )6)-.7!<%)! -<.! -%)*!($-('(96! -<%-! A.);/1F.)!<19<,'.C.'! -%)*!

-6D.)! %)! E.''! %)! )D.;131;! -%)*)! -<%-! %/.! 7%DD.A! -(! )./C1;.):! 2)./)! ;%$! )-%/-! 7%*1$9!

)./C1;.!;(7D()1-1($!3/(7!%!<19<,'.C.'!A.);/1D-1($!(3!E<%-!-<.6!E%$-!E1-<(2-!*$(E1$9!

-<.!A.-%1')!%F(2-!%C%1'%F'.!(D./%-1($)H!

4<.!)6)-.7!/.3./)!-(!-<.!*$(E'.A9.!F%).!QLWR!C1%!-<.!3(''(E1$9!G2./1.)X!

!! ;(7D($.$-)QRX!/.-2/$)!%!).-!(3!%C%1'%F'.!;(7D($.$-)!A.31$.A!1$!-<.!LW:!!

!! A%-%,-6D.)QRX!/.-2/$)!%!).-!(3!A%-%!-6D.)!A.31$.A!1$!-<.!LW:!!

!! 1$D2-,D%/%7.-./)Q;RX!/.-2/$)!1$D2-!D%/%7.-./)!(3!;(7D($.$-!;:!!

!! (2-D2-,D%/%7.-./)Q;RX!/.-2/$)!(2-D2-!D%/%7.-./)!(3!;(7D($.$-!;:!!

!! .J.;2-%F'.Q;RX!/.-2/$)!3%').!13!;!1)!$(-!%$!.J.;2-%F'.!;(7D($.$-:!!

!! /%$9.Q;:!DRX!/.-2/$)!%!;'%))!A.31$.A!%)!-<.!/%$9.!(3!D%/%7.-./!D!(3!;:!

!! )2F)27.)Q-":!-VRX!/.-2/$)!-/2.!13!;'%))!-"!)2F)27.)!;'%))!-V!1$!-<.!LW:! !!

!! ;(7D($.$-,E1-<,(2-D2-,A%-%,-6D.Q-RX!/.-2/$)!%!).-!(3!;(7D($.$-)!;!E<./.!;! " !;(7,

D($.$-)QR:!# D! " !(2-D2-,D%/%7.-./Q;R!%$A!)2F)27.)Q/%$9.Q;:!DR:!-R:!-!1)!%!A%-%!-6D.:!



! g!

!! ;(7D($.$-,E1-<,1$D2-,A%-%,-6D.Q-RX! /.-2/$)!%! ).-!(3!;(7D($.$-)!;!E<./.!;! " ;(7,

D($.$-)QR:# D! " !1$D2-,D%/%7.-./)Q;R!%$A!)2F)27.)Q/%$9.Q;:!DR:!-R:!-!1)!%!A%-%!-6D.:!!

8J%7D'.)X!!

1$D2-,D%/%7.-./)Q^1$AW((*&/1;.0$T)%R!i!jW((*h%7.kY!!

/%$9.Q^1$AW((*&/1;.0$T)%:!&/1;.T)AR!i!&/1;.Y!

)2F)27.)QB.-W((*:!W26W((*Ri!-/2.Y!!

;(7D($.$-,E1-<,1$D2-,A%-%,-6D.Q&/1;.T)AR!ij\2//.$;6\($C./-./^/7T)A4(82/(kH!

E47+++K--)-!/&1+&;9)-$(L#+

4<1)!).;-1($!)<(E)!<(E!-<.!.//(/!%'9(/1-<7!1)!2).A!1$!<.'D1$9!2)./)!;($)-/2;-!%!)./C1;.!

;(7D()1-1($H!#!E(/*3'(E!QOR!1)!;($)1A./.A!%)!%!-2D'.!l\:S:0:Bm!E<./.!\!1)!%!).-!(3!

E(/*3'(E!;(7D($.$-):!S!1)!%!).-!(3!'1$*):!0!1)!%!).-!(3!1$1-1%',1$D2-!;(7D($.$-):!B!1)!%!

).-!(3!.$A,/.)2'-!;(7D($.$-)H!8%;<!)./C1;.!;(7D()1-1($!)<(2'A!7..-!E(/*3'(E!D/(D./,

-1.)X! -%)*.A:! )%-1)31.A:! 9/(2$A.A:! n2)-131.A:! ;($)1)-.$-! %$A! 2$1G2.H! 4%)*.A! E(/*3'(E!

7.%$)! -<%-! -<.!E(/*3'(E!;($-%1$)!($.!(/!7(/.!.$A,/.)2'-)H!5%-1)31.A!o!%''! 1$D2-!D%,

/%7.-./)!(3!%''!;(7D($.$-)!%/.!D/(C1A.A!F6!(2-D2-!D%/%7.-./)!(3!(-<./!;(7D($.$-):!(/!

F6!A.3%2'-!C%'2.):!(/!%)!2)./!1$D2-)H!B/(2$A.A!o!%''!;(7D($.$-)!%/.!.J.;2-%F'.:!-<./.!

%/.!$(-!%F)-/%;-!;(7D($.$-)H!K2)-131.A!o%''!(2-D2-!D%/%7.-./)!(3!%''!;(7D($.$-)!%/.!

'1$*.A! -(! (-<./! ;(7D($.$-)! (/! -(! .$A! /.)2'-)H! \($)1)-.$-!o! .%;<! '1$*! ;($$.;-)! %$!

(2-D2-! (3! ($.! ;(7D($.$-! -(! -<.! 1$D2-! D%/%7.-./! (3! %$(-<./! ;(7D($.$-:! E<./.! -<.!

(2-D2-! 1)! )2F)27.A! F6! -<.! 1$D2-H! 0-! 7.%$)! -<%-! -<.! 1$D2-! A%-%! -6D.! )<(2'A! F.!7(/.!

9.$./%'! 1$! -<.!A(7%1$!($-('(96H!T$1G2.:! -<./.! 1)!$(! '1$*!(/!;(7D($.$-! 1)! /.A2$A%$-!

E1-<! %$6! (-<./! ($.H! 4<.! E(/*3'(E! 1)! ;($)1A./.A! %)! ;(7D'.-.! 13! 1-! 1)! )%-1)31.A! %$A!

-%)*.A:! %$A! -<.!E(/*3'(E! 1)! ;(//.;-! 13! 1-! 1)! ;(7D'.-.:! 9/(2$A.A:! n2)-131.A:! ;($)1)-.$-!

%$A!2$1G2.H!

4<.!D/(;.))!(3! )./C1;.! ;(7D()1-1($! 1)! 921A.A!F6!E(/*3'(E!D/(D./-1.)H!4<.!.//(/,

);%$!%'9(/1-<7!2-1'1I.)!E(/*3'(E!D/(D./-1.)! -(! 31$A!.//(/)! 1$! -<.!)./C1;.!;(7D()1-1($!

%$A! /.3./)! -(! -<.! *$(E'.A9.! F%).! -(! 31$A! %DD/(D/1%-.! )299.)-1($)! <(E! -(! 31J! .//(/)H!

4<2):!-<.!1$D2-!3(/!-<.!.//(/);%$!1)!%!D%/-1%'!E(/*3'(E!%$A!-<.!(2-D2-!1)!%!'1)-!(3!.//(/)!

%$A!)299.)-1($)H!^1/)-:!-<.!.//(/);%$!;<.;*)!E<.-<./!-<.!E(/*3'(E!1)!-%)*.A!(/!$(-H!03!1-!

1)!$(-! -%)*.A:! -<.!)6)-.7!7%*.)!)299.)-1($)!3/(7!D())1F'.!.$A,/.)2'-)H!4<.$!-<.!)6),

-.7! ;<.;*)! .%;<! ;(7D($.$-!E1-<1$!E(/*3'(E! 3(/! -<.!D2/D().!(3! n2)-131.A:! 9/(2$A.A!

%$A!)%-1)31.AH!03! -<.!;(7D($.$-!1)!$(-!n2)-131.A:! -<.!)6)-.7!)299.)-)!/.7(C.!-<.!;(7,

D($.$-)!%$A!1-)!'1$*)!(/!%AA!%!'1$*!-(!%$(-<./!;(7D($.$-!-<%-!1)!%'/.%A6!n2)-131.AH!03!-<.!

;(7D($.$-! 1)! $(-! 9/(2$A.A:! -<.! )6)-.7!D/(D().)! -(!;<(().! -<.!;(7D($.$-! 3(/7!.J,

.;2-%F'.! ;(7D($.$-)H! 03! -<.! 1$D2-! D%/%7.-./! (3! -<.! ;(7D($.$-! 1)! $(-! )%-1)31.A:! -<.!

.//(/);%$!/.-2/$)!3/(7!-<.!*$(E'.A9.!F%).!(/!3/(7!-<.!E(/*3'(E!%!'1)-!(3!;(7D($.$-)!

-<%-!<%C.!(2-D2-)!-<%-!)2F)27.A!F6!-<1)!1$D2-!(/!)299.)-)!-(!2).!D%/%7.-./!E1-<!A.3%2'-!

C%'2.!(/!.$-./!%!C%'2.!7%$2%''6H!#3-./!-<%-!-<.!)6)-.7!7%*.)!C./131;%-1($!3(/!.%;<!'1$*!

E1-<1$!E(/*3'(E!3(/!-<.!D2/D().!(3!;($)1)-.$-!%$A!2$1G2.H!03!-<.!'1$*!1)!$(-!;($)1)-.$-:!

-<.!)6)-.7!D/(D().)! -(! /.7(C.! -<.! '1$*:!(/! 31J! -<.! '1$*!F6!1$-./D()1$9!%$A!'1$*1$9!-(!

%DD/(D/1%-.! ;(7D($.$-H! 03! -<.! '1$*! 1)! $(-! 2$1G2.:! -<.! .//(/);%$! )299.)-)! /.7(C.! -<.!

'1$*H!+.$;.:!13!-<.!)./C1;.!;(7D()1-1($!7..-)!%''!(3!-<.).!/.G21/.7.$-):!1-!;%$!F.!;($,

)1A./.A!%)!;(7D'.-.H!!



! =!

E4<+++!&#0;"+/&,"+

h(E!E.!A.);/1F.!<(E!;(2'A!F.!2).A!-<1)!%DD/(%;<!1$!7%*1$9!)./C1;.!;(7D()1-1($!3(/!

F((*!F261$9!A(7%1$H!^(/!.J%7D'.:!-<.!2)./!E%$-)!-(!31$A!%!;./-%1$!F((*!%$A!-<.!D/1;.!

<%)!-(!F.!1$!.2/(H!5<._<.!A.31$.)!-<.!1$D2-!D%/%7.-./!%)!F((*!%$A!(2-D2-!D%/%7.-./!%)!

D/1;.!1$!.2/(!3(/!(C./%''!;(7D()1-1($H!4<.).!D%/%7%9$.-)!%/.!$(-!'1$*.A!6.-!%)!)<(E$!

1$!^192/.!@H!0$!-<.!31/)-!;(7D()1-1($!-<.!)6)-.7!3(2$A!-<%-!-<.!(2-D2-!D%/%7.-./!(3!-<.!

1$1-1%',1$D2-! ;(7D($.$-! 1)! $(-! n2)-131.AH! #)!E%)!7.$-1($.A! F.3(/.! n2)-131.A! D/(D./-6!

7.%$)!-<%-!-<.!(2-D2-!D%/%7.-./!(3!-<.!;(7D($.$-!)<(2'A!F.!'1$*.A!-(!%$(-<./!;(7D(,

$.$-!(/!-(!%$!.$A,/.)2'-H!0$!-<1)!;%).!-<.!)6)-.7!E(2'A!)299.)-!/.9%/A1$9!-<.!.//(/);%$!

%'9(/1-<7! -(! '1$*! -(! %$(-<./! ;(7D($.$-H! 4<.! ;(7D($.$-! )<(2'A! F.! 3(2$A! 1$! -<.!

*$(E'.A9.!F%).!F6! )%-1)361$9! -<.! /2'.! [!(2-D2-! D%/%7.-./! (3! ($.! ;(7D($.$-! 1)! )2F,

)27.A!F6! 1$D2-!D%/%7.-./!(3!%$(-<./!;(7D($.$-!(/! 1-U)! -<.!)%7.!)2F;'%))!1$!-<.!A(,

7%1$!($-('(96H!4<.!.//(/);%$!D/(D().)!-(!%AA!%!;(7D($.$-!eB.-W((*f!E<1'.!1-!)21-)!

-(! (2-D2-! D%/%7.-./! (3! -<.! 1$1-1%'! ;(7D($.$-H!#$A! -<./.! 1)! %')(! %$(-<./! .//(/! 1$! -<.!

;(7D()1-1($H!4<.! 1$D2-! D%/%7.-./! (3! .$A,/.)2'-! ;(7D($.$-! 1)! $(-! )%-1)31.A! Q%$! 1$D2-!

D%/%7.-./! (3! ($.! ;(7D($.$-! )<(2'A! F.! D/(C1A.! F6! %$(-<./! ;(7D($.$-:! F6! A.3%2'-!

C%'2.):!(/!%)!2)./!1$D2-)RH!4<.!.//(/);%$!E(2'A!)299.)-!%AA1$9!;(7D($.$-!e\2//.$;6,

\($C./-./^/(7T)A4(82/(f! F.;%2).! (3! 1-! )21-)! -(! 1$D2-! D%/%7.-./! (3! -<.! .$A,/.)2'-!

;(7D($.$-H!4<1)!E(/*3'(E!1)!-%)*.A!E<1'.!-<./.!1)!%$!.$A,/.)2'-!3(/!(C./%''!;(7D()1,

-1($H!!

!

!

@$9'-"+M4!!5./C1;.!;(7D()1-1($X!1$D2-!%$A!(2-D2-!D%/%7.-./)!3(/!(C./%''!;(7D()1-1($H!

0$!3192/.!d!)<(E)!-<%-!(2/!2)./!<%)!;<().$!eB.-W((*f!3/(7!D/1C1.)!)299.)-1($)H!0$!-<1)!

;(7D()1-1($! -<.!)6)-.7!%;;(/A1$9! -(! -<.!.//(/);%$!%'9(/1-<7!A.-.;-)!)2;<!.//(/)X! -<.!

.$A,/.)2'-!(3!-<.!;(7D()1-1($!1)!$(-!)%-1)31.A:!-<.!(2-D2-!D%/%7.-./!(3!-<.!;(7D($.$-!

eB.-W((*f!1)!$(-!n2)-131.A!%$A!-<.!;(7D($.$-!eB.-W((*f!1)!$(-!9/(2$A.AH!0$!;%).!(3!

9/(2$A.A! D/(D./-6! -<.! )6)-.7! )299.)-)! )D.;1361$9! ;(7D($.$-! eB.-W((*f! -(! eW26,

W((*f! (/! eW(//(EW((*fH! 03! -<.!2)./! ;<(().)! eW26W((*f! -<.! .//(/);%$!D/(D().)! -(!

)D.;136!;(7D($.$-!2$-1'!9.--1$9!%!9/(2$A.A!;(7D($.$-!e^1$AW((*&/1;.0$T)Af!

!

D#'9++:=%%:

=%%:

>61?)@86%

=%%:/),1A)6)B!

!

@$9'-"+N4!!5./C1;.!;(7D()1-1($X!1)!$(-!9/(2$A.A:!$(-!)%-1)31.A!%$A!$(-!n2)-131.AH!!

0$! -<.!$.J-! )-.D! -<.!2)./!<%)!;<().$!e^1$AW((*&/1;.0$T)Af!%$A!%AA.A!%! '1$*!F.,

-E..$!-E(!D%/%7.-./)!e&/1;.0$T)Af!%$A!e&/1;.0$82/(f!%)!)<(E$!1$!-<.!^192/.!gH!4<.!



! ">!

)6)-.7!A.-.;-)!-<%-!'1$*!3/(7!-<.!;(7D($.$-!e^1$AW((*&/1;.0$T)%f!-(!-<.!.$A,/.)2'-!

1)!$(-!;($)1)-.$-!E<1'.!-<.!(2-D2-!D%/%7.-./!1)!$(-!)2F)27.A!F6!-<.!1$D2-!D%/%7.-./!1$!

-<.! A(7%1$! (-('(96H! 0$! -<1)! ;%).! -<.! .//(/);%$! E(2'A! D/(D().! -(! %AA! %! ;(7D($.$-!

e\2//.$;6\($C./-./^/(7T)A4(82/(f!%$A!-E(!'1$*)H!!

!

!

@$9'-"+O4!!5./C1;.!;(7D()1-1($X!-<.!'1$*!1)!$(-!;($)1)-.$-H!!

#3-./!%AA1$9! -<.!;(7D($.$-!e\2//.$;6\($C./-./^/(7T)A4(82/(f! -<.!%''!D/(D./,

-1.)!%/.!)%-1)31.AH!4<.!/.)2'-!(3!E.''!A.31$.A!)./C1;.!;(7D()1-1($! 1)!D/.).$-.A!1$!^19,

2/.!=!-<%-!7..-)!%''!/.G21/.7.$-)!3(/!;(//.;-!%$A!;(7D'.-.!)./C1;.!;(7D()1-1($H!!

>61?)C5B=%%:D0&)

>61?)@86%>61?)C5B!

=%%:D0&)

>61?)@86%

E*&49++:5

0$*)#%&!"45

A=$$#&)>

A+&8#$'#$

!"4C+.=$+5

!

@$9'-"+P4!!5./C1;.!;(7D()1-1($X!;(//.;-!%$A!;(7D'.-.H!!

4<.! 2)./! ;%$! ;($-1$2.! )2;<! D/(;.))! (3! ;(7F1$1$9! E.F! )./C1;.)! 2$-1'! %''! -<.! .J,

D.;-.A!/.)2'-)!%/.!%;<1.C.A:!%''!$.;.))%/6!1$D2-!A%-%!%/.!D/(C1A.A:!-<./.!%/.!$(-!1$;($,

)1)-.$-!'1$*):!%$A!%''!;(7D($.$-)!F.;(7.!9/(2$A.AH!!

!

E4E5 Q;&11"-+

5.71,%2-(7%-.A! )./C1;.! ;(7D()1-1($! /.G21/.)! 2)./! 1$-./%;-1($)Y! <(E.C./:! 1-!7%6!F.,

;(7.!.J<%2)-1$9!E(/*! 13! %! '%/9.!$27F./!(3! -%)*)!%/.!$..A.AH!^(/! -<1)!D2/D().:! 1-! 1)!

2).32'! -(!2-1'1I.!%2-(7%-.A!D'%$$1$9! -.;<$1G2.)! -(!9.$./%-.!%! )*.'.-($!(3! -<.!)./C1;.!

;(7D()1-1($H!!

4<.!E(/*3'(E!E1-<(2-!1$;($)1)-.$-!'1$*)!%$A!2$n2)-131.A!;(7D($.$-)!;/.%-.A!F6!-<.!

2)./!1)!D%)).A!-(!-<.!D'%$$./!%)!D'%$$1$9!D/(F'.7!%$A!/.-2/$.A!%)!%!).-!(3!-%)*)!E1-<!

'1$*)!%7($9!-<.7H!03!-<.!D'%$$./!/.%;<.)!7(/.!-<%$!($.!D())1F'.!-%)*:!-<.!D'%$$./!E1''!

/.-2/$!-<.!7()-!%F)-/%;-!;'%))!(3!D())1F'.!;%$A1A%-.)H!#3-./!-<%-!-<.!2)./!<%)!-(!)D.;136!

%F)-/%;-! ;'%)).)! F6! ).'.;-1$9! %DD/.;1%-.! ($.)H! #;;(/A1$9'6:! -<.! )6)-.7! %''(E)! 2)./)!

7%*1$9!-<.!31$%'!A.;1)1($!/.9%/A1$9!-<.!)./C1;.!;(7D()1-1($H!



! ""!

A+++F)1/;',$)1,+

0$! -<1)!E(/*!E.!<%C.!A1);2)).A!).71,%2-(7%-.A!)./C1;.!;(7D()1-1($!($! -<.!%))27D,

-1($!(3!)2;<!)6)-.7!)<(2'A!F.!%F'.!-(!%$%'6I.!%!E(/*3'(E!;/.%-.A!F6!-<.!2)./:!$(-136!

%F(2-!E<%-!1))2.)!<%C.!-(!F.!/.)('C.A!1$!-<.!;2//.$-!)1-2%-1($!%$A!)299.)-!E<%-!%;-1($)!

;(2'A!F.! -%*.$!$.J-H!#)!-<.!.J%7D'.!(3!).71,%2-(7%-.A!)./C1;.!;(7D()1-1($!-(('!E.!

;($)1A./.A! \#4H! 0-)!7%1$! ;(7D($.$-)! %/.! -<.! *$(E'.A9.! F%).:! -<.! .//(/);%$! %'9(,

/1-<7!%$A! -<.!%2-(7%-1;!D'%$$./H!4<.!*.6!.'.7.$-!(3!-<1)!%DD/(%;<!1)! -<.!*$(E'.A9.!

F%).Y!1-)!%AC%$-%9.!1)!-<.!A1C1)1($!1$-(!-<.!-%)*!($-('(96!%$A!-<.!A(7%1$!($-('(96!-<%-!

A.);/1F.!<19<!'.C.'!%)!E.''!%)!)D.;131;!'.C.'H!T)./)!;%$!)-%/-!7%*1$9!)./C1;.!;(7D()1,

-1($!3/(7!%!<19<,'.C.'!A.);/1D-1($!(3!E<%-!-<.6!E%$-!E1-<(2-!*$(E1$9!-<.!A.-%1'):!-<.!

)6)-.7!E1''!%))1)-!2)./)!1$!7%*1$9!-<.!)./C1;.!;(7D()1-1($!%$A!'.%A)!-<.7!-(!A.)1/.A!

/.)2'-)H! 4<.! D/(;.))! (3! )./C1;.! ;(7D()1-1($! 1)! 921A.A! F6! E(/*3'(E! D/(D./-1.)! '1*.X!

-%)*.A:!)%-1)31.A:!9/(2$A.A:!n2)-131.A:!;($)1)-.$-!%$A!2$1G2.!E<1;<!)<(2'A!F.!D/((3.AH!

4<.! 1A.%! (3! 2)1$9! %2-(7%-.A! D%$$1$9! -.;<$1G2.)! 1)! .33.;-1C.! %)!E.''! F.;%2).! 1-! ;%$!

/.A2;.!2$$.;.))%/6!2)./U)!1-./%-1($!E1-<1$!-<.!;/.%-1($!(3!)./C1;.!;(7D()1-1($)!E<1;<!

;($)1)-!(3!%!'(-!(3!-%)*!F6!9.$./%-1$9!%!)*.-;<!(3!;/.%-.A!E(/*3'(EH!4<.!A1)%AC%$-%9.!

(3! -<1)!%DD/(%;<! 1)!2)%9.!($'6!7./91$9! 1$D2-!%$A!(2-D2-!D%/%7.-./)!E1-<(2-! !;($-/('!

)-/2;-2/.)!'1*.!;($;2//.$-:!E<1'.:!13!-<.$!.').H!!4<.!\#4!A(.)$U-!2-1'1I.!.J1)-1$9!)-%$,

A%/A)!3(/!).7%$-1;!)D.;131;%-1($!)2;<!%)!POS!(/!O5`SH!

O.! <%C.! A1);2)).A! (-<./! %DD/(%;<.)! 3(/! ).71,%2-(7%-.A! )./C1;.! ;(7D()1-1($X!

).71,%2-(7%-1;! )./C1;.! ;(7D()1-1($! 1$! 0a5,000! %$A! ).71,%2-(7%-1;! )./C1;.! ;(7D()1,

-1($!2)1$9! ).7%$-1;! A.);/1D-1($)!F%).A!($!POSH!4<.! 31/)-!E(/*! 1)! F%).A!($!O5`S!

)D.;131;%-1($:! -<.! D/(;.))! (3! -<.! ;(7D()1-1($! /.9%/A1$9! -<1)! %DD/(%;<! 1)! 921A.A! F6!

7.A1%-(/)H!4<.!2)./!<%)!D())1F1'1-6!-(!%AA!(/!/.7(C.!9(%')Y!-(!%AA!(/!/.7(C.!;($-/('!

(D./%-1($)Y!%$A!).'.;-!7.A1%-(/)H!4<.!)6)-.7!91C.)!/.;(77.$A%-1($)!%;;(/A1$9!-(!-<.!

%2-(7%-1;! 7%-;<! (3! 1$D2-)! %$A! (2-D2-)! 9(%')H! \(7D%/1$9! E1-<! \#4! -<1)! %DD/(%;<!

D/(C1A.)!;($-/('!)-/2;-2/.)!(3!-<.!E(/*3'(E!%)!E%)!)<(E$!1$!-<.!).;-1($!ZH"H!

4<.!'%)-!;($)1A./.A!%DD/(%;<!1)!).71,%2-(7%-1;!)./C1;.!;(7D()1-1($!2)1$9!).7%$-1;!

A.);/1D-1($)!F%).A!($!POSH!4<.!D/(;.))!(3! -<.!;(7D()1-1($!E1-<1$! -<1)!%DD/(%;<! 1)!

921A.A!F6!POS,/.%)($./!-%*1$9!1$-(!%;;(2$-!32$;-1($%'!%$A!$($,32$;-1($%'!%--/1F2-.)!

D/.).$-.A!F6!POS,;'%)).)H!

8%;<!A.);/1F.A! -(('!<%)!-E(!3(''(E1$9!7%1$!;(7D($.$-)X!*$(E'.A9.!F%).!%$A!1$,

3./.$;.!.$91$.H!4<.!;<%''.$9.!3(/!-<.!*$(E'.A9.!F%).!1)!/1;<!($-('(96!E<1;<!E1''!<.'D!

-<.! /.%)($./! -(! 31$A!F.--./!%$)E./)! 3(/! /.G2.)-)H!4<.! )299.)-1($)!91C.$!F6! -<.! 1$3./,

.$;.!.$91$.!;%$!F.!17D/(C.A!F6!-%*1$9!1$-(!%;;(2$-!D%)-!2)./!%;-1C1-1.)H!W6!2)1$9!)2;<!

1$3(/7%-1($!-<.!1$3./.$;.!.$91$.!;%$!/.(/A./!-<.!D/(D().A!;<(1;.)!(/!D/.).$-)!%!;(7,

D()1-1($!)171'%/!-(!-<.!D/.C1(2)!($.)H!

="R"-"1/",+

"H!K1$9<%1!a%(!%$A!p1%(7.$9!52X!#!52/C.6!(3!#2-(7%-.A!O.F!5./C1;.!\(7D()1-1($!N.-<(A)H!

0$! &/(;..A1$9)! (3! -<.! ^1/)-! 0$-./$%-1($%'!O(/*)<(D! ($! 5.7%$-1;!O.F! 5./C1;.)! %$A!O.F!

&/(;.))!\(7D()1-1($:!5O5O&\!V>>?:!5%$!`1.9(:!\%'13(/$1%:!T5#!QV>>?R!



! "V!

VH!^%/)<%A!+%*17D(2/:!`.$1')($!5.'':!S1'1%$%!\%F/%':!K(<$!`(71$92.!%$A!8$/1;(!N(--%X!5.,

7%$-1;!O.F!5./C1;.!\(7D()1-1($! 1$!0a5,000X!4<.!5-/2;-2/.A!#DD/(%;<H!d-<!0888!0$-./$%,

-1($%'!\($3./.$;.!($!8,\(77./;.!4.;<$('(96!Q\8\!V>>]R:!0888!\(7D2-./!5(;1.-6!V>>]:!

05Wh!>,d@=],VVdd,d!QV>>]R!?g?,?gd!

ZH! O5NP:! eO.F! 5./C1;.! N(A.'1$9! P$-('(96[5-%$A%/Af:! <--DX__EEEHE)7(H(/9_V>>?_AV_:!

V>>]!

?H! 8C/.$! 51/1$:!W1n%$! &%/)1%:! %$A! K%7.)!+.$A'./X!^1'-./1$9! %$A!5.'.;-1$9!5.7%$-1;!O.F!5./,

C1;.)!E1-<!0$-./%;-1C.!\(7D()1-1($!4.;<$1G2.)H!0888!0$-.''19.$-!56)-.7):!QV>>?R!"=Q?RX!?V,

?=!

]H!K1<1.!L17:!N%/;!5D/%/%9.$:!%$A!M('%$A%!B1'X!#!L$(E'.A9.,W%).A!#DD/(%;<!-(!0$-./%;-1C.!

O(/*3'(E!\(7D()1-1($H!&/(;H! 0$-U'!\($3H!#2-(7%-.A!&'%$$1$9!%$A!5;<.A2'1$9:!O(/*)<(D!

&'%$$1$9!%$A!5;<.A2'1$9!3(/!O.F!%$A!B/1A!5./C1;.):!###0!&/.))!QV>>?R!

@H!K1<1.!L17:!N%/;!5D/%/%9.$:!%$A!M('%$A%!B1'X!#$!0$-.''19.$-!#))1)-%$-!3(/!0$-./%;-1C.!O(/*,

3'(E!\(7D()1-1($H!0$!D/(;..A1$9)!(3!-<.!V>>?!0$-./$%-1($%'!\($3./.$;.!($!0$-.''19.$-!T)./!

0$-./3%;.)!Q0T0R:!N%A.1/%!0)'%$A):!&(/-29%':!!QV>>?R!

dH!K1<1.!L17!%$A!M('%$A%!B1'X!4(E%/A)!0$-./%;-1C.!\(7D()1-1($!(3!5.7%$-1;O.F!5./C1;.)H!0$!

5.7%$-1;!O.F!5./C1;.)!,!V>>?!###0!5D/1$9!567D()127!QV>>?R!

gH! M('%$A%! B1'! %$A! K17! W'6-<.X! +(E! ;%$! %! )-/2;-2/.A! /.D/.).$-%-1($! (3! ;%D%F1'1-1.)! <.'D! 1$!

D'%$$1$9q! 0$! ###0! V>>>!O(/*)<(D! ($! a.D/.).$-%-1($%'! 0))2.)! 3(/! a.%',E(/'A! &'%$$1$9!

56)-.7)H!#2)-1$:!4p!QV>>>R!

=H!a(F./-!N%;B/.9(/!%$A!N%/*!0-H!W2/)-.1$X!T)1$9!%!A.);/1D-1($!;'%))131./!-(!.$<%$;.!*$(E',

.A9.!/.D/.).$-%-1($H! 0888!8JD./-X! 0$-.''19.$-!56)-.7)!%$A!4<.1/!#DD'1;%-1($)!Q"=="R!@QZRX!

?"!,!?@!



Mixed-Initiative Use Cases for Semi-Automated
Service Composition: A Survey

Jan Schaffner

Hasso-Plattner-Institute for Software Systems Engineering,
Prof.-Dr.-Helmert-Str. 2-3,
14482 Potsdam, Germany,

jan.schaffner@student.hpi.uni-potsdam.de

Abstract. Semi-automated service composition with mixed initiative
interactions, where both user and machine jointly contribute to the cre-
ation of composed services, is currently subject to intensive research. We
propose a definition of the term “semi-automated composition”, clos-
ing the gap that a comprehensive definition is not available at present.
We give an overview over recent research approaches by presenting four
different semi-automated service composition tools. As the main contri-
bution of this paper, we introduce three mixed initiative use cases char-
acteristic for semi-automated composition, which we have extracted and
generalized from the presented approaches and then extended. Based on
these use cases and additional distinctive properties, we give a qualitative
evaluation of the presented approaches.

1 Introduction

Web services have been established as a promising approach to provide value
added functionalities across organizational borders. Businesses use Web services
as a mean to invoke intra-enterprise processes as well as processes including
multiple business parties. The actual activities in these processes are Web service
operations.

Business processes can therefore be modeled as compositions of Web services.
At present, these compositions are created manually: A domain expert creates a
static process model which can be translated into an executable language (i.e.,
WS-BPEL [1]).

That fact that specialists are required to create composed services derives
from the complexity of this task:

At design time, the modeler has to anticipate all possible cases that shall be
handled by the process he is working on: All imaginable alternative paths must
be specified as well as all possible failures must be considered. The modeler
has to interpret the names, interfaces and - if applicable - textual descriptions
of the services he or she uses in the composition in order to understand their
capabilities and nonfunctional properties. This is a prerequisite for the delicate
task of correctly defining both the control and data flow among the services. Due
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to this complexity it is likely that the modeler introduces faults into the service
composition, making conventional service compositions prone to errors.

Furthermore, conventional service compositions are inflexible, because they
contain concrete service instances that are to be called at runtime. This is prob-
lematic as services may have become unavailable when a composition is enacted.

Handcrafted service compositions are therefore seldom optimal as they con-
tain tradeoffs. They are likely to become complex and inflexible, and are thus
difficult and expensive to maintain.

In recent years, the above reasons have been serving as a rationale to intro-
duce automated planners. These systems create executable plans for the indi-
vidual cases at runtime, which opposes the idea of creating composed services
that cover as many cases as possible. The plans are produced in a fully auto-
matic fashion, based on domain knowledge (i.e., ontologies) and semantic service
descriptions.

While automated planners are able to reduce complexity, inflexibility and
error-proneness akin to the creation of composed services, several drawbacks can
be identified: Automated planning relies on the availability of complete formal
representations of the domain knowledge and the “state of the world”.

The task of formally specifying a domain in sufficient fidelity so that it can
be used for automated planning presents a tremendous challenge. If the domain
knowledge is incomplete, an automated planner might not be able to produce a
plan. In contrast, a human planner can draw upon his experience with a specific
domain when he or she creates a composed service.

In a planning problem, the state of the world is represented by the initial
state, which serves as a starting point for automated planners to find a path
to a supplied goal. It is impossible to encode the complete world state in the
initial state of a planning problem. Therefore, matchmakers will always plan
with limited information about the world state, which can result in failing to
deliver a plan.

The incorporation of the matchmaking technologies as used by automated
planners into a semi-automated modeling tool for creating service compositions
has several advantages: On the one hand, the problems of complexity, inflexibil-
ity and error-proneness of the created service compositions can be reduced or
eliminated by building new mixed initiative use cases on top of the Semantic
Web technologies used by automated planners. On the other hand, the modeler
can rely on his or her experience with composing services. The modeler also has
the opportunity to incrementally learn from the scenario and to refine his or
her goals while developing the plan. This opposes the problem of planning with
incomplete information faced by fully automated planning environments.

Moreover, the fact that fully automated service composition methods do not
require a human in the loop poses an organizational and juridical impediment: It
may be desirable that a concrete person is responsible for a particular business
process. As this lowers the industry acceptance of automated planning tech-
niques, their transition from research to industry is progressing slowly.
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For the above reasons, semi-automated service composition is a strongly
researched topic at present. However, a general definition of the term “semi-
automated composition” is missing. There is also no overview of existing ap-
proaches available, neither do we have common understanding of the functional-
ity that is characteristic for semi-automated composition. The goal of this paper
is to fill this gap and to address these shortcomings.

The remainder of this work is organized as follows: In section 2 we will
give a definition of the term “semi-automated composition”. Section 3 will give
an overview over current research efforts in the field of semi-automated ser-
vice composition. In section 4 we will introduce three mixed initiative use cases
that enable semi-automated modeling tools to overcome the problems of error-
proneness, complexity and inflexibility described above. Section 5 presents an
evaluation of the presented existing approaches based on the mixed initiative
use cases they support as well as additional criteria. Section 6 concludes the
paper.

2 Semi-Automated Composition: A Definition

The purpose of this section is to introduce the term “semi-automated composi-
tion” and to give a working definition.

The terms “automated composition” and “semi-automated composition” are
often used in recent research papers when the authors refer to the creation of
composed services. However, there are different perceptions about the meaning
of the term. It is probably due to the absence of a clear definition for this
term that it is often used at random. A broad definition would be that every
composition approach that requires user intervention at some point is a semi-
automated approach. We are convinced that a more distinctive definition is
necessary. We will give a definition in the remainder of this section.

Ponnekanti and Fox present SWORD [2], “a developer toolkit for Web service
composition”. In fact, SWORD is a framework providing automated planning for
Web service composition. Still, the authors claim to present a semi-automated
composition approach, which is probably due to the fact that the user can choose
to create a persistent representation of a particular service composition (i.e., a
plan) after it has been generated by the system.

In SWORD and similar frameworks, the underlying rule engine creates the
service compositions independently from the user on the basis of the available
formalized domain knowledge. The usage of the term “semi-automation” is there-
fore unsuitable when addressing approaches that involve manually reviewing
automatically generated service compositions.

The definition of the term “semi-automated composition”, which will be used
throughout the remainder of this paper, is as follows:

A framework or approach for creating composed services is called
semi-automated, if it is committed to augmenting human planning skills
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rather then to controlling the planning process. The user drives the com-
position process and has the possibility to cede control to system for
specific (and limited) tasks.

An interaction between different entities, be it humans or intelligent sys-
tems, is called mixed initiative interaction, when all participants contribute at
all points in time what is best suited to solve the overall problem. The term
“mixed initiative” has been coined by the AI community and is often used in
conjunction with semi-automated composition. Allen [3] introduces four differ-
ent levels of mixed initiative. According to his classification, the semi-automated
composition approaches presented in this paper reside on the lowest level of
mixed initiative, called “unsolicited reporting”.

3 Existing approaches

The purpose of this section is to give an overview of current research efforts re-
garding semi-automated service composition. Four approaches will be presented
according to their main characteristics.

3.1 Web Service Composer

Sirin, Parsia and Hendler [4] present a prototypical implementation of a com-
poser for Web services. Their tool allows creating executable compositions of
Web services that are semantically specified with OWL-S [5].

The created service compositions can in turn be stored as OWL-S “process
models”. Process models are a part of OWL-S ontologies which is normally
used to encode the choreography for a described service. Well-known control
constructs from the area of Workflow Management can be used within OWL-
S process models. It is therefore a suitable format for representing composed
services.

The focus of their work is on filtering the list of available services at each
composition step and thus helping the user to select the appropriate services.

In order to create a composed service, the user follows a backward chaining
approach. He or she begins with selecting a Web service that has an output
producing the desired end result of the composition from a list of all available
services. Next, the user interface presents additional lists connected to each OWL
input type of the service producing the end result. In contrast to the first com-
position step, these lists do not contain all available services: They contain only
those services that generate an output compliant to the particular input type
they are connected to. An output of a service A is compliant to an input of a
service B, if their types are exactly the same or if the output of A subsumes the
input of B (i.e., the input of B is a specialization of the output of A). If a service
is selected from the list of compliant services, this service’s inputs must again
be produced by selecting services producing compliant outputs. This is repeated
until the user decides at one point to provide the inputs that are not connected
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to a compliant service by entering them as input values (or connecting them to
compliant services that have no input parameters).

Creating the composed service by forward chaining (i.e., starting with the
first activity in the process instead of the last one) is planned but not imple-
mented in their prototype.

In addition to filtering on the compliance of the services in terms of their in-
puts and outputs, the user can apply further filtering based on the nonfunctional
properties of the services. This only works for services that adhere to a specific
OWL-S “service profile” (i.e., they implement the service profile). Once the user
has selected a service profile, the system renders an UI element which allows him
or her to provide values for the nonfunctional properties that are specified for
the selected service profile. The user can then apply the filter, thereby further
restricting the set of services that are presented for the current composition step.

Additional to its composing functionality, Web Service Composer can also
execute the composed services: The services that can be selected must be spec-
ified in OWL-S and a grounding for WSDL must be provided. Therefore, the
tool can invoke the services in the composition and pass the data between the
services according to the user-specified control flow.

3.2 CAT

Kim, Spraragen and Gil introduce CAT (Composition Analysis Tool) [6], a tool
which illustrates their approach to interactive workflow composition.

The focus of their work is to assist the user in the creation of computational
workflows. The authors’ work is not directly related to service composition. How-
ever, we can conceive a computational workflow as a service composition. The
activities of the workflow are represented by services that realize data transfor-
mations.

The authors have developed their own knowledge base format, which they
use to semantically describe the components that can be used in a workflow and
their input and output parameters: “Component ontologies” describe hierarchies
of components, from abstract-level components to executable components. An
abstract component represents a common set of features that applies to all com-
ponents of that type. “Domain ontologies” semantically specify the data types
which can serve as inputs and outputs of the components described in the com-
ponent ontologies.

In CAT, the user can add components to the composition at any time. There
is no need for the user to follow a strict backward or forward chaining composi-
tion. The “end result” of the composition can be specified by declaring outputs
produced by components as the end result (or as a part of it). Control flow in
CAT is described by explicitly linking inputs and outputs of different services to-
gether. Values of input parameters can also be default values from the respective
ontologies or values entered by the user.

Instead of filtering the set of services that can be included in a composition,
CAT provides a list of suggestions about what to do next. These suggestions
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resolve errors and warnings, which are also displayed. The idea is that conse-
quently applying suggestions will produce a “well-formed” workflow as a result.
The authors therefore introduce a set of properties that must be satisfied by the
composition in order to be well-formed. These properties ensure that

– the composition has an end result,
– all components’ inputs are satisfied
– all components have been specialized to executable components
– all components produce outputs relevant for producing the end result
– for all links between components there is a “subsumes”-relation between the

output of one component and the input of the other component
– the composition does not contain redundant links or components.

Depending on whether these properties are satisfied or not, the ErrorScan algo-
rithm (which is also provided in [6]) determines which suggestions are presented
to the user. Possible suggestions are

– adding an end result
– removing a component
– inserting a link to or from another component
– entering the value for an input
– taking the default value for an input from the component ontology
– specializing a component
– removing a link
– adding a new component before a link

CAT uses heuristics to determine the ordering of the suggestions, so that more
recent and more severe errors are displayed before warnings that do not necessar-
ily have to be resolved in order that the workflow is well-formed. It is noteworthy
that the suggestions in CAT have the property of being corrective or additive:
Applying a suggestion never causes more errors than it resolves.

3.3 PASSAT

Myers et al. present PASSAT (Plan-Authoring System based on Sketches, Ad-
vice, and Templates) [7], an interactive tool for constructing plans. PASSAT is
not directly concerned with the creation of composed services, but its concepts
can be mapped into the context of service composition.

PASSAT is based on hierarchical task networks (HTN) [8], while the model
has been extended to realize some concepts that are outlined below. In HTN
planning, a task network is a set of tasks (or service calls) that have to be
carried out as well as constraints on the ordering of these tasks. Moreover, it
consists of a set of constraints that must be valid before the execution of the
tasks and information about how the tasks instantiate variables. Because the
variables (partly) describe the state of the world before and after the execution
of a specific task, the constraints on these variables can be used to express
preconditions and effects.
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The HTN based approach naturally imposes top-down plan refinement as
the planning strategy the user must adhere to: The user can start by adding
tasks to a plan and refine them by applying matching HTN templates. A tem-
plate consists of a set of subtasks that replace the task being refined, as well as
the preconditions and effects of applying individual tasks and the entire tem-
plate. It is noteworthy that the user has the possibility to override unmatched
constraints when applying a template. This is especially desirable when compre-
hensive domain knowledge (i.e., a collection of templates) cannot be provided.
Task refinement is repeated until the plan contains no activities that can be
further expanded.

A core feature of PASSAT is its automated planning mode, which allows the
user to have the system expand all remaining tasks, applying the templates that
are currently available to the system.

PASSAT also features an “advice” mechanism that allows the user to specify
high-level policies for the overall plan being created. These policies are global
constraints that restrict the set of actions that the user can undertake when
developing a plan. However, they can be relaxed and overridden and need not to
be necessarily satisfied to reach the overall goal. The automated planning mode
also takes these policies into account when it selects the templates for refining
the open tasks.

Opposing the strict top-down refinement approach implied by the use of HTN
networks, PASSAT provides a “plan sketch facility”: This allows the user to freely
arrange tasks that need not to be necessarily fully specified and that can reside
on different layers of abstraction (regarding the template hierarchy). After the
user has outlined a plan sketch, the system tries to find possible expansions by
applying matching templates. The user can then choose one of these expansions
to be included in the plan and return to the normal planning mode.

PASSAT also informs the user about open tasks and outstanding information
requirements in order for the plan to be completed. Therefore, it presents the
user with an agenda of actions such as “expand task”, “instantiate variable” and
“resolve constraint”.

The system helps the user to choose from the applicable templates at a given
composition step by keeping track of past user experience: A statistic about how
often a template has been applied in plan refinement is encoded in the templates.

3.4 IRS-III

Hakimpour et al. introduce Internet Reasoning Service (IRS) [9], a Semantic
Web Services framework. One of their implementations, IRS-III, includes a tool
that supports a user-guided interactive composition approach by recommending
component Web services according to the composition context.

Their approach uses Web Services Modeling Ontology (WSMO) [10] as the
language to semantically describe the functionality of the Web services. In IRS-
III, Web services are represented by WSMO “goals”:

WSMO introduces the concept of goals to represent the objectives of users
when consulting a Web service. A goal is a subset of a Web service’s capabili-



8 Jan Schaffner

ties that is of particular interest for the user, namely the service’s outputs and
effects. According to Hutter, this reflects the so-called goal driven approach in
AI planning [11].

Similar to Web Service Composer [4], the user starts with adding the goal
(i.e., a Web service) that produces the desired end result of the composition. The
first goal can either be selected from a list containing all goals, or by searching
for an appropriate goal. The inputs of this goal must then be fed by other goals
or values entered by the user. Like in [4], the available goals at each composition
step are filtered: Only the goals that produce outputs that deliver the desired
input for the downstream goal can be selected.

The tool also features the execution of the composed services. During the
execution, the orchestration engine queries the user to provide values for the
inputs that have not been assigned goal or a value at design time.

In IRS-III it is possible to introduce WSMO goal-to-goal mediators into the
composition. This is necessary, when two goals are to be connected that have
been specified by different parties. In such cases it cannot be ensured, that the
same ontologies and thus the same semantic descriptions for the inputs and
outputs are used by the different parties. However, if two types in different
ontologies describe the same concept, the user can specify a mapping between
them in a mediator.

The tool also allows if-then-else control operators to be added to the service
composition.

4 Mixed initiative Use Cases

In this section, we will describe three use cases characteristic for semi-automated
service composition approaches that enable them to overcome the problems of
complexity, inflexibility and error-proneness akin to conventional service com-
positions, as described in section 1. We extracted these use cases from the ap-
proaches presented in section 3. We generalized and extended them according to
our own research findings.

Figure 1 shows the use cases that are going to be developed throughout the
remainder of this section. Before investigating these use cases in detail, we will
refresh our understanding of how to semantically describe the capabilities of a
service.

4.1 Prerequisites

Services can be information-providing, world-altering or both. The execution of
information-providing services results in a change of the information space at
a given point in time. In OWL-S ontologies [5], the inputs and outputs of a
service describe the data transformation that is accomplished by a service. If
a service has world-altering capabilities, the preconditions and effects describe
a part of the state of the world before and after its execution. Abbreviated,
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Fig. 1. Mixed initiative Use Cases

this information is called the IOPEs of a service. We will use this terminology
throughout the remainder of this paper.

While service compositions are usually seen as a set of activities among which
an ordering relation exists, we can also conceive them as a set of states and
transitions. In doing so, the transitions denote the individual activities (i.e., the
services or service calls).

The execution of a service results in a change of the state. The information
space and the state of the world in a given state in a service composition depend
on the IOPEs of the services that precede this state. A transition (i.e., a service
call) from a state A to another state B is allowed only if the inputs and pre-
conditions of the service describing the transition are satisfied in state A. The
other way round, this transition implies that the outputs and effects are valid in
state B. The outputs and effects that become valid at this point are added to the
outputs and effects of the preceding states. These are all the outputs and effects
that have either been produced by upstream service executions or that have
been provided by the “environment” (e.g., data which is available to all services
in a composition per definition). This is also depicted in figure 2. The circles
represent states, the rectangles represent transitions (i.e., service calls) and the
dotted lines represent the outputs and effects that make up the information and
world state. Please note that an effect has the power to negate other effects that
may hold prior to the execution of the service that produces the effect.

Fig. 2. A state depends on the outputs and effects of all precedent services
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A large number of service compositions can be modeled without preconditions
and effects. Every composition which has the goal to realize a data transforma-
tion can be described only using inputs and outputs. However, if we want to
take preconditions and effects into account when creating composed services, we
have to ensure that they can be evaluated later at runtime.

4.2 Filter Inappropriate Services

A major problem with creating composed services is that the number of activities
that can be selected might be extremely high, depending on the domain. For
instance, SAP’s Enterprise Service Repository today contains more than 500
services, and growing [12]. As users of a tool for creating service compositions
cannot oversee such a vast amount of available options, it is desirable to filter
the set of available services. Such filtering can be done based on semantic service
descriptions.

When creating composed services, users select services and add them to the
composition. In a given state, it is possible to filter the selection according to
semantic descriptions: It is desirable that services requiring inputs and precon-
ditions that are not satisfied in a given state will be filtered, effectively reducing
the number of choices presented to the user.

While filtering based on the services’ IOPEs restricts the set of presented ser-
vices to those which are compatible with the current state, the set can be further
restricted by filtering based on the nonfunctional properties of the services.

Nonfunctional properties do not only offer a possibility to record juridical rel-
evant information like a publisher’s name and address, but also quality indicators
for services. Such indicators can be measures that address the performance (in
terms of response time), error rate or robustness of a service, as well as issues like
scalability, reliability, geographical coverage, invocation cost and many more.

When creating service compositions, the user may find himself in a situation
where more than one available service offers the functionality that is needed to
go to the next state. At this point, the editor should allow the user to assign
values to the nonfunctional properties of the presented services. These values are
then evaluated by the matchmaker and only those services that both provide the
desired functionality and comply with the user-specified nonfunctional properties
are presented for selection.

A technical issue that has to be resolved is the fact that it is unlikely that
all the semantic service specifications for the services providing equivalent func-
tionality contain the same set of nonfunctional properties. Possible strategies
depend on the language concepts of the used semantic specification framework
(e.g., OWL-S [5], WSMO [10] or WSDL-S [13]), and on whether or not the editor
incorporates the concept of abstract services.

An abstract service represents a set of service capabilities (i.e., the function-
ality a service provides). Abstract services in composed services can be used to
realize a late binding of the concrete services at runtime: The engine that ex-
ecutes the process can discover all currently registered services that implement
the functionality specified in the abstract service.
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As specifications for abstract services are generalizations of concrete services,
it would make sense to annotate them with a set of nonfunctional properties that
is common to all concrete services. That way, the editor could offer a selection of
abstract services for which the values of their nonfunctional properties can then
be assigned by the user.

The use case of showing the applicable services for moving to the next state
can be further enhanced by ordering the list of possible services according to
the “degree of match” that the matchmaker returns for a service: The services
that require exactly the inputs and preconditions that hold in the given state
(i.e., an “exact match”) should be presented first. Further ordering of the list
can be based on the minimal distance between the respective concepts in the
taxonomy. This distance can be translated into a classification of the “goodness”
of the match, according to Li and Horrocks [14].

Another (and probably more accurate) possibility to order the list of applica-
ble services would be to consult ratings of how often the user has selected the
particular services. As this does not directly involve service semantics, this will
not be further detailed here. However, it would be conceivable to incorporate a
rating facility in the semantic service descriptions. The editor could update the
descriptions in order to maintain a nonfunctional property such as “user rating”.

4.3 Suggest Partial Plans

Automated planners will always plan according to an algorithmic planning strat-
egy, such as for example forward- or backward chaining of services, or both. Hu-
man planners will in contrast not always behave according to this schema when
they model composed services. Users might have a clear idea about some specific
activities that they want to have in the process, without a global understanding
how the whole will fit together as a process.

A possible user behavior is to start modeling the composed service by adding
some activities and chaining them together, and then continue with an activity
with unsatisfied inputs and preconditions representing some state later in the
composition. In such and similar cases, it might be desirable for the user to let
the editor generate valid service chains that connect two unrelated activities.
This is depicted in figure 3.

Connecting two unrelated activities in a composition constitutes a standard
planning problem, given the state after the execution of activity A (the initial
state), the state before the execution of activity B (the goal state), the set of
activities, as well as the set of all possible states and the set of all possible state
transitions. The two latter sets can be derived from the semantic specifications
of the activities (i.e, the services). The problem is therefore handed over to an
automated planning engine.

A special case of the “Suggest Partial Plans” use case is when activity B
(i.e., the activity to connect to) is the last activity in the composition. When
this function is executed, the editor finishes the service composition.

If there are multiple possibilities to get from activity A to activity B, the
editor should present the alternatives. In advanced scenarios it might also be
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Fig. 3. A partial plan capable of connecting two unrelated services

useful if the editor presented a rating of the alternatives based on the aggregation
of a nonfunctional property such as cost, for example.

In any case, the generated service chain should be editable by the user.

4.4 Check Validity

Because the human planner has full control over the modeling of the business
process in a semi-automated environment, it is natural that errors are likely
to be introduced into the composition. It is therefore necessary to provide the
possibility to check the overall process validity.

Like the use cases that have been defined earlier in this section, the validity
check can be realized using Semantic Web technology. A simple validity check
would be to verify that the inputs and preconditions are satisfied for each activity
in the service composition.

Such validity checks could be executed by the user at the end of the modeling
process. However, in order to better support the user in creating composed ser-
vices, validation should be interleaved with the actual modeling of the composed
service: The user should be informed about unresolved issues in an unobtrusive
way.

Unresolved issues arise from activities in the composition which violate one
ore more aspect of a set of desirable properties for well-formed workflows, which
has been introduced by Kim, Spraragen and Gil [6]. A workflow is well-formed,
if

– one or more activities are contributing to the composition’s “end result”,
– the inputs and preconditions of every activity are satisfied,
– every activity is either an “end result” or produces at least one output or

effect that is required by another activity,
– it does not contain redundant activities.

These properties should be checked after each user action so that the list of
unresolved issues can be updated. To further assist the user, the editor could
even suggest appropriate actions to resolve the open issues. Such actions include
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adding or removing activities to or from the composition as well as adding or
removing control flow between two activities.

A problem that arises when suggesting actions is that the suggested action
can introduce new errors to the composition. In doing so, a suggested action
could produce more errors than it resolves.

5 Evaluation

In the following, we will present an evaluation of the semi-automated composition
approaches presented in section 3 based on the supported mixed initiative use
cases as well as additional criteria.

5.1 Supported Mixed initiative Use Cases

Table 1 gives an overview of the mixed initiative use cases that are supported
by the semi-automated composition approaches presented in section 3.

Web Service
Composer

CAT PASSAT IRS-III

Filter
Inappropriate
Services

Considers only
inputs and
outputs

N/A N/A Considers only
inputs and
outputs

Extensions Filtering on
NFPs, Ordering
by match
goodness

N/A N/A N/A

Suggest
Partial Plans

N/A N/A HTN template
expansion

N/A

Extensions N/A N/A High-level
policies for
composition

N/A

Check
Validity

N/A Evaluates “well-
formedness”

Tracks open
information
requirements

N/A

Extensions N/A Suggests fixes
(ErrorScan)

Prioritized
agenda

N/A

Table 1. Supported mixed initiative use cases

Web Service Composer filters the list of services that can be included in
the composition at each composition step. This realizes the use case “Filter
Inappropriate Services” that was presented in section 4 of this paper. However,
the realization of this use case in Web Service Composer is restricted in two
ways:
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First, the tool only considers inputs and outputs, i.e., the mere data trans-
formation that services realize. The preconditions that must be satisfied before
the execution of the services and the effects that the executions of the services
have on the state of the world are not taken into account.

Second, the selection of appropriate services is done per input of a down-
stream service that must be satisfied, which is due to the strict backward chain-
ing approach imposed by the tool. This means in consequence that the plans
constructed with the tool are not always optimal. For example, when one ser-
vice operation delivers two outputs each of which satisfies a different input of a
downstream service, this services operation has to occur twice in the composed
service.

Web Service Composer supports two extensions of the use case “Filter Inap-
propriate Services” that have also been identified in section 4: First, the tool can
further restrict the set of filtered services according to user-specified values of
nonfunctional properties that are common to that set. Second, the list of filtered
services which is presented to the user is ordered according to the goodness of
match: Services that exactly produce a necessary input for a downstream service
(i.e., an exact match) are ranked higher than services that produce outputs that
subsume the necessary inputs.

IRS-III also supports the use case “Filter Inappropriate Services”. While
IRS-III underlies the same restrictions for that use case, none of the extensions
specified in section 4 is realized.

PASSAT is the only tool of those included in this survey that partially sup-
ports the use case “Suggest Partial Plans”. PASSAT is a tool for interactive plan
authoring based on HTN networks. The user can invoke an automated planning
mode to expand open tasks in the plan. This can be seen as a specialization of
the use case “Suggest Partial Plans” in the sense that partial plans can only
be generated from the current state to a state in which the composition is fin-
ished, i.e. all tasks can be executed. However, this realization of the use case is
restricted in the way that the user must have completed the plan on a high level
of modeling - otherwise the task network cannot be expanded.

In section 4 we have described a possible extension of the “Suggest Partial
Plans” use case: If there is more than one alternative for a partial plan, a ranking
of user-specified nonfunctional properties should determine the order in which
the alternatives are presented to the user. In PASSAT, the user can specify high-
level policies (e.g., “maintain an overall cost total of less than $ 100”) which are
also taken into account when automated template expansion is performed. This
can be seen as a realization of that extension, as the alternative for a template
expansion that conforms best to the specified policies will be presented to the
user.

PASSAT also supports the use case “Check Validity”, as it interleaves a
checking mechanism with the actual planning process: After each user action the
system updates an agenda showing open information requirements that must be
satisfied in order to have an executable plan. As an extension to this mechanism,
PASSAT orders the agenda according to user-specified criteria.
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Another, more thorough realization of the use case “check validity” can be
found in CAT. Here, the tool checks at each composition step if the compo-
sition complies with a set of properties that describe the “well-formedness” of
the composition. In case these properties are violated, the system consequently
presents a list of warnings and errors. As an extension of this use case, the au-
thors present an algorithm that presents the user with suitable suggestions for
next steps based on the evaluation of the well-formedness criteria. The applica-
bility of CAT has been shown in the domain of seismic hazard analysis; however,
it remains unclear why the authors opted for developing their own correctness
criteria for computational workflows rather than building upon more established
approaches to verify workflow correctness, such as the soundness criteria intro-
duced by van der Aalst [15]. Also, the authors do not describe how their notion
of well-formedness relates to the soundness criteria for workflows.

5.2 Additional Evaluation Criteria

The mixed initiative use cases of a semi-automated composition approach are
its most important characteristic. However, there are more criteria that allow
further distinction among such approaches. In the remainder of this section,
these criteria will be presented and applied to the semi-automated composition
approaches presented in section 3. Table 2 gives an overview of how we evaluate
the presented approaches according to these criteria.

Web Service
Composer

CAT PASSAT IRS-III

Imposed
planning
strategy

Backward
chaining

None Top-down
refinement

Backward chain-
ing

Modeling
environment

Graphical Textual Textual Graphical

Knowledge
base

OWL-S Non-standard Non-standard WSMO

Reasoning Output-input
subsumption

Output-input
subsumption

Takes complete
IOPEs into
account

Output-input
subsumption

Control
constructs

Not provided Not provided Not provided if-then-else con-
struct

Compositions
are executable

Tool acts as Web
service client

No No Orchestration
engine

Output
format

OWL-S process
model

Non-standard Non-standard Non-standard

Table 2. Evaluation according to additional criteria

An important criterion for the user who created composed services is the way
in which composed services can be modeled with the system he or she utilizes.
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As human planners are likely to feel constrained when they are forced to adhere
to an algorithmic planning strategy, the tools should give the users maximum
freedom in modeling their compositions.

Web Service Composer and IRS-III impose a strict backward chaining plan-
ning strategy to the user. The user has to start with the last activity in the
composition, i.e., the activity producing the desired end result. The inputs of
this activity are then recursively satisfied until the first activity in the composi-
tion (e.g., a user input) is reached. Due to the strict backward chaining approach
only the last activities of compositions created with Web Service Composer and
IRS-II can determine the end results, which is also problematic.

Another criterion that is highly important to the user of semi-automated
composition tools is whether a graphical user interface is provided. Web Service
Composer and IRS-III provide the user with a graphical user interface, while
CAT and PASSAT come with mere textual modeling environments. Especially
for complex compositions, the user can hardly oversee the causal relations be-
tween the activities.

Semi-automated service composition approaches reason over domain knowl-
edge that is specified in ontologies. In order to support the maintainability of
the composed services that are created using semi-automated composition tools,
standardized formats should be used for the ontologies. Because the formal spec-
ification of domain knowledge presents a tremendous challenge, organizations
have to rely on available ontologies that have been created by other parties as
building blocks for assembling their domain knowledge. Web Service Composer
and IRS-III build upon open formats such as OWL-S and WSMO. Additionally,
IRS-III allows the use of WSMO mediators in the compositions, which eases the
process of integrating ontologies from different parties. CAT and PASSAT in
contrast are building upon proprietary formats for encoding domain knowledge.

When service capabilities and functionalities are specified in ontologies, the
data transformation realized by a service’s execution can be specified as well as
the change in the state of the world that the execution of a service implies. Three
semi-automated service composition tools out of the four presented in this survey
only reason on the inputs and outputs of the services that can be included in the
compositions (i.e., the data transformation that the services effect). However, a
large number of possible applications (i.e., the set of computational workflows)
can be described only using inputs and outputs. PASSAT is the only approach
among those presented here that explicitly supports constraints on the state of
the world.

When modeling composed services, we naturally expect the possibility to
model control flow between the individual activities. Here again, three tools
out of the four presented do not provide control constructs. This is probably
related to the fact that most tools reason only on the inputs and outputs of the
services that can be included in a composition: If preconditions and effects are
not considered, the control flow of a composition derives implicitly from the data
flow. Being the only approach of those investigated in this paper that supports
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preconditions and effects, PASSAT lacks a notion of explicit control flow. IRS-III
in contrast provides a basic if-then-else operator.

A semi-automated service composition tool should somehow ensure that the
composed services being created with it can be executed. This can be done either
by directly proving the user with an execution environment or by exporting the
compositions into an executable format.

Web Service Composer allows to directly execute composed services by calling
the individual services via the WSDL interface that is provided in the groundings
of the OWL-S ontologies used. As the tool acts as the Web service client for all
calls, it does not support complex choreographies. IRS-III in contrast comes with
an orchestration engine on which the composed services can be enacted, allowing
the user to specify choreographies that include more than two parties.

In addition to its Web service execution functionality, Web Service Com-
poser is able to store the composed services as OWL-S process models. Together
with an OWL-S grounding, the service compositions are executable on plat-
forms other than Web Service Composer. CAT, PASSAT and IRS-III are unable
to store composed services in an open format. The de-facto standard format for
executable service compositions is WS-BPEL [1]. It is striking that none of the
tools offers WS-BPEL export functionality.

6 Conclusion

In this paper, we have developed a definition of the term “semi-automated com-
position”, filling the gap that a comprehensive definition is not available at
present.

We have also given an overview of recent research approaches towards semi-
automated composition by presenting four different semi-automated service com-
position tools.

As the main contribution of this work, we have developed three mixed ini-
tiative use cases for semi-automated composition, which we have extracted and
generalized from the presented approaches and then extended.

Based on these use cases, we have given a qualitative evaluation of the ap-
proaches presented. Additionally, we have developed a number of distinctive
properties that are characteristic for semi-automated approaches and applied
them to the existing ones.

Our results show that no semi-automated modeling tool known to us is com-
plete in terms of the functionality it provides: None of the presented existing
approaches covers all the mixed initiative use cases that have been developed in
section 4 of this paper.

While the use cases “Filter Inappropriate Services” and “Check Validity” are
both realized in two out of the semi-automated composition approaches, the use
case “Suggest Partial Plans” is only addressed in one of them: PASSAT [7] partly
implements this use case with its feature of automated plan expansion. Plans in
PASSAT are represented as Hierarchical Task Networks (HTN). The user can
invoke an automated planning mode that expands any open tasks within a plan.
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The presented approaches could hardly be extended in order to provide the
missing functionality in terms of the presented mixed initiative use cases. Three
out of the four tools presented are only capable of reasoning over input and
output types, which only covers the class of information-providing services. In
contrast, the described mixed initiative use cases also consider the class of world-
altering services. Another problem with extending the functionality of the ex-
isting approaches is that all of them use different ontology formats to represent
domain knowledge, making it difficult to integrate them.

The ontology format underlying a semi-automated composition approach is
also important when we consider the fact that the task of formally specifying
domain knowledge is very delicate. It will be necessary for organizations utilizing
this kind of technology to use ontologies that have been created by other parties.
It is therefore necessary to build upon standards. Two of the four tools presented
implement a proprietary ontology format, which hinders the exchangeability of
domain knowledge between organizations.

Another problem common to all presented existing approaches is their weak
usability. Two of four approaches provide mere textual interface. The tools
with graphical user interfaces are prototypical proof-of-concept implementations.
None of the four presented approaches provides a user interface that would enable
domain experts to create composed services without training. Thus, the indus-
trial applicability of semi-automated service composition technology is limited
today.
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Abstract. In some workflow based grid applications the failure of the execution 

engine causes the failure of the whole application. This paper presents two ap-

proaches of how to distribute the execution and thus the planning of the work-

flow. Using an example grid application, a peer to peer architecture and a clus-

tered architecture based on agent technology are explained and discussed 

showing their advantages and disadvantages.  

Introduction 

Sciences like High Energy Physics, Earthquake engineering, or Global Climate 

Change have a certain need for a huge computational infrastructure. This need can be 

covered by a distributed platform for large-scale computations, data and remote re-

source management, also called a grid [10].  

A main challenge in grid systems is the composition of applications exploiting all 

the power of the resources in order to provide the results as fast as possible. As appli-

cations need several hours up to some days [2], time is an essential factor in the de-

velopment of the applications. Usually one application is executed only a few times, 

which leads to the usage of workflow execution engines with a smaller development 

time for the application itself. The application can be described by a workflow and 

executed by the engine. The workflow then consists of the application logic plus the 

grounding on the resources to be used during execution.  

The act of modelling the application logic and doing the grounding is also called 

planning of the workflow. Such a workflow consists of a final piece of data that is to 

be produced by the application using several tasks arranged in a partial order. If we 

call the final piece of data the goal of the application and each task a planning opera-

tor we have the requirements for a planning problem that can be solved using AI 

planning techniques. The inputs and outputs of each operator need to be specified not 

only syntactically but also semantically in order to automate the planning of the work-

flow. As many scientists are specialists in their field of investigation but not necessar-

ily in programming, automated workflow planning helps them to create their applica-

tions in less time with better results.  

The automated workflow planner needs semantic descriptions of each operation 

and each resource. Thus, the whole grid system is described semantically and we are 



now speaking about the Semantic grid [5], analogous to the Semantic Web [1]. An-

other trend in the grid community is to call each operator or each task of the logical 

workflow a service, while the notion of a resource describes a piece of data or a 

physical resource needed to execute a service. In this paper I will follow this trend 

and use the words service and resource as described.  

 

In a highly distributed environment like a grid it is quite usual that some nodes fail 

to provide a job, especially with the extremely long execution times of grid applica-

tions (up to some days). Thus, the workflow execution engine needs to deal with these 

failures and from time to time has to do a re-planning, i.e. exchange the failed re-

source by another one capable of doing the required job in case of failure. As already 

mentioned, the execution of an application takes a lot of time; it is now obvious to do 

the grounding of some parts of the workflow closer in time to its execution. This pro-

cedure, also called just-in-time planning [6], prevents failures and also some of the re-

planning.   

By using re-planning the grid system tolerates failures of some resources. But if the 

node running the workflow execution engine fails, the whole application might fail. 

To prevent this, a distributed engine is needed. If one part of the engine fails, the other 

parts are able to replace it and rescue the execution of the application.  

Dealing with failures and the fact of the grid being an open distributed system 

show the need for autonomous flexible behaviour of the workflow execution engine. 

A software agent is capable of flexible, autonomous action in some environment in 

order to meet its design objectives [16]. Thus, it is obvious that integrating agent 

technology in grid systems helps solving some upcoming problems. Foster et. al. [9] 

also suggests bringing both technologies together in order to let them profit from each 

other.  

 

After presenting some related projects two architectures of distributed workflow 

execution engines will be explained: a peer to peer architecture and a clustered archi-

tecture. Using an example grid application from high-energy physics, automated 

workflow planning and execution will be shown in both architectures. By counting 

the necessary messages the approaches are compared and discussed. Finally a conclu-

sion shows which approach promises better results.  

Related Work 

There are some projects that deal with the combination of multi-agent systems and 

grid systems. Patel et. al. [13] for example presents architecture for an Agent-Based 

Virtual Organization realizing the management of a grid system. The authors repre-

sent each node of the grid as a “Service Provider” offering its services to the organiza-

tion. One “Virtual Organization Manager” is central to each virtual organization. It 

deals with discovery, contract negotiation, trust, and quality of service issues. Each 

part, i.e. each service provider, the virtual organization manager, the discovery ser-

vice, etc. is represented by one agent respectively. The service requester is repre-

sented by one service provider.  



The presented project concentrates more on issues like quality of service and trust 

than on planning and failure handling. Thus, there are not many hints on how to dis-

tribute planning and how to handle failures. But they show how agent technology can 

be exploited within a grid infrastructure.  

 

Although there are differences between a grid and Semantic Web Services, it is 

possible to adapt certain features of agent-based Web service infrastructure to an 

agent-based grid. Buhler et. al. [4] presents a service composition engine consisting of 

many Service Agents each representing a certain service. Each service agent knows 

its possible successors, i.e. those service agents having as input at least a part of the 

output of this service agent. In order to compose a service, the engine starts the search 

by sending composition request messages to some agents, who then forward this 

composition message to their successors and so on until the requested result can be 

composed of the output of some service agents. The found composition of services 

can then be executed to provide the result to the requester.  

The authors mentioned that their system scales adequately although each service 

agent represents only one service. Because the number of services to be invoked in a 

grid is very high (over a thousand jobs [6]), it is doubtful whether this approach can 

be adapted as is to a grid. This will be discussed later on.  

 

Another approach, which is based on peer-to-peer and agent technology, is shown 

in [17]. Each service provider and the service requestor are represented by one agent. 

The service provider agents can exchange intermediate data and control information 

between them making a central coordinator unnecessary during the enactment of the 

workflow. The service requestor knows the workflow at request time, which means 

that it does not create the workflow within the presented framework. It only has to 

find, select and contract service providers for each task of the workflow. For each task 

it creates one negotiation agent that negotiates with possible service providers for this 

task. A coordinator agent assures the overall quality of service by coordinating all ne-

gotiation agents.  

As the workflow planning is not automated there are no hints on how to do this in a 

decentralized manner. But the part of service selection and especially the part of 

workflow enactment might be adaptable to a grid. The fact that each service provider 

is able to send intermediate data immediately to the service provider who needs this 

data reduces the management overhead and the network traffic. The authors also pre-

sented a mechanism for automated exception handling and re-planning within the in-

volved agents. This mechanism seems to be adaptable, too.  

 

The authors of [12] have developed the most complete workflow management sys-

tem for a grid using automated planning techniques. In their current paper they pre-

sent some future aspects on workflow management in grid. They reason about a de-

centralized system based on Agent technology. Although a concrete architecture of 

such a system is not shown I will refer to their work as I based my architecture on 

some of their ideas.  



Architecture of an Agent-Based Grid 

The previous chapters showed that there is a need for a decentralized workflow exe-

cution engine. This chapter discusses different possible architectures that realize the 

distribution taking into consideration the requirements that grid systems dictate.  

Cluster vs. Peer-to-Peer 

There are two possible architectural patterns for decentralized systems: a peer-to-peer 

architecture and a cluster architecture. In contrast to a client-server architecture, a 

pure peer-to-peer architecture has no central instance like a server. The parts of the 

peer-to-peer system have equal capabilities of executing application logic. Thus, the 

software running on each peer should realize the same application logic.  

A computer cluster is a group of loosely coupled computers that work together 

closely so that it might be viewed as though it were a single computer. The grid sys-

tem would then consist of several clusters capable of executing a workflow using its 

cluster nodes. The clusters can then be organized in peer-to-peer manner. The organi-

zation of the cluster nodes is transparent to the other clusters. Thus, different ap-

proaches are possible: a client-server architecture as shown in the diagram below or a 

peer-to-peer architecture. In the latter case it is far more difficult to give the impres-

sion of being a single computer. A server has full control of each cluster node and is a 

single point of entrance to the cluster. That way it is possible to act as a unit to the 

other clusters and distribute the workload to the cluster nodes.  

 

Fig. 1. Peer-to-Peer (left) and Cluster (right) architectures 

Applying a peer-to-peer architecture to a grid comes with some obstacles. As there 

is no central instance for doing the grounding of the workflow, the peers have to ne-

gotiate about it. As each negotiation needs time and the number of jobs to be 

grounded is high, over a thousand or even a million jobs, the time for negotiation can-

not be ignored. Another fact is the maintenance of the network. Each peer needs to 

check whether its neighbours are still alive, which results in additional network traf-

fic. Although the diagram above shows a possible immediate communication between 

each peer, in a network with over thousand peers, this is almost impossible. Thus, 



each network package needs to pass several peers until it reaches its destination. But 

as network bandwidth is valuable for grid applications, a communication overhead 

created by the infrastructure is not desired.  

The second approach of distributing the workflow engine is clustering the grid as 

shown in figure 1. In here the cluster managers have to decide on who is responsible 

for which part of the workflow. As there are not that many cluster managers the nego-

tiation and the communication efforts are still in acceptable range. Then, each cluster 

manager needs to do the final grounding of the jobs in its workflow parts. Because a 

central instance managing the job execution exists in a cluster, a late grounding of the 

jobs is possible without a time consuming negotiation.  

Although at first sight the cluster architecture seems to be the better solution, there 

are two crucial points: the partitioning of the workflow and the clustering of the grid. 

As the first point is related to the planning of the workflow and depends also on the 

clustering of the grid, it will be discussed in the next chapter. Following, some ap-

proaches of clustering a grid are shown. 

Different approaches of clustering 

Maybe the most obvious approach of clustering the grid is to group the nodes that be-

long to the same LAN, because the communication within a LAN should be much 

faster than communication over the internet. As there will be a lot more communica-

tion between the nodes of one cluster than between two clusters, this might make the 

communication faster. A disadvantage is the combination of nodes by chance. There 

is no guarantee that there will not be more communication between clusters, as differ-

ent jobs might need different resources of which some are not available within the 

current cluster. Thus, some jobs need to be executed by one cluster and others by a 

second. At least control information needs to be exchanged between the two clusters 

in order to enact the different jobs.  

A second approach is clustering by resource types. This means to group together 

the nodes with similar capabilities of computational power and amount of storage. 

This way, the cluster manager has a huge range of possible resources to do the 

grounding, in order to maximize the parallelism of the application. The example ap-

plication presented in the next chapter shows why this is a major advantage. Because 

the workflow execution should be tolerant to failures, it is recommended to have more 

than one cluster per resource type, such that the failure of an entire cluster can be re-

covered by another cluster of the same resource type.  

Both approaches have their advantages. In order to show how it is possible to 

maximize the parallelism, clustering by resource type will be used in the next chapter, 

which deals with planning and execution of a sample grid application. 

Planning in an Agent-Based grid 

Before presenting different aspects of workflow planning in grid systems, an example 

application is shown to give the reader an impression of how a typical application for 

grid systems looks like.  



An example application: particle decay simulation 

The particle decay simulation is needed to verify a theory of particle decay against 

measurement results that were collected by a detector. In the shown case the theory 

depends on one argument a. By executing the simulation with different values for this 

argument the best value for the argument should be obtained. The workflow below 

shows the execution of the simulation for 100 different values of the parameter a.  

 

Fig. 2. Workflow of particle decay simulation (left) and simulation of one event (right) 

Each simulation then consists of a certain number of events to be simulated. In this 

case one event is the act of decay of one particle in two pieces. Both pieces will go 

away from each other in an angle of 180°. Thus, it is sufficient to calculate the angle 

of one piece by the simulation. As this angle depends on the spin of the original parti-

cle, the spin also needs to be considered in the simulation. In the third step of the 

simulation of one event, the behaviour of the detector calculated. In all three steps a 

“Monte Carlo Technique” [7] is used to sample random variables. As this technique is 

not deterministic in its runtime behaviour, i.e. the number of loop iterations is vari-

able, and therefore the overall runtime of the event simulation cannot be calculated 

beforehand.  

The number of events in one simulation is likely to be around 1 million. Thus, the 

number of generated random values in the whole application is at least 300 million. 

Each simulation produces several GBytes of data that need to be stored temporarily 

and aggregated for evaluation later on. The overall execution time of such an applica-

tion for state-of-the-art high energy physics experiments would be around one day, 

when 100 machines with about 3 GHz processors and 2-4 GByte of main memory 

were used.  

These figures show the difference between an application consisting of Semantic 

Web Services and one for a grid system. In a grid system execution times of several 

hours up to some days are usual while an application of Semantic Web Services has 

execution times that are in the range of seconds. Thus, the planning of the workflow 

for grid applications could take some time when this leads to significant shorter exe-

cution times.  



Planning in Peer to Peer architecture 

An abstract workflow shows the application logic. An example of an abstract work-

flow is shown in figure 2. In contrast, a concrete workflow also contains tasks like 

data transport from one location to another or the task of storing a piece of data at a 

certain location. In a distributed workflow engine the task of enacting the next cluster 

or peer might appear in the concrete workflow, too. As in a peer-to-peer architecture 

the services are bound to a resource, planning the abstract and the concrete workflow 

needs to be done in one step.  

In the peer-to-peer architecture planning of the workflow needs to be done in a dis-

tributed manner, as there is no central node that could do the planning. In addition, 

there is no central registry of the peers that would be necessary in order to know the 

provided services and resources. A distributed planning approach for Web services is 

shown in [4] (see also section related work). Adopting this approach to the grid sys-

tem results in the following message sequence. 

 

Fig. 3. Message Sequence in Peer to Peer architecture for example application 

The numbers in the diagram say how often a service exists within the grid and how 

often a message will be send. The system consists of a hundred machines each hosting 

the same implementation of the services. In order to start the execution of the sample 



application the application initiator needs to send requests for each of the hundred 

simulations to each of the hundred service providers. The simulation initiator then 

sends one request to each event simulator. This is already an optimization, as only one 

request is sent for the million executions of the event simulator. Then each event 

simulator sends one request to each aggregator, who has to choose one path out of all 

incoming requests. Thus, each aggregator chooses a hundred paths (one for each 

simulation) and send a request to the visualizer. The visualizer then has to choose a 

hundred paths out of the incoming requests, one for each simulation, and returns a 

control message indicating completeness of the workflow. Then the execution can be 

started by sending one message for each task to be started.  

In this sample application there are many optimizations possible. In order to keep 

the algorithm general and not optimized for this application, no further optimizations 

were included.  

The sequence shows that there are quite a lot of messages (around 300 mio) to be 

sent in order to execute the example application. And there is not yet any optional im-

plementation of the services. In addition, if one service fails the whole application 

will fail because no monitoring is included. One possibility would be to send a mes-

sage back to the initiating service when the service has finished. This way, the initiat-

ing service could choose another service, if its successor service fails. But this would 

double the number of messages during execution. This monitoring cannot be done by 

the successor service, because this service does not know when its predecessor started 

with execution and thus also does not know when it should be finished.  

Another difficulty with monitoring and re-planning is the fact that each service 

must know an alternative service it can call, when the desired service fails. But stor-

ing each alternative in the workflow would drastically inflate its size. This would lead 

to slower message transportation, as within each message at least the remaining work-

flow needs to be included because the services need to know which other service they 

have to call afterwards.  

Planning in Clustered architecture 

In the cluster architecture there exist two possibilities of workflow planning. Either 

there will be one node doing a central planning or the cluster managers do a decentral-

ized planning as the service descriptions are distributed. In the first case a traditional 

approach of workflow planning using a central knowledge base can be applied as de-

scribed in [2]. Peer [14] gives an overview of different AI planning techniques, that 

could be used. 

Although there are already some first steps done in order to distribute the act of 

planning the workflow, in this paper only central planning is considered. The follow-

ing diagram shows the message sequence of the planning and execution of the exam-

ple application in the clustered architecture. 



 

Fig. 4. Message Sequence in clustered architecture for example application 

Again the numbers show how often a message is sent and how many instances of each 

participant exist. The Planner and the Cluster Manager can be realized using Agent 

Technology. Both use the FIPA Contract Net Interaction Protocol [8] for their com-

munication. The different message types are shown on the left side of the diagram.  

The planner first collects available service descriptions, which it uses to compose 

an abstract workflow. When the abstract workflow is composed the execution can 

start by delivering the workflow to the cluster managers. This step already contains 

the choice of which cluster should execute which tasks, which is also the first step in 

planning of the concrete workflow.  

In order to execute the abstract workflow the cluster managers have to map it onto 

the cluster nodes. This includes finding concrete instances of the logically described 

tasks and data of the abstract workflow. When the concrete resources are chosen, it 



becomes clear where additional data or service transports are needed. These tasks are 

then added to the concrete workflow.  

As mapping a part of the abstract workflow to the cluster nodes is the same as 

mapping a whole workflow by a central workflow engine the same tools [15] could be 

used by the cluster manager. The optimizations shown in that paper can also be ap-

plied.  

Dealing with failures 

The main aspect why workflow planning should be distributed is the handling of fail-

ures. If a central workflow execution engine would fail, the whole application would 

fail. In a distributed system the failure of one component can be compensated by the 

others.  

The interactions shown in the Peer to Peer architecture do not allow failure han-

dling because no Peer would discover a failure of another Peer. Adding monitoring to 

the protocol would increase the already high number of messages. One thing is han-

dling occurred failures while preventing failures is another. This can be done by map-

ping the tasks to the resources as late as possible, also called just in time planning [6]. 

As in the peer to peer architecture there is no difference between a service and a re-

source, the mapping is done by choosing the service. Thus just in time planning, and 

therefore preventing failures, is not possible in a peer to peer architecture.  

Failure handling in a clustered architecture is easier, because inside each cluster 

there might exist a monitoring service. This service can detect the failure of a re-

source, trigger the re-planning of this task and thus recover the execution.  

The failure of a cluster manager is somehow more complex. Either the same ap-

proach as in peer-to-peer systems can be applied, i.e. each predecessor cluster moni-

tors the execution of its successor clusters. Or all cluster managers maintain the net-

work by sending messages from time to time. If then a cluster has not sent any 

messages for a while, the other cluster managers assume a failure of that cluster. This 

failure is then recovered by choosing another cluster for the execution of the affected 

part of the workflow.  

Just in time planning is also possible in the clustered architecture. The cluster man-

ager does not need to map all tasks immediately but can do this step by step.  

Singh et. al. [15] presents different possibilities for dividing the mapping. That paper 

also shows how much time can be saved by doing just in time planning. Thus, just in 

time planning not only prevents failures but also reduces the overall execution time.  

Conclusion 

Comparing the two approaches by counting the messages exchanged might not be the 

only possible measurement. But it already indicates a performance problem in the 

peer to peer approach. Furthermore, considering that the shown peer to peer approach 

did not include just in time- and re-planning, the clustered architecture clearly prom-

ises better results. The fact that in the clustered architecture the already existing tools 

for workflow planning and execution can be included is another advantage.  



Using the shown clustered approach enables the workflow execution engine to be 

distributed. Thus, several workflow based grid applications can be recovered when a 

part of the execution engine fails without loosing the already produced data. Applica-

tions no longer need to be restarted due to failures. This saves valuable time the scien-

tists can use for their investigations.  
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Abstract. This paper discusses the approach for automated service composition 
proposed by Pistore, Traverso, Bertoli and Marconi. The approach is based on 
using planning techniques to solve the automated composition problem. The 
authors aim to provide not only a theoretical framework, but also a tool which 
is capable of solving real composition tasks. The main framework assumptions 
are explained in this work. They are followed by a detailed description of a 
service composition mechanism. To illustrate how the approach works the 
reference example is introduced. Finally, pros and cons of the approach are 
discussed. 

1 Introduction 

The current trend in the software industry is to assemble applications from 
platform independent software components called web services which are available in 
the Internet. Universal Description, Discovery and Integration (UDDI) [1], Web 
Services Description Language (WSDL) [2] and Simple Object Access Protocol 
(SOAP) [3] define standards for service discovery, description and messaging. 

An automated composition of existing web services is the promising technique to 
support business-to-business and enterprise application integration. The planning 
approach has been used in several research projects for solving the automated service 
composition problem [9]. The services which are available, component services, 
define the planning domain. The composition requirement is interpreted as the 
planning goal. The application of a planning algorithm is used to generate plans. The 
plan is a composite service interacting with the component services in order to 
achieve the planning goal. 

This paper performs a case study and an analysis of the approach proposed by 
Pistore, Traverso, Bertoli and Marconi in [5]. Their research group has been working 
at the automated composition problem for several years. During this period their 
approach has evolved. The approach analyzed in this paper is the development of its 
predecessor introduced in [4, 6]. The introduction of the knowledge level allows 
avoiding the restrictions of the first approach.  

The research group concentrates on the development of a framework which can 
have the industrial applicability and can be effectively implemented. In order to 
achieve this goal they work with the standard languages for business process 
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modeling and execution, such as Business Process Execution Language for Web 
Services (BPEL4WS). They also created tools which implement the approach. These 
tools can be used to perform the composition task. 

This paper describes the assumptions accepted in the approach, steps which have to 
be executed in order to perform the service composition. The advantages and 
disadvantages of the framework are discussed. 

The related concepts and specifications are introduced in Section 2. Section 3 
describes the framework model and its underlying assumptions – the basis of the 
approach. Section 4 starts with the introduction of the reference example. The section 
aims to describe the approach step by step. The example illustrates each step. Finally, 
section 5 discusses the advantages and disadvantages of the framework. 

2 Preliminaries 

In this section the BPEL4WS processes and state transition systems are introduced. 
The main goals of the BPEL4WS specification are clarified and the types of 
BPEL4WS processes are named. The role of BPEL4WS processes in the approach is 
explained. The state transition system concept is defined and its role in the framework 
is discussed.  

2.1 BPEL4WS Processes 

Different research projects place emphasis on different aspects of the service 
composition problem. The intention of the framework authors is to develop the 
method for automated service composition which is compatible with the current 
industrial standards. This requirement implies that the services must have descriptions 
in the format accepted by the industry. The authors are of the opinion that BPEL4WS 
process descriptions meet this requirement in the best way. They assume that 
BPEL4WS process descriptions are able to provide enough information to create the 
planning domain. That is why the information from the BPEL4WS processes is used 
as the starting point of a composition. 

BPEL4WS specification aims to ease the process integration in the intra-corporate 
and in the business-to-business spaces [8]. It supports a description of stateful 
behavior of Web Services. BPEL4WS distinguishes two types of business process 
descriptions: abstract and executable. The abstract process describes a behavior 
visible to the other parties involved in a business interaction. It determines the service 
partners, the process internal variables and operations. The executable process models 
the actual behavior of the participant in the interaction. 

The framework discussed in this paper uses abstract processes of component 
services for obtaining information about the planning domain, while the plan is 
transformed into the executable process. Thus, the latter can be executed on the 
standard engine, such as the Active BPEL Open Engine or the Oracle BPEL Process 
Manager. 
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2.2 State Transition Systems 

As it has been already discussed the component services represent the planning 
domain, while the composite service represents the plan. At the beginning the 
planning domain and the plan are in one of their initial states. The performing of an 
action causes the evolution of the planning domain (as well as the plan) from one state 
to a new one. Several types of actions can be distinguished. Messages sent from the 
composite service to the component services represent input actions, while messages 
received from the component services by the composite service – output actions. 
There are also internal actions of the services that are not observable for the 

environment. The internal actions of the component services are denoted with !. The 
composite service can perform actions without communication with the component 
services – private actions.  

The planner is able to work with the planning domain modeled as a state transition 
system (STS). 

Definition 1 (state transition system) 
A state transition system ! is a tuple (S, S0, I, O, A, R, L) where: 
- S is the finite set of states; 
- S0

⊆ S is the set of initial states; 

- I is the finite set of input actions; 
- O is the finite set of output actions; 
- A is the finite state of private actions; 
- R ⊆ S×(I ∪ O ∪ A)×S is the transition relation; 

- L: S!Prop is the labeling function. 
 
The transition relation defines the rules of the system evolution. The labeling function 
associates to each state the set of properties Prop holding in that state. 
 

The planning domain is modeled as a STS. The output of the planner is the plan 

also modeled as STS !c. Therefore, the planner has to create such a composite service 

!c that “controls” the component services !, interacting with them, in order to satisfy 
the composition requirement. 

3 Framework Assumptions 

The discussed approach is based on the services interaction model. The model has a 
great impact on the framework architecture. That is why specific model features such 
as asynchronous interaction between services and their nondeterministic behavior are 
crucial for the approach understanding. 
 

Web services have an asynchronous nature: the interaction between two parties is 
message-based. The message-based interaction between the domain and the plan is 
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reflected in the framework. The support of the message-based interaction by the 
framework is the milestone of the approach. 

The framework assumes that the behavior of web services is partially observable 
and nondeterministic. The first source of nondeterministic behavior is the presence 
of nondeterministic transitions in the framework (there can be a nondeterministic 
choice between two transitions). The asynchronous framework also does not provide 
information about when internal transitions take place within the service component. 
This is the second source of nondeterministic behavior. 

The nondeterministic behavior of services leads to the necessity to formalize the 
requirements with extended goals. The authors propose to use the EAGLE language 
[7] for this purpose. However, a temporal logic can also be applied. 
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Figure 1. The general schema of the approach 

4 Approach Description 

The general schema of the approach is presented in Figure 1. Given the abstract 
BPEL4WS processes the knowledge-level models of the component services are 
created. The composition requirements are formalized as the goal. After this the 
composition problem is reformulated as the planning problem. The knowledge-level 
models of the component services together with the composition goal form the 
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planning problem. The planner constructs a plan describing the composition needed. 
Afterwards the plan is translated into the executable BPEL4WS process. 

4.1 Example 

The P&S example consists in providing a purchase and ship service by combining 
two independent existing services: a producer service Producer and a delivery service 
Shipper. Therefore, a user, also described as a service, may directly ask the composite 
service P&S to purchase a given item and deliver it at a given place (user’s home). 
The certain protocols specify the interactions with the existing services. The Business 
Process Modeling Notation (BPMN) is used to show the interaction between the 
participants in Figure 2. The P&S has the goal to sell home-delivered goods (i.e., to 
reach the situation when the user has confirmed an order and the service has 
confirmed the corresponding suborders to the producer and the shipper), interacting 
with Shipper, Producer, and User according to their protocols. An example of the 
successful interaction could be the following: 
1. User requests P&S for an item to be delivered to user’s home; 
2. P&S requests Producer for the size, cost, and production details of the item; 
3. P&S requests Shipper for the delivery cost of an object of the defined size to the 
user’s home; 
4. P&S sends User an offer with the overall cost (plus an added cost for P&S); 
5. User sends a confirmation of the order, which is dispatched by P&S to Shipper and 
Producer. 

 

!
"
#
$

%
&
'

%
$(
)
*
+
#
$

'
,
-.
.
#
$

*(.>)C(DE(%')

J"+)K'(#

4+",&>()K'(#)K.J"

@:L()MJJ(+

@:L()MJJ(+

4+">E-()K'(#

*N&$)K'(#

O-L."<;(>?(

!:.-(;

 

Figure 2. The P&S example with the component services (BPMN notation) 
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4.2 Component Services as Abstract BPEL4WS Processes 

The planner is able to operate with the knowledge-level models of component 
services. Thus, knowledge-level models have to be extracted from the abstract 
BPEL4WS processes. The approach proposes that this operation must be automatic. 
This suits the idea of automatic composition and helps avoiding manual operations. 
That is why a formal method for the translation is proposed. The formal method is 
used by the corresponding tool to perform the translation.  

The method extracting knowledge level information from the BPEL4WS processes 
is restricted to a subset of processes: there is a support for all BPEL4WS basic and 
structured activities (like invoke, reply, receive, sequence, switch, while, flow and 
pick), assignments and a limited form of correlation. 

The fragment of the Shipper abstract process is presented here.  
 

<process name="Shipper" abstractProcess="yes" … > 
  . . . 
  <variables> 
    . . . 
    <variable name="customer_size"                           

type="tns:CustomerSize"/> 
    <variable name="customer_loc“ type="tns:Location"/> 
    <variable name="offer_delay" type="xsd:integer"/> 
    <variable name="offer_cost" type="xsd:integer"/> 
  </variables> 
  . . . 
</process> 

 
In the fragment the variables are declared. This information will be modeled later 

at the knowledge level. 

4.3 Knowledge Level Modeling 

As it has already been said the discussed approach is the extension of its 
predecessor. The introduction of the knowledge-level model of component services is 
the main step in the framework evolution. The component service model on the 
knowledge level is called a knowledge base. 

Definition 2 (Knowledge Base) 
A knowledge base KB is a set of propositions of the following form: 
- Kv(x) where x is a variable with an abstract type; 
- K(x=v) where x is an enumerative variable and v is one of its possible values; 
- K(x=y) where x and y are two variables with the same type; 
- K(x=f(y1, …, yn)) where x, y1, …, yn are variables with an abstract type and f is 

a function compatible with the types of x, y1, …, yn. 
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Kv(x) is a proposition meaning that the value of variable x is known. K(p) means 
that the proposition p is true. 

The knowledge base KB is consistent if it does not contain contradictory 
knowledge propositions. Knowledge base KB is closed under deduction if it contains 
all the propositions that can be deduced from the propositions in KB. 

The knowledge base of a component service is obtained from the variables, 
functions and types of the service defined in the abstract BPEL4WS process. The 
example of the KB for Shipper is the following: 

KB={K(pc = waitAnswer), 
Kv(customer_size),Kv(customer_loc), 

K(offer_cost = costOf(customer_size, customer_loc)), 
K(offer_delay = delayOf(customer_size, customer_loc)), 
Kv(offer cost), Kv(offer delay)} 

Now it is possible to explain at the knowledge level when the transition can be 
executed and what the transition execution means for the particular KB. The transition 
is a triple (C, a, E), where C = (c1 ∧  … ∧ cn) are conditions, a is its firing action and 
E = (e1; … ; en) are its effects. Each transition has a firing action a. Action a denotes 
the execution of the action on the component service: it includes instantiation of 
appropriate variables on the side of the component service. However, the action can 
represent the interaction between the services. That is why we need to denote the 
same action with ac to represent the execution of this action (with the instantiation of 
its own variables) on the side of the other interaction participant. To continue the 
concepts of knowledge base restriction with condition and update of knowledge base 
with effects are needed. 

The restriction of a knowledge base KB with a condition C, denoted with 
restrict(KB, C), is performed adding to KB the knowledge obtained from C and 
closing under deduction. 

The update of a knowledge base KB with an effect E denoted with update(KB, E), 
consists in performing the following steps: for each assignment in E remove from KB 
the knowledge on the modified variable, add the knowledge derived from the 
assignment and close the KB under deduction. 

Now, it is possible to define when the certain transition t and a corresponding 
action ac are applicable to the knowledge base KB, denoted with 
applicable[t](KB, ac): 

- if ac is an input action ac=i(x1, …, xn) then the following conditions must 
hold: Kv(x1),…, Kv (xn) ⊆ KB and restrict(KB, C) is consistent; 

- if ac is an output action ac=o(x1, …, xn) then the restrict(KB, C) must be 
consistent; 

- if ac =a=" then restrict(KB, C) must be consistent. 
If the transition t and the action ac are applicable to the knowledge base KB then it 

can be executed. The execution is denoted KB’=exec[t](KB, ac) and defined in the 
following way: 

- if ac= " and t=(C, ", E) then KB is restricted with C and updated with E; 
- if ac = i(x1, …, xn) and t=(C, i(y1, …, yn), E) then KB is restricted with C and 

updated with y1:= x1,…, yn:= xn and E; 



8      Sergey Smirnov 

- if ac = o(x1, …, xn) and t=(C, o(y1, …, yn), E) then KB is restricted with C 
and joined with {Kv(y1), …, Kv(yn)} and updated with y1:= x1,…, yn:= xn and 
E. 

The execution of a transition increases the knowledge base with the information in the 
conditions and in the effects of the transition. 

4.4 The Goal 

The composition requirements represent goals in the planning problem. The goals 
are formulated in the EAGLE language. The EAGLE language was designed to specify 
goals. It provides a set of modal operators of different strength, e.g. TryReach, 
DoReach and Fail. The nondeterministic service behavior makes us to use such 
operators: we can not be sure that it is possible to achieve the goal (i.e. the specific 
state of the system). The modal operators allow us to describe the other desirable 
states if the specified state can not be reached. The goal for P&S example can be 
formulated in the following way: 

TryReach 
     user.pc = SUCC ∧   

      producer.pc = SUCC ∧  shipper.pc = SUCC ∧  
      user.offer_cost =  
       addCost(producer.costOf(user.article),  

       shipper.costOf(producer.sizeOf(user.article), 
       user.location)) 

After the goal has been formulated in the EAGLE language its knowledge-level 
representation has to be generated. It is done by flattening the functions in the goal: 
introducing auxiliary variables until only the basic propositions are left. The 
knowledge-level representation of the example mentioned above will be the 
following: 

TryReach 
  K(user.pc = SUCC) ∧  K(producer.pc = SUCC) ∧  
  K(shipper.pc = SUCC) ∧  
  K(user.offer_cost = goal.added_cost) ∧  
  K(goal.added_cost = goal.addCost(goal.prod_cost, 
goal.ship_cost)) ∧  
  K(goal.prod_cost = producer.costOf(goal.user_art)) ∧  
  K(goal.ship_cost = shipper.costOf(goal.prod_size, 
goal.user_art)) ∧  
  K(goal.user_art = user.article) ∧  
  K(goal.prod_size = producer.sizeOf(goal.user_art)) ∧  
  K(goal.user_loc = user.location) 

The knowledge-level representation of the goal is the knowledge base, called the 
knowledge base of the goal. 
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4.5 Knowledge Level Planning 

The planning problem at the knowledge level is formed by the knowledge base of 
each component service and the knowledge base of the goal. However, the planner is 
able to work with the planning problem modeled with a STS. That is why a relation 
between the concepts of the knowledge level and a STS of components has to be 
defined.  

Definition 3 (Knowledge-level Planning Problem) 
The planning problem ! is an STS (S, S0, I, O, A, R, L) defined as follows: 
- the set of states S are all the possible KB defined on the set of typed variables 

X=! ni iX
...0=

and on the set of typed functions F=! ni iF
...0=

 where 

X1, …, Xn and F1, …, Fn are the variables and functions of the component 
services, while X0 and F0 are those of the composition goal; 

- S0
⊆ S is the set of initial states corresponding to the initial knowledge bases 

KB1
0, …, KBn

0, obtained from the initial assignments of the component 
services; 

- I is the set of input actions i(x1,…, xn) such that i(y1, …, yn) is an input action in 
a transition of a component service and x1, …, xn are goal variables with the 
same type of service variables y1, …, yn; 

- O is the set of output actions o(x1,…, xn) such that o(y1, …, yn) is an output 
action in a transition of a component service and x1, …, xn are goal variables 
with the same type of service variables y1, …, yn; 

- A is the set of private actions x0:= f(x1,…, xn) where f is a goal function and 
x0, x1,…, xn are goal variables compatible with the type of f; 

- R is the set of transitions r =‹ s, ac, s’›, with s, s’∈S, such that: 

• if ac is an input, output or ! action, then there exists a t = (C, a, E) 
in the sets of transitions of the component services such that 

applicable[t](s, ac) and s’=exec[t](s, ac); 

• if ac is a private action of the form x0:= f(x1,…, xn), then 

Kv(x1), …, Kv(xn) ∈s and s’ = update(s, x0:= f(x1,…, xn)); 
- L is the trivial function associating to each state the set of propositions that 

hold in that state. 
 

If the planning problem ! is constructed it is possible to use the planning 

techniques to obtain a plan !c. The model based planner (MBP) [10] is used to create 

the plan !c – a controller for !. 

4.6 The composite service as the executable BPEL4WS process 

The plan !c which is the output of the planner is modeled at the knowledge level. 
It models the interaction of the plan with the planning domain and the operations on 
the goal variables. 
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The tool provided by the framework allows translating the plan !c to the 
executable BPEL4WS process. This process will describe the behavior of the 
composite service. Considering the P&S example the composite service – P&S 
service – is shown in Figure 3. 
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Figure 3. The P&S example with the component services and the composite service 
(BPMN notation) 

5 Discussion 

The main goal of the authors was to design a framework that can perform an 
automated composition of services described in industrial standard languages for 
business process modeling. To enable automatic composition the tools supporting the 
framework have been developed. To describe web services BPEL4WS was chosen. 
This leads to certain advantages and disadvantages of the framework. 

 
The tools provided by the framework enable automated information translation 

from one representation to another, e.g. from BPEL4WS to KB. The whole set of 
tools allows performing all the translations in an automatic manner in a reasonable 
amount of time. This addresses the task of the automated composition and can be 
treated as the core advantage of the approach. 

The choice of BPEL4WS for describing services and their interaction puts 
restrictions on the component services used in the composition. The BPEL4WS 
processes describe the behavior of services and contain syntactical descriptions of the 
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services. They do not provide any semantic information which is needed to construct  
knowledge-level models of services – knowledge bases. However, services are only 
described as BPEL4WS processes. That is why the names of operations and variables 
in the BPEL4WS processes have to be the source of the semantic information. 

During the extraction of semantic information from the BPEL4WS process the 
certain meaning is assigned to each variable, according to its name. This can be 
illustrated by Shipper process and KB for this service: the variable customer_size is 
declared in the BPEL4WS process and there is a corresponding variable 
customer_size in the KB. This means that if there are two variables of the same type 
and name in different processes they will be given the same meaning at the 
knowledge level. 

This approach assumes that variable names are consistent among different services. 
Therefore, to be able to use several independent services in the composition we 
should agree on the names. These agreements can not be always achieved. That is 
why the framework can not be used for a composition of any web service described 
with a BPEL4WS process. The approach can be useful in the environment where for 
creation of process descriptions administrative regulations exist, e.g. in an 
organization. 

To remove the restriction discussed above an ontology can be used providing 
semantic descriptions of services. Together with BPEL4WS processes the ontology 
gives enough information for creating knowledge bases. Several languages exist for 
describing ontologies: Web Service Modeling Language (WSML) [11] or Web 
Ontology Language (OWL) [12]. They can be used in the framework to describe 
semantics of services. 

6 Conclusions 

In this work a case study of the web service composition framework has been 
presented. At the beginning the concept of state transition system has been introduced 
and the BPEL4WS processes have been discussed. The roles of STS, abstract and 
executable BPEL4WS processes in the framework have been explained. The main 
assumptions of the framework have been clarified. Afterwards the approach has been 
described. An example has been used to illustrate the work of the approach on each 
step. Finally the advantages and disadvantages of the approach have been discussed. 

Being able to provide automatic composition of web services the framework has 
certain restrictions. The lack of semantic information in the descriptions of 
component services does not allow using any services described with BPEL4WS. The 
description of services used in the composition must be consistent in the sense of 
variable names and types. The introduction of an ontology may aid solving this 
problem. 
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Abstract. Nowadays’ demand for process-oriented software in many do-
mains on the one hand and the necessity for diversification of software
products for fulfilling customers’ needs and thereby ensuring a greater
market penetration on the other hand, lead to the usage of process fam-
ily engineering techniques. This paper describes, how variabilities of a
process family can be modeled using UML 2.0 State Machines. For this
purpose first a mapping of generic process elements to State Machine
elements is provided. Following, in the main part, it is shown, how some
of the most relevant variability mechanisms can be ported to this type
of diagram and how the variabilities can be represented by using only
lightweight UML extension mechanisms.

1 Introduction

Nowadays process oriented software gains more and more importance. Most
innovations and profits of many business domains, for example the automotive
sector, e-businesses or the ERP (Enterprise Resource Planning) sector, are based
on this field. Furthermore in those sectors often products are produced which
occur in several variable forms. This helps to really fulfill the customers’ needs
concerning functionality, which, as a result, leads to greater market penetration.
So both sides could be pleased: the customer gets a personalized system (and
maybe saves money, because he only gets the features he wants) and the en-
terprise gets more buyers. But dealing with personalized systems can be very
expensive in the creation process, unless one is able to benefit from the fact that
all those systems have more similarities than differences. The solution therefore
is creating a product line - a mechanism well known from the manufacturing
domain but relatively new to the software business. The authors of [1] state
that empirical studies have shown that using software product lines can lead to
serious organizational benefits such as

– achieving large-scale productivity gains
– improving time-to-market
– maintaining market presence
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– sustaining unprecedented growth
– improving product quality
– increasing customer satisfaction
– achieving reuse goals
– enabling mass customization
– compensating for an inability to hire software engineers

To benefit from the idea of software product lines some advanced software de-
velopment techniques like product family engineering have to be used. But the
former research on this topic concentrated mostly on software built out of static
diagrams like class or component diagrams. As a result the existing approaches
are not able to serve the needs of process oriented software like the mentioned
automotive, e-business and ERP systems.

For modeling software for embedded automotive control units, [2] reveals that
a combination of UML 2.0 Activity Diagrams and State Machines is most suit-
able. As a consequence it is reasonable to research if these modeling techniques
can be used in the case of product family engineering of process oriented software,
shortly called process family engineering. Due to that the goal is to investigate if
the differences of a process family can be modeled using the mentioned diagram
types and how this could be done. The ability of Activity Diagrams to model
variability has been already shown in [3] but for State Machines this topic was
still open and will now be discussed in this paper.

This paper is structured as follows: Section 2 shows, how processes can be
modeled with UML 2.0 State Machines [4], by mapping generic process elements
to State Machine elements. In section 3 then some of the most cited variabil-
ity mechanisms are explained and it is analyzed, if and how these mechanisms
can be used in UML 2.0 State Machines concerning the utilization as well as
the representation in the model. In section 4 a small example of a motor control
unit process family architecture including State Machine variability is presented.
Finally, section 5 gives a short summary and reveals open issues for future re-
search.

2 Mapping from generic process elements to State
Machine elements

One of the main goals of software product family engineering lies in preparing
software for change by identifying the commonalities and variabilities within a
family of products [5]. In [6] a recent definition for variability in software is
presented:

Software variability is the ability of a software system or artifact to
be efficiently extended, changed, customized or configured for use in a
particular context.

This variability of a software product family has to be described in a product
family architecture which ”acts as a reference architecture for the members of the
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product family” [3] and specifies, which variability mechanism should be used
at each variation point, the ”location at which change can occur in a software
product line artifact” [7]. Now, to investigate the use of State Machines in process
family engineering, it is necessary to find rules and notations for adapting the
concept of variability mechanisms. But before the porting of relevant variability
mechanisms to UML 2.0 State Machines is describable, another step has to be
taken, namely the definition how common generic process elements should be
modeled in this type of diagram.

The most atomic element of a process is a process step. Since such a step is
always an action or an activity, there exist two possibilities for embedding it into
State Machines. Either it can be invoked in the do-activity of a Simple State or
in an effect of a transition. Option one is in this case the better choice because
of several reasons: First the diagram is more comprehensible for the viewer and
second according to [8]

effects should not be used as a long transaction mechanism. Their dura-
tion should be brief compared to the response time needed for external
events. Otherwise, the system might be unable to respond in a timely
manner.

The reason for why effects have to be short is that firing a transition is a run-
to-completion step and thus cannot be interrupted and as a consequence no
other events can be handled while processing this step. So, in State Machines
process steps should be modeled as a Simple State with a do-activity invoking
the corresponding activity.

The concept of having subprocesses, encapsulated subprocesses and their cor-
responding interfaces could be easily transfered to State Machines. The element
Submachine State is used for encapsulating subprocesses. It defines an interface
with its entry and exit point connection point references and allows including
arbitrary submachine state machines (which would be the subprocesses) as long
as they fit to the specified interface. Arguably, one could enlarge the interface by
the entry, exit and do activity of the Submachine State for specifying a certain
behavior the referenced submachines should implement. But since those are not
known in the referenced submachine, this cannot be done. Moreover, specifying
activities as an interface belongs to the activity view of a system rather than
to the state machine view. Therefore, the variability should be modeled in an
Activity Diagram with variability mechanism extensions and then, this diagram
should be referenced in the do activity of a Simple State.

3 Variability mechanisms in UML 2.0 State Machines

In [3] and [9] variability mechanisms for generic processes are presented. This
section will explain them briefly and analyze if and how these mechanisms can
be used in UML 2.0 State Machines [4]. For every mechanism portable to State
Machines the variation point and the corresponding variants will be identified.
In this context, variation point means the invariant environment of the varying
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process part in which different variants (varying process parts) could be embed-
ded. A variability mechanism then describes the way how variants are bound to
a variation point.

The variability mechanisms discussed in this paper can be categorized in
three categories. At first there are basic variability mechanisms, which are all
orthogonal to each other and build a foundation for other mechanisms derived
by them. Second and third there are mechanisms, which are either derived by
restriction or by combination of one or more (basic) variability mechanisms re-
spectively. Figure 1 shows this classification.

Basic
- Addition / Omission / Replacement
- Encapsulation
- Parameterization
- Data Type Variability

Derived by Restriction
- Extension
- Inheritance

Derived by Combination
- Strategy Pattern

Fig. 1. Categorization of Variability Mechanisms

3.1 Addition, Omission, Replacement of Subprocesses and Process
Steps

These basic variability mechanisms allow for the addition of a new process step
or a whole subprocess at arbitrary positions of the process. Vice versa arbi-
trary process steps/subprocesses can be omitted. Last but not least any process
step/subprocess can be replaced by another. As a result the variants used with
these mechanisms can be any state (Simple State, Composite State, Submachine
State) in case of State Machines, but with the restriction that an explicit entry
into or an explicit exit from a Composite State has to be modeled with an en-
try or an exit point respectively and not with a transition leading from outside
directly to a substate or vice versa.

The three mechanisms will be described in prose and additionally in a formal
manner. For this purpose, some sets should be defined in advance1: Let V be
the set of all Vertices (States, Pseudostates, ConnectionPointReferences) and T

1 In order to define these sets and also later the mechanisms, the OCL (Object Con-
straint Language) notation [10] used in the UML specification [4] has been partly
adopted. So, e.g. an attribute of an UML element can be accessed by using a ”.”
(element.attributeName). This notation was preferred to introducing more functions
for accessing the attributes, because it makes the formulas more easy to read
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the set of all Transitions of a given state machine. Then we define I(s ∈ V ) =
{t ∈ T | t.target = s} (the set of incoming transitions of s) and O(s ∈ V ) =
{t ∈ T | t.source = s} (the set of outgoing transitions of s). Furthermore:

– CPentry(s ∈ V ) = {c ∈ V | c.kind = #entryPoint ∧ c ∈ s.connectionPoint}:
The set of all entry points of a Composite State.

– CPexit(s ∈ V ) = {c ∈ V | c.kind = #exitPoint ∧ c ∈ s.connectionPoint}:
The set of all exit points of a Composite State.

– CPRentry(s ∈ V ) = {c ∈ V | c.entry− > notEmpty() ∧ c ∈ s.connection}:
The set of all connection point references to entry points of a Submachine
State.

– CPRexit(s ∈ V ) = {c ∈ V | c.exit− > notEmpty() ∧ c ∈ s.connection}: The
set of all connection point references to exit points of a Submachine State.

– ICS(s ∈ V ) := I(s)∪{t ∈ T | t.target ∈ CPentry(s)}: The set of all incoming
transitions of a Composite State s (including transitions to entry points of
s).

– OCS(s ∈ V ) := O(s)∪{t ∈ T | t.source ∈ CPexit(s)}: The set of all outgoing
transitions of a Composite State s (including transitions from exit points of
s).

– ISMS(s ∈ V ) := I(s) ∪ {t ∈ T | t.target ∈ CPRentry(s)}: The set of all in-
coming transitions of a Submachine State s (including transitions to entry
connection point references of s).

– OSMS(s ∈ V ) := O(s) ∪ {t ∈ T | t.source ∈ CPRexit(s)}: The set of all
outgoing transitions of a Submachine State s (including transitions from
exit connection point references of s).

Addition This mechanism allows for the addition of a new state to a state
machine. This state can be inserted between two vertices, if those are connected
by a transition. The variation point therefore is defined by at least two vertices.
’At least’, because it is feasible to insert one state between more than two vertices
at the same time, if there exist transitions from different vertices to one common
vertex. Figure 2 shows the simplest use case of this variability mechanism: When
state A is completed, transition a fires and B is entered. In this situation an
additional state C could be easily inserted by setting it as the destination of
transition a and creating a new transition a’ which leads from C to B.

This simple mechanism also works if there are more than one transition
between the two states. Figure 3 shows such a case. Depending on the signal
which arrives, A is left and a proper action is performed while moving on to B
(or C respectively after adding it). The same would hold for a case in which the
both shown transitions would not leave from one single state A but instead one
from a state A1 and the other from a state A2.

So, the general proceeding for adding a new state C between a not empty
set of existing vertices A and one existing vertex B is to select transitions which
have a vertex of A as source and B as destination and relocate those in such way,
that the new state C is set as destination. Then a new transition must be created
with source C and destination B. All other transitions which may start or end
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Fig. 2. Adding a state C

Fig. 3. Adding a state C (complex case)

in either a vertex of A or B are kept the way they are. This works for adding
Simple States as well as for adding Composite States and Submachine States if
the default entry and exit is used. If one or more Connection Points (in case of
a Composite State) or one or more Connection Point References (in case of a
Submachine State) should be used for entering the new state, this information
has to be provided alongside the information where to insert it. Furthermore for
every existing exit point of C a transition to B has to be created to prevent an
ill-formed state machine.

Fig. 4. Addition Problem

Using this algorithm has the prerequisite that all transitions coming from A
and ending in B have exactly the same destination. For cases like the one shown
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in figure 4 this does not work, because it is impossible to say where B should be
entered after adding C to the state machine. This seems to be a limitation of
the mechanism at the first sight, but a closer look reveals that the entry point
of B is actually a state itself (a so called pseudo state). Let us name it D and
we see that the first transition leads from A to B and the second from A to D.
So in fact we have two variation points instead of one. Accordingly, a solution
for such occasions is to add C multiple times.

Formally specified: Adding a state snew between a set of vertices A and one ver-
tex starget is applicable iff |A| ≥ 1 ∧ ∀s ∈ A : ∃t ∈ T : t.source = s ∧ t.target =
starget. If the precondition holds, let T1 = {t ∈ T | t.source ∈ A ∧ t.target = starget}.
Now, every transition which should not be affected by the Addition has to be
removed from T1. Another possibility would be to start directly with a defined
set T1 of transitions instead of specifying the set A. Then, of course, the pre-
condition is as follows: |T1| ≥ 1 ∧ ∀t ∈ T1 : t.target = starget. If snew is a
Simple State or a Composite / Submachine State without Connection Points
/ Connection Point References then ∀t ∈ T1 : t.target = snew and a new
transition tnew with tnew.source = snew ∧ tnew.target = starget will be cre-
ated and added to T . Adding Composite States or Submachine States with
Connection Points or Connection Point References respectively need an addi-
tional mapping function f : T1 → CPentry(snew) ∪ snew, which assigns every
transition from T1 an entry point from snew. The Addition then is defined by
∀t ∈ T1 : t.target = f(t) and ∀c ∈ CPexit(snew) ∪ snew a new transition tnew

with t.source = c∧ t.target = starget has to be created. For adding Submachine
States it is the same but with CPRentry and CPRexit instead of CPentry and
CPexit.

Omission In this mechanism the variation point is defined by all sources
of incoming transitions and the destination of the outgoing transition(s) of the
state which should be omitted. It is very important that all outgoing transitions
of the omissible state have the same destination. Otherwise it is impossible to
create a valid state machine automatically. This fact can easiest be described
by the example in figure 5: C is left, when either the event b1 or the event b2
occurs. Now, C should be omitted. At first the question arises, where to connect
the transition leaving A. Should it lead to B1 or to B2? This question can not
be answered automatically. A possible solution (at first glance) seems to be to
create two transitions starting from A, one leading to B1 the other to B2, with
each having the conjunction of the event that triggers the leaving of A (a) and
the event b1 respectively b2 as trigger. But since it is impossible in UML State
Machines to concatenate two events this ’solution’ is not realizable. Moreover,
even if it were possible, closer inspection would show, that this proposition does
not work and could lead to deadlock situations. This is due to the fact that events
which force a transition from one state to another can have a strong connection
with the state which is left. Imagine the case that in the do-activity of C an
email is sent to a customer and afterwards the system waits for either a return
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Fig. 5. Omission impossible

email (b1 ) or a incoming phone call (b2 ). Now, without having C sending the
email first, neither b1 nor b2 would arrive and A could never been left.

Reading the figures 2 and 3 bottom-up gives an impression of the way Omis-
sion works, because it can be seen as the inversion of Addition. Generally this
variability method is applicable to a state C, if C has an arbitrary number of
incoming transitions (which need not to have the same source vertex) and an
arbitrary number of outgoing transitions which must have the same destination
(let us call it B). Omitting this state C means to set B as destination of all
transitions formerly leading to C and forgetting about all the transitions which
leave from C. But deleting all those transitions from the state machine also leads
to the deletion of all the events that formerly triggered them. Referring to the
send-email example from above this seems pretty reasonable, but what if an
occurrence of an event is a precondition for entering B (B must not be entered
without the event occurrence)? In that case Omission can not be used and in-
stead C has to be replaced with a state without do-activity using the variability
mechanism Replacement. It should be noted here, that no formal rules can be
specified for deciding, if an event ”belongs” to the state which is left due to
the event occurrence or to the state which is entered afterwards, because it de-
pends on the semantic context. Therefore, the designer has to choose the proper
mechanism accordingly.

Formally specified: A Simple State somit can be omitted from a State Ma-
chine, iff ∀t1, t2 ∈ O(somit) : t1.target = t2.target. Since all transitions from
O(somit) lead to one single vertex, let starget = t.target, t ∈ O(somit). Then
∀t ∈ I(somit) : t.target = starget and T = T − O(somit). A Composite State
somit can be omitted, iff ∀t1, t2 ∈ OCS(somit) : t1.target = t2.target. If this
holds, the Omission is defined by ∀t ∈ ICS(somit) : t.target = starget, with
starget defined like in case of omitting a Simple State, and T = T −OCS(somit).
The same rules hold for omitting Submachine States, but OSMS and ISMS have
to be used instead of OCS and ICS .
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Replacement For Replacement the variation point can be defined as the
union of all sources of incoming transitions and all targets of outgoing transitions
of the state that should be replaced. The utilization of this mechanism is rather
simple: The state to be replaced is deleted from every transition where it is either
source or target and instead the new state takes the place of it. If at least the
replacing state is a Composite or Submachine State, additional information is
needed, which maps the entry and exit points of the replaced state on entry and
exit points of the replacing state. Furthermore, one should be aware of the fact
that all events which formerly triggered the leaving of the replaced state remain
untouched during replacement. Therefore, it is necessary to ensure that those
events are not correlated with the replaced state and still can occur after the
replacement.

Formally specified: A Replacement of a state sold by another state snew is defined
as ∀t ∈ O(sold) : t.source = snew and ∀t ∈ I(sold) : t.target = snew, if both sold

and snew are Simple States. If only sold is a Composite State or a Submachine
State, then the same holds but additionally the transitions in and out of entry or
exit points have to be redirected. So instead of O(sold) and I(sold), OCS(sold) and
ICS(sold) or OSMS(sold) and ISMS(sold) have to be inserted in the formula above.
If both states are Composite States, then additionally two mapping functions f1 :
sold∪CPentry(sold) → snew∪CPentry(snew) and f2 : sold∪CPexit(sold) → snew∪
CPexit(snew) have to be specified, which map all possible entry and exit points of
sold to entry and exit points of snew. With those two functions the Replacement
is described as follows: ∀t ∈ OCS(sold) : t.source = f2(t.source) and ∀t ∈
ICS(sold) : t.target = f1(t.target). For every other possible combination of the
state types of sold and snew, the domain and the co-domain of f1 and f2 have to
be changed accordingly and the proper set of incoming and outgoing transitions
of sold has to be taken (I,ICS , ISMS , O,OCS , OSMS).

3.2 Encapsulation of Varying Subprocesses

This mechanism describes the insertion of variant-specific subprocess implemen-
tations into a fixed subprocess interface. Contrary to the Extension mechanism
described later on, in this case there has to be an implementation to this interface
at any time.

In State Machines encapsulated subprocesses consist of a submachine state
and a corresponding submachine which the submachine state includes. So the
variability mechanism Encapsulation can be easily adapted for State Machines.
The variation point is a submachine state. Its entry- and exit-points define
an interface. Therefore, the corresponding submachines, which provide different
implementations, are the variants.

3.3 Extension / Extension Points

This mechanism is used to extend a (sub)process at predefined points. These so
called Extension Points allow to include additional optional behavior.
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The variation point in this case is the Extension Point, which can be
mapped to a submachine state regarding State Machines. By default the in-
cluded submachine is a submachine with no behavior, but, depending on the
favored process, another submachine could be selected instead from a set of
compatible submachines (the variants). Therefore, the Extension mechanism is
derived from the Encapsulation mechanism by restricting the default case.

3.4 Parameterization

Parameterization allows for the creation of variant subprocesses according to
the values of certain parameters. Generally, one parameter can be seen as a
variation point and its assignable values are the variants. For the subprocess
this variability mechanism has the consequence, that all possible process parts
have to be present in the subprocess.

In [7] (page 188 ff.) an approach for using Parameterization in State Ma-
chines is presented: First a state machine including all variabilities has to be
designed. The different variant-specific transitions, actions and activities in this
overall state machine are marked with Boolean guard conditions (according to
the feature to which they belong), which means that they can only fire/execute
if their guard condition is true. By setting the parameters to true or false variant
subprocesses are generated.

This proposal seems reasonable but has the problem that marking actions
and activities with guard conditions is not UML-conform. One could possibly
argue that all occurring actions and activities in State Machines are of type
’Behavior’ and therefore can have preconditions which could be interpreted in
some way as guards. But as a hurt precondition is a sign of an error in the
system, this workaround cannot be used. As a consequence, Parameterization
can only be used in UML 2.0 State Machines in the following manner: At first
the parameters have to be defined in the class the parameterized state machine
belongs to. Then those parameters can be used in guard conditions of this state
machine. In contrast to the suggestion of [7] the parameters need not to be
boolean and therefore allow a more flexible parameterization. The problem with
non-guardable actions and activities can be solved by introducing some more
states and then, instead of guarding the do-activities, guarding the transitions
to those states.

For Parameterization the variation point is a certain parameter and the
variants are the possible values of this parameter. So, both the variation point
and the variants are specified outside of the state machine and can therefore not
be seen directly in the diagram. There, only the use of a parameter in a guard
condition is apparent. This then marks a secondary variation point. Furthermore,
the Parameterization variability mechanism disregards if a certain combination
of parameter assignments leads to a valid and deadlock-free state machine. So
it is necessary to keep track of allowed or unallowed parameter combinations in
another place.
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3.5 Data Type Variability

With Data Type Variability the type of the processed data could be changed.
Since UML State Machines only show the behavioral aspect of a system, this
variability mechanism can not be adapted. But as it is possible to include UML
Activity Diagrams into a State Machine, for example in the do-activity of a
state, Data Type Variability could be modeled there.

3.6 Inheritance

As stated in [3], Inheritance on its own is not a variability mechanism, because no
variants are bound to variation points. But nevertheless it is a utility needed by
the Strategy Pattern, which is explained in the next subsection. How Inheritance
for UML State Machines works and what modifications to an inherited state
machine are allowed is explained in [7] (page 181 ff.).

3.7 Strategy Pattern

The Strategy Pattern is used to assign different variable subprocesses, which
are created by inheritance from an initial abstract process implementation, to
a certain variation point. The mapping of this variability mechanism to State
Machines is comparable with the variability mechanisms Extension/Extension
Point and Encapsulation of Subprocesses. The variation point also is a sub-
machine state and the variants are corresponding compatible submachines. The
differences are that all variants are derived from one abstract submachine and
that always one of the variants has to be chosen. Therefore, the Strategy Pattern
can be seen as a combination of Encapsulation and Inheritance.

3.8 Notation

So far some ”architecturally relevant variability mechanisms” ([3]) have been pre-
sented and their possible realization with UML State Machines has been shown.
But still more information is needed to be able to create process family imple-
mentation artifacts based on a process family architecture. The variation points
as well as the variants and their assignment to a certain variation point have to
be indicated. Moreover, the variability mechanism which is used to bind a variant
to a variation point has to be represented in some way. In [3] a notation for UML
Activity Diagrams was introduced, which easily extends the Activity Diagram
specification to support variability modeling. This extension can also be used in
UML State Machines: All State Machine elements representing variation points
are marked with the stereotype )VarPoint*. On the other hand the variants
are identified by the stereotype )Variant*. The assignment of a variant to a
variation point then is realized using UML Dependencies which carry the name
of the variability mechanism as a stereotype, as listed in table 1. Furthermore,
the use of another stereotype )Variable* is suggested to identify generally, if
an element is in some way affected by variability. For example this is helpful to
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indicate the process parts influenced by the utilization of the Parameterization
variability mechanism, because as mentioned before its variation point as well
as its variants are not visible in the diagram.

Variability Mechanism Stereotype

Encapsulation of Varying Subprocesses !Implementation"
Addition, Omission of Encapsulated Components !Option"

Replacement of Encapsulated Components !Replacement"
Parameterization — (not visible in the SM)

Data Type Variability — (not supported)
Inheritance !Inheritance"

Strategy Pattern !StrategyPattern"
Extension/Extension Points !Extension"

Table 1. Stereotypes for identification of variability mechanisms in UML State Ma-
chines (based on [3])

Although most of the entries in the table should be comprehensible and pur-
suable immediately, some may seem kind of inconsistent to what was said in
the corresponding subsections. That are the mechanisms Addition, Omission
and Replacement of Varying Components. For those, the described variation
points consist of more than one element and that does not fit to the concept of
making one State Machine element explicitly a variation point by giving it the
)VarPoint* stereotype. For Addition and Omission the solution is to add to
the process all states which are variants concerning the variability mechanism
Addition. Then, these states and all variants regarding the variability mechanism
Omission will be marked with three stereotypes: )VarPoint*, )Variant* and
)Option*. This means that such a state is a variation point and a variant at
the same time and because of the )Option* stereotype can be either added
to or omitted from the process. It is much the same for Replacement: all re-
placeable states have both the )VarPoint* and the )Variant* but not the
)Option* stereotype. The replacing states on the other hand are only marked
with )Variant*.

3.9 Implementation Strategies

State Machines are most frequently implemented by using nested switch/case- or
cascading if-constructs. Now it has to be investigated how the variability mecha-
nisms explained so far could be applied. In [11] some implementation mechanisms
for variabilities are described and compared:

– Conditional Compilation (Scatterd or Structured Preprocesser Directives,
C++ Conditional Compilation)

– Dynamic Polymorphism (Polymorphism with Subclasses, Strategy with Tem-
plate Parameters or Subclasses, Decorator)
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– Configuration (Selection on Configuration Data, Interpreter)

It is at this point assumed that the first possibility, the conditional compilation,
is adaptable for implementing State Machine variability. With this technique
some parts of the completed program can be chosen for compilation. This is
either done by scattered #ifdefs, in a logical unit (e.g. in a function) encapsu-
lated #ifs or constant variables. Since using those methods is only a matter of
removing not needed variant-depending code during compilation, there should
be no restrictions using them for this purpose. At least the mechanisms Addi-
tion, Omission and Replacement may be implemented that way. Moreover the
third issue, configuration, seems feasible. In this approach data is read from
an arbitrary configuration file and is then asked either in an if or a switch
statement, to decide which code fragment should be executed. As said in the
first sentence of this subsection, those constructs are the main concepts in most
state machine implementations anyway, which would allow an easy integration
of this implementing variability mechanism. Obviously, Parameterization would
be served best by this solution because its application requires the presence of
all options in the code which would be the case. Whether dynamic polymor-
phism can be used for implementing State Machine variability depends surely
on the way a State Machine gets implemented. This and also if this paragraph’s
assumptions concerning Conditional Compilation and Configuration hold needs
further theoretical as well as practical investigations. In such studies also a closer
look at Aspect-Oriented Programming and its potentials should be taken.

4 Example: Variability in Automotive Systems

Now a little example from the automotive domain should demonstrate the ap-
plication of three of the described variability mechanisms: Encapsulation, Addi-
tion/Omission and Parameterization.

Figure 6 shows the high level motor control process family architecture. At
this point, only one variation point is apparent, the Submachine State Starting
Motor, but because of the stereotype)Variable* of the Composite State Motor
is running, one knows that in this Composite State some more variabilities can
be found. However, before opening the engine hood, a closer look at the Starting
Motor Submachine State and the modeled variability should be taken. It can be
seen that there are two variants for this variation point and that the variabil-
ity mechanism Encapsulation of Varying Subprocesses is used. The one variant
models the starting of the motor with the existence of an immobilizer and the
other the starting without one. By default the version without immobilizer is
bound.

In figure 7, the hood has been opened and the internals of the Motor is run-
ning Composite State are revealed. Now, two uses of variability mechanisms can
be observed. The first is in the bottom region of the state. The Composite State
Distance Checker is running is marked with the three stereotypes)VarPoint*,
)Variant* and )Option* and marks therefore a use of the variability mecha-
nism Addition/Omission. As a consequence, this state can either be added to or
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!

Fig. 6. High-level process with variability depending on the presence of an immobilizer

omitted from the state machine. The first case stands for a car equipped with a
distance checker and therefore, by entering the Motor is running state and thus
activating the two regions, the state would be entered and the distance checking
and corresponding speed adjusting would be performed as long as the car is run-
ning. In the second case, which represents a car without that feature, the region
would be entered and the transition from the initial state would directly lead to
the final state of that region. The second variability in this diagram can be found
in the upper region. The optionality of the feature cruise control is modeled with
the aid of the variability mechanism Parameterization. As mentioned in section
3, the variation point lies outside the diagram, so the use of this mechanism
could only be observed by the )Variable* stereotype of the transition using
the parameter cruiseAvailable in a guard condition.

In this example, the three features immobilizer, cruise control and distance
checker are independent and not related to each other which means that they
can be each present or not present in any possible combination. But if there
were any relation, e.g. that the distance checker requires the presence of a cruise
control or that the immobilizer and the cruise control cannot be present at the
same time, then those dependencies would have to be described outside of the
State Machine in another document.
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Fig. 7. Composite State ’Motor is running’

5 Conclusions

In section 1 the increasing demand for process oriented software and the re-
sulting need of product family engineering approaches for processes has been
depicted. Thereby the investigation of the capability of UML 2.0 State Ma-
chines for modeling variabilities has been motivated. After a general mapping of
common generic process elements to State Machine elements, some of the most
important variability mechanisms were explained and their possible utilization
in this diagram type was analyzed and described. Furthermore, a notation was
provided, which allows a seamless integration of this variability concept into
UML State Machines by using only lightweight UML extensions. Additionally,
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a short look on implementation strategies has been taken and in an example
process of a motor control unit, the results of section 3 have been demonstrated.

Future research now has to take a deeper look at implementation mechanisms
for variability and the dependencies between them and the variability mecha-
nisms mentioned in this paper. It has to be investigated in what way the choice
of a certain variability mechanism in the process family architecture enforces the
use of a certain implementation mechanism. Moreover, it should be researched
whether the utilization of the same variability mechanism in different modeling
notations, e.g. in UML Activity Diagrams and State Machines, leads to the same
set of possible implementation strategies or not.
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Abstract. A few years ago the research field of Business Process Man-
agement emerged to cope with the challenges of enterprises regarding
flexibility of their business processes. To achieve this goal several tech-
nologies for modeling, analysis, execution and management of business
processes have been developed.
For the integration of IT-systems into such business processes web service
technology is preferred, but in the majority of the cases the systems that
form IT-landscapes are not available via service-oriented interfaces. This
makes it hard to integrate these systems into business processes.
The paper in hand proposes a methodology for service enabling, which
means the adaption or modification of non-service oriented systems in
order to provide their functionality as services. The methodology pro-
vides a structured and repeatable procedure that can be used for the
service-oriented integration of systems into business processes.
For evaluation purposes the methodology was applied in a case study.
The case study considers a common service enabling scenario and shows
how the methodology can be used for integration of IT-systems in a
service-oriented manner.

1 Introduction

Today enterprises are under tremendous pressure to flexibly react on changes
of their market, upcoming trends, new competitors or other changes in their
business. For this purpose the field of Business Process Management (BPM, [1])
provides a set of technologies for implementing infrastructures that are able to
manage business processes and that are flexible enough to react on permanent
changes. These technologies include modeling, analysis, execution, composition,
management and monitoring aspects of business processes.

To achieve the goal of integrating IT-systems into business processes BPM
goes hand in hand with the web service community, which provides the capa-
bility for standardized execution of activities during the enactment of business
processes. Therefore it is necessary that the IT-systems provide service-oriented
interfaces. This is often not the case because IT-landscapes of enterprises to-
day consist of poorly documented and structured legacy systems, web-based
client-server or multi-tier systems, collaboration tools like instant messaging and
document-based desktop applications.



In the majority of the cases these applications are mission critical for the
enterprises and rewriting them in a service oriented manner is too expensive and
risky. This leads to the question how to enable traditional non-service oriented
applications to provide their functionality as services.

Another point is that Service Oriented Architecture (SOA, [2]) has the poten-
tial to change drastically the way in which software is developed, because global
markets for services provide possibilities for reuse at a much greater scale. This
leads to the need for providing competitive services to be offered on these mar-
kets, but lots of what makes a service competitive is already implemented in the
traditional systems that form today’s IT-landscape. To make use of the potential
provided by SOA we need methodologies for migrating those traditional systems
to service-oriented systems so that they can be adapted in a business process
(see [3] for more information about motivation of migrating to service-oriented
systems).

The step of finding and providing service-oriented interfaces for non-service-
oriented systems is called Service Enabling. Until now there is no common defi-
nition of service enabling in the public. For this reason it was necessary to find
a common definition that can be used for this work. The definition of the term
Service Enabling that is used in this paper is given below.

Service Enabling is the adaption or modification of non-service ori-
ented (typically monolithic) systems in order to expose their functionality
via service-oriented interfaces.

Important viewpoints for service enabling are:

Business Aspects like analysis of processes, selection of mission-crititical ap-
plications for migration to service-oriented systems, risk management and
coordination between IT and management departments.

Technological aspects like software analysis (e.g. re-engineering techniques),
migration and integration methodologies.

This work aims on the development of a process-driven service enabling
methodology. The methodology uses the processes where the service enabled
IT-systems should be integrated later on as starting point for service enabling.
This process-centric view helps to find good services that contribute to the over-
all quality and performance of the process.

The methodology can be used as a development process for integrating IT-
systems into business processes as well as providing services on the global mar-
ket. It provides a structured and repeatable procedure that helps enterprises to
migrate their IT-landscape to service-oriented processing.

The remainder of this paper is organized as follows. First related work is
investigated in section 2. After that the proposed service enabling methodology
is presented in section 3.1. For evaluation of the methodology it was applied in
a case study. The case study considers a common service enabling scenario and
is presented in section 4. Finally the results and an outlook about future work
are summarized.



2 Related Work

Traditional approaches for service-oriented system integration aim at wrapping
the system as a black box. This ”black box” (or adapter) approach wraps the
interfaces of an existing system by using service-oriented technology. This allows
the integration of the system as a service (or a collection of them). The advantage
of this approach is that only the system interfaces must be analysed and the
internals of the system can be ignored. The main disadvantage of the ”black
box” approach is that it can complicate system maintenance and management.
More information about this approach can be found in [4].

Another approach is the complete reverse engineering of existing code (also
called ”white box” approach) in order to extract business logic for re-implementation
in a service-oriented manner. Thus it can solve the special problems of legacy
systems like maintenance, management and changeability. The problem is that
this approach can be very complex and expensive and it is not always possible
to extract the full business logic perfectly.

Zhang and Yang propose an approach for incubating services in legacy sys-
tems [5], so that they can be used in a service-oriented environment. The ap-
proach is a kind of ”grey box” approach, which means that only some valuable
components are extracted from the legacy system and provided as self-contained
services.

Depending on the situation all the presented approaches are useful, but a
surrounding methodology is missing that guides engineerers through the whole
migration process. On the one hand such a methodology should provide a step-
by-step procedure for service enabling that leads to good services and thus con-
tributes to the overall quality and performance of the process. Additionally it is
necessary that the methodology is flexible enough to handle changing require-
ments.

Some concepts from Zang and Yang’s methodology can be reused for build-
ing a service enabling methodology, because their approach takes already some
service enabling related topics into account, for example domain analysis, ser-
vice identification and service packaging. However changes in the structure as
well as some additional steps are necessary in order to create a successful service
enabling methodology.

3 Proposal for a Service Enabling Methodology

This section will introduce the methodology that is proposed for service enabling.
Therefore the requirements that must be fulfilled by such a methodology are
described first.

The list of requirements that must be fulfilled by an useful service enabling
methodology are listed below.

1. It must cover all aspects from process up to integration and system level in
order to identify good services.



2. It must provide a step-by-step procedure that leads engineers to the point
of a service enabled system.

3. The methodology must contribute to the overall quality and performance of
the process by supporting identification of suitable services.

3.1 Methodology Description

After presenting the requirements for the service enabling methodology, the de-
tails of the proposed methodology will be discussed now. Figure 1 illustrates the
methodology. It shows an iterated procedure for service enabling that consists
of four main parts. These parts are discussed in detail below.

Fig. 1. Service Enabling Methodology

The first part is understanding the processes in our domain and identification
of ideal services for that domain. Therefore the methodology starts with a domain
analysis of the considered processes. In the domain analysis procedures, concepts
and entities of the particular domain and the dependencies between them are
detected.

After that the results of the analysis are modeled in the domain modeling
step. The results of this modeling are process diagrams (e.g. in the Business
Process modeling Notation (BPMN, [6]) and diagrams for static structures like
ERDs (ERD, [7]) or UML class diagrams (UML, [8]). Which modeling notations
are used depends on the domain and experience of the particular project and
involved people.

The next step of the methodology is the identification of ideal services that
support exactly the needs of the domain. The result of the service identification
is a set of functional descriptions of services that are useful to be exposed as



independent services from the process point of view. After that the analysis of
the process and domain level are finished for now and we can continue with the
system level.

After ideal services for the domain have been found, it is necessary to take
a look at the available systems and analyse what services they can provide. The
functional description of the identified services can be used for selecting and
assessing appropriate systems for implementation of the services. Assessment
means that the system is only considered from the functional point of view. The
internals of the system are not considered in this step, because there is potentially
a huge number of systems that might be useful. Thus unpromising systems are
sorted out from the list of candidate systems in the system assessment.

A system can be seen as useful for implementing a service if the following
questions can be answered with ”yes”.

1. Does the system contain some reusable and reliable functionality (or business
logic)?

2. Are experts available for the programming language of the system?
3. If there are licence costs, have we already a licence or is it possible to buy a

licence for the system?

After selecting promising system candidates for implementing the services
it is necessary to analyse the details of the selected systems in the system un-
derstanding step. This includes modeling the system, detection of system com-
ponents and top level functions that can be used for service implementation.
Additionally it is necessary to map domain model concepts to system level con-
cepts. This includes analysis of input data, mapping of domain to system classes
and so on.

As described in section 2 it might be reasonable to split the system into
independent components, depending on the type and structure of the selected
system. If there is a need to split the system into independent components, it
must be asked if the reused components are fairly maintainable compared to the
whole system. If the answer to this question is ”no” it will be better to use the
”black box” approach instead of extracting some components like in the ”grey
box” approach.

Extracting and refining components is only necessary if the used system
provides diverse functionality that should be splitted for building self-contained
services, e.g. if a system provides mail and calendar functionality these two can
be splitted into two different services.

After we know the ideal domain services as well as existing physical services,
it is now possible to use this information for finding services that are a good
trade-off between the ideal and existing services.

The information from the system understanding is used together with the
functional descriptions of the ideal services to define the services that should
be implemented. These services are something between the ideal services that
support exactly the domain requirements and the existing physical services. Af-
terwards the interfaces for the services are defined. For this purpose the Web



Service Description Language (WSDL, [9]) is used in the area of web services.
In the interface definition it is necessary to define message style and encoding
as well as exceptions that can be produced by the service.

Sometimes it turnes out that the selected system is not qualified for imple-
menting a service, because the comparison between system and domain model
shows non-bridgeable differences between the system and domain model. In this
case it is necessary to proceed with another system that was selected in the
system assessment.

At last service enabling has an additional aspect that is not covered by the
original methodology. Because the methodology presented here uses business
processes as starting point of service enabling, the integration of the resulting
services into the processes needs to be considered. In other words it must be
analysed how the services are used later on. This aspect is founded by the ques-
tion where the input data for the service comes from and how is the output data
used.

In the integration analysis incoming and outgoing messages of the services
as well as the dependencies between them are analysed. This includes defini-
tion of data mappings, e.g. via XSLT transformations or BPEL XPath copy
mechanisms.

During the integration analysis it is sometimes realized that additional ser-
vices are necessary, e.g. for providing data from the external world. This is the
point where the iteration comes into play, because if it is realized that additional
services are needed, they must be added to the domain model and the iteration
starts from scratch. Another argument for the iteration is that the processes can
change during a service enabling project. Iterated development processes have
been introduced not so long ago, because they support flexibility in terms of
changing requirements or caused errors.

After one or more iteration rounds finally all service interfaces are well de-
fined. Now it is possible to implement the services and package them together
with according system components. After that the services can be deployed and
published.

4 Case Study Results

In this section the case study that was used for evaluation of the methodology is
presented. The case study is based on a common service enabling scenario that
is described as follows.

In a company each employee collects the number of hours for the projects
he worked on. This information is stored in the database of a time tracking
system. Every three months a manager is responsible for the creation of a report
that summarizes the company efforts and how they have been spent. For this
the manager collects the effort information from the time tracking system in
an Excel file. This Excel file is sent via e-mail to a consulting company. The
consulting company uses an internal system to create some nice looking charts
for the report from this information.



Additionally the manager is responsible for creation of a report document
from a template and for writing some effort documentation. After receiving the
diagrams from the consulting company he assembles the report and publishes it
to an internal web portal. After that the process is finished.

Because the company restructures their IT-infrastructure to service-oriented
processing, this interaction with the consulting company should be automated
by a service for creation of the charts.

4.1 Domain Analysis and Modeling

In the first methodology steps the domain was analysed and modeled. The re-
sulting process was modeled using BPMN as shown in figure 2.

Fig. 2. Report Creation Process

Additionally the entities that are relevant for the process and the relationship
between them have been modeled as an ERD1. The ERD is shown in figure 3.
The diagram contains the company and its environment including employees,
customers, projects. Important is the ”Work Item” relation that describes the
effort spent by an employee for a specific project. These work items are used in
the next step for definition of the ideal service.

4.2 Service Identification

In our scenario we want to avoid that the manager must manually collect the
effort information in an Excel file and send it via e-mail to the consulting com-
pany. Thus an ideal create diagram service will take work items from the time
tracking system as input and should create diagrams as output. How this service
is integrated with the existing systems is part of the integration analysis.
1 The ERD style that was used for modeling comes from the Fundamental Modeling

Concepts [7].



Fig. 3. Domain Entity-Relationship Model

4.3 System Assessment and Understanding

After the identification of ideal services it is possible to select appropriate system
candidates for implementing the services. The consulting company uses an self-
written application that is based on the framework JFreeChart [10] for creation
of diagrams.

The questions from the system assessment can all be answered with ”yes”. In
our case a system is already available that has some reusable and reliable func-
tionality, namely creation of charts and diagrams. Furthermore the consulting
company owns this application and a license is of no importance.

After the first assessment the selected system was analysed. Even if there is
some documentation available about JFreeChart, it was also modeled for com-
pleteness of the case study. The resulting UML class diagram is shown in figure
4.

Fig. 4. System Model



Now we can try to map domain concepts to system concepts. In our scenario
we can map the chart entity of the domain model to the JFreeChart class.
Futhermore projects are mapped to categories of a CategoryDataset and
the employees with according work hours are mapped to key/value pairs of a
category. In other words each project (category) contains a set of employee/work
hour (key/value) pairs.

If such a mapping is not possible it is necessary to select another system from
the list that results from the system assessment. For example it is imaginable
that JFreechart only supports the creation of pie charts. If so it will be impossible
to create a categorized chart for projects, employees and assigned work hours.

Since we want to integrate the system as a service, we can not use it via
traditional user interfaces like GUIs or command line. For this reason we need
to identify the top-level functions that can be used for implementing the service.
In the case of JFreeChart all needed top-level functions are combined in the
ChartFactory class shown in figure 4.

4.4 Service Definition and Interface Design

Now it is possible to define our final service. As mentioned before an ideal service
for our domain will take work items as input and should create charts as output.
Since work items do not contain all necessary information for creation of charts
with the existing system, e.g. title, resolution and so on must be provided. This
information was provided by the consulting company before and it is necessary
to add this information to the input message of our service.

Therefore the input message of the service should contain chart descriptions
instead of work items. This chart description can contain the information of work
items in form of categorized key/value datasets as well as additional information
that is necessary for creating the charts. This is also a benefit for the consulting
company, because a more generic service can be offered to other companies as
well.

If we have this definition of our final service, we can now define the interface
of the service. An excerpt from the defined WSDL is shown in listing 1.1.

Listing 1.1. Service Interface Description
<wsd l : d e f i n i t i o n s name=”ChartServ ice ” . . .>

<wsd l : types>
<xsd:schema

targetNamespace=” ht tp : //www. example . org / char t s /ChartServ ice ” . . .>

<!−− t y p e d e f i n i t i o n s −−>
<xsd:complexType name=” char tDesc r ip t i on ”>

<xsd : sequence>
<xsd:e lement name=” t i t l e ” type=” x sd : s t r i n g ” />
<xsd:e lement name=” s u b t i t l e ” type=” x sd : s t r i n g ” />
<xsd:e lement name=” format” type=” x sd : s t r i n g ” />
<xsd:e lement name=” an t iA l i a s ” type=” xsd :boo lean ” />
<xsd:e lement name=”threeD” type=” xsd :boo lean ” />
<xsd:e lement name=”data” type=” tns :da ta ”

minOccurs=”0” maxOccurs=”unbounded”/>
</ xsd : sequence>

</xsd:complexType>

<xsd:complexType name=”data”>
<xsd : sequence>

<xsd:e lement name=”key” type=” x sd : s t r i n g ” />
<xsd:e lement name=”value ” type=” xsd :double ” />
<xsd:e lement name=” category ” type=” x sd : s t r i n g ”



minOccurs=”0” maxOccurs=”1” />
</ xsd : sequence>

</xsd:complexType>

<xsd:complexType name=” createChart ”>
<xsd : sequence>

<xsd:e lement type=” tn s : cha r tDe s c r i p t i on ” />
</ xsd : sequence>

</xsd:complexType>

<xsd:complexType name=” createChartResponse ”>
<xsd : sequence>

<xsd:e lement name=” chart ”
type=” xsd:base64Binary ” n i l l a b l e=” true ”/>

</ xsd : sequence>
</xsd:complexType>

<!−− me s s a g e e l e m e n t d e f i n i t i o n s −−>
<xsd:e lement name=” createChart ” type=” tns : c r ea t eChar t ”/>
<xsd:e lement name=” createChartResponse ”

type=” tns :c reateChartResponse ”/>

. . .
</ w s d l : d e f i n i t i o n s>

4.5 Integration Analysis

The integration analysis is needed for defining how the service should be used
later on. If we assume that the effort tracking system provides a service for
retrieving work items, then we can combine the services by using a BPEL [11]
process engine or a self-written application. In each case it is necessary to define
a mapping between the work items and the chart description. In case of BPEL
this can be done via XSLT [12] or BPEL XPath copy mechanisms [11].

Additionally it is necessary to provide the needed additional information like
chart title or resolution. If we use BPEL for invocation of the service, then we can
add a new service to the domain model that requests the manager for providing
the additional information. In this case we must enter a new iteration of the
methodology in order to analyse how this service can be provided.

4.6 Interface Implementation, Packaging and Publishing

At last the interface for the service must be implemented with an appropriate
techology, e.g. Java or C#. For implementation of the service the EJB standard
was selected, because JFreeChart is written in Java and EJB allows standard-
ized cross-platform deployment. From EJB 2.1 on web service interfaces are
supported as well. After packaging the EJB along with the application libraries,
the resulting JAR can be deployed in an application server like JBoss and the
service can be registered in an UDDI registry.

The service is now ready for use. A chart that was created with the final
service is shown in figure 5.

5 Summary and Outlook

This work has described the need for service enabling of traditional non-service-
oriented systems. For this reason a methodology for service enabling was pro-
posed. The methodology provides a step-by-step procedure that helps to find



Fig. 5. Resulting chart

good services by negotiation of trade-offs between the ideal services for a do-
main and the existing physical services.

It was shown that the methodology works in common service enabling sce-
narios through applying it in a case study. However this shows only that the
methodology works in general. For further evaluation it will be necessary to
define measurable criteria and compare this approach with others in order to
identify benefits and drawbacks of the methodology.

Additionally there are some tasks that are not covered by the methodol-
ogy until now. These tasks include migration of data when extracting system
components as well as monitoring of service execution in order to improve the
performance of the process. It is part of future work how these issues can be
integrated into the methodology.
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Abstract. In today’s enterprises, failure during business process enact-
ment can lead to lost revenues, cancelled contracts and even sues for
caused damages. To find failures quickly, we need to be able to conduct
root-cause analyses from business processes to the used enterprise ser-
vices of a service-oriented architecture (SOA) down to the software and
physical elements of the IT infrastructure. In order to not only find fail-
ures but to develop and apply strategies to avoid them, we require a
model that relates the aspects of a SOA with those of the IT infrastruc-
ture. Because no such model exists yet, we propose to add a process
model based on the concepts of the Business Process Execution Lan-
guage (BPEL) [2] to the Common Information Model (CIM) [1].

1 Introduction

In today’s severe competition, global-running enterprises have to keep their
business processes and services running at any cost. Failure during business
process enactment can lead to lost revenues, cancelled contracts or even sues
for caused damages. Because business processes in today’s enterprises rely on
service-oriented architectures (SOA), an effective monitoring of all aspects of a
SOA and the underlying IT infrastructure is required to locate failures easily,
solve them rapidly and apply solutions quickly. However, to find the root causes
of such failures and their impact on other elements of the service landscape, it is
not only necessary to monitor each aspect separately but to establish traceabil-
ity between them. This would also allow us to not only monitor a SOA to react
on failures but to simulate failures in different scenarios beforehand in order to
develop and apply strategies to avoid them in the future.

In order to trace failures, we require a model in which traceability between the
aspects of a SOA and the IT infrastructure is established, and an instance model
that contains information about the concrete elements of a particular service
landscape and their state. However, in most enterprises, it is often problematic
to create such an instance model for a number of reasons. Firstly, the knowledge
about the required aspects is often spread across different organizations and
stored in various silos. Secondly, a model that allows to represent this information
is currently not available. Thus, to conduct the desired simulations, a model with
established traceability is required.

Because we want to talk about business processes that rely on a SOA, the core
concept of such a model is a service. Services provide business functionality on a
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coarse-grained level through a well-defined interface. The business functionality
is provided or implemented by software elements. Software elements are part of
software systems that provide access to the implemented business functionality.
Software systems are usually deployed on one or more physical elements. Physical
elements might be connected with each other over network connections. Finally,
the coarse-grained business functionality provided by services is orchestrated by
business processes to fulfil a certain goal.

When we talk about SOAs, we mean web service architectures (WSA) [3] as
a certain technical realization. Therefore, with services we mean Web Services
that have a service interface described using WSDL [5] and can be accessed using
HTTP as transport protocol and SOAP as message format. When we talk about
software elements and systems, we want to focus on those that are common in
the J2EE-world [7]. Concerning software systems, these are for example J2EE
application servers, databases, Business Process Management Systems (BPMS)
and applications like SAP/R3 modules. Concerning software elements, these are
EJBs, Servlets and J2EE resources. When we talk about business processes,
we consequently mean processes specified in the Business Process Execution
Language (BPEL) [2]. And with physical elements, we mean machines, switches,
routers or bridges.

Fig. 1. Overview of the core concepts of the required model, their relationships and
the layer they belong to.

The aforementioned core concepts and their basic relationships are illustrated
in figure 1. As you can see, the concepts belong to four layers. They are derived
from the viewpoints proposed in [4]. The identified layers are:
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– a process layer, that contains the activities of a process, their execution
order and their relationships to the services that provide the used business
functionality,

– a service layer, that contains the services of the service landscape that are
implemented and provided by software elements and systems, and integrated
into business processes,

– a software layer, that contains the software elements and systems that imple-
ment or provide access to business functionality, their relationships among
each other and their deployment on certain physical elements,

– a technical infrastructure layer, that contains the physical elements and the
network connections between them.

In this paper, we examine how the Common Information Model (CIM) that
covers the three lower layers can be enhanced by concepts of the BPEL model
that covers aspects of the two upper layers to provide traceability across all four
layers. Having a model that relates all aspects allows us to answer the following
key questions:

– What is the root cause for a failure during process enactment?
– Which processes are affected when a physical or software element breaks

down?

Because, we are concerned about simulation, we want to look for a model
that allows to answer the second question.

This paper is organized in the following manner. In section 2, we give an
introductory example of a service landscape and describe two scenarios for a
better understanding. We then look at the BPEL model for describing business
process and CIM for describing IT infrastructures. We also show that these
models are not connected yet and that we have a problem with traceability
because of that. In section 3, we propose to add a process model based on the
concepts of BPEL to CIM to create one model with established traceability
across all four layers. We also show the applicability of the approach on the two
described example scenarios. In section 4, we give a conclusion of the achieved
results and a summary of the next steps towards simulation.

In this paper, we use the Business Process Modelling Notation (BPMN) [8]
to illustrate the elements of the process layer, the block diagram notation of the
Fundamental Modelling Concepts (FMC) [9] to illustrate the elements of the
software layer, circles to illustrate the services of the service layer and, finally,
an own notation to illustrate the technical infrastructure layer consisting of boxes
representing physical elements and lines representing the network connections
between them. We also use the Unified Modelling Language (UML) [10], later,
when we add the process model to CIM.

2 Existing Models and the Problem of Traceability

In order to simulate failure scenarios and to be able to reason about the impact
of an error in one element to the other elements of a service landscape, we need:
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– a meta model - that defines all concepts to express classes, their properties
and their relationships

– a model - that contains all classes to describe the concrete elements of the
four layers and their relationships

– instance models - that contains a representation of all actually existing ele-
ments that can be found in the four layers of a service landscape and their
state

Having a model and an instance model for a certain simulation, we would be able
to reason about failures and their impact. Because there exists no such model yet,
we want to look at BPEL for describing business process and CIM for describing
IT infrastructures in this section. However, to get a better understanding for
what we require the model and the instance models, we, first, want to have a
look at an example service landscape.

2.1 An Introductory Example

Figure 2 illustrates various elements that might really exist in a service landscape
of an enterprise, like the machine M1 or the database server OracleDB. All these
elements can be described in an instance model, which then can be used together
with the model to simulate a failure scenario.

Fig. 2. An example service landscape of an enterprise.
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As you can see, there are two process definitions Process 1 and Process 2
in the service landscape that can be enacted by two different BPMS BPMS1 and
BPMS2. Process 1 consists of two activities Do A and Do B, and Process 2 of
three activities Do C, Do D and Do E. All these activities define an invocation of
one of the services Service 1-4. One can also see that activity Do B and Do C
both depend on the same service.

The services are provided by different software elements and systems. Service
1 and Service 2 are provided by two EJBs EJB1 and EJB2 that run on a J2EE-
Server J2eeServer1. Both EJBs depends on the availability of the Oracle DB
database. Service 3 is provided by two clustered SAP/R3 instances. Both de-
pend on the SAP DB database. Finally, Service 4 is provided by EJB3 that runs
on another J2EE-Server J2eeServer2.

The software systems are deployed on 8 machines M1-8 and connected by 3
switches S1-3.

Having described the elements of the instance model, we can now develop
the two following scenarios for failure simulation to point out how a model with
established traceability can help us to identify the impact of the failure.

Scenario 1: In the first scenario, we want to know which impact an error of
element SAP/R3 I1 would have on our business processes. We can see that this
element provides Service 3 which is only used by activity Do D of Process 2.
One can also see, that Service 3 is provided by a clustered SAP/R3 system and
that an error of the first instance of this cluster would have no impact on the
enactment of Process 2.

Scenario 2: In the second scenario, we want to know which impact an error of
the whole SAP/R3 cluser has on our business processes. We can see that because
Service 3 is provided by the cluster only, an error would have an impact on
the enactment of Process 2.

Having an understanding of the problem to solve, we now want to examine
the existing models and the aforementioned problem of traceability.

2.2 Describing Business Processes with BPEL

The BPEL model allows to describe business processes in two ways: as executable
processes and as abstract processes. An executable business process, on the one
hand, describes the actual behaviour of a participant in a business interaction.
An abstract business process, on the other hand, contains the descriptions for
business protocols, which means that it describes the message exchange of the
business party involved in the business protocol without revealing the internal
behaviour.

An enacted BPEL process can be used as Web Service and can also orches-
trate a number of other Web Services. The abstract process part is therefore
obviously used to create the service operations for the WSDL service descrip-
tion that enables a BPEL process to be used as Web Service in an interaction,
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whereas the executable process part defines the orchestration of number of Web
Services using their service operations. Because we are concerned about orches-
tration, we want to focus on the basic elements that are required to define the
executable process part.

A BPEL process can be defined using the Process class. Each process can
have exactly on initial activity. An activity in BPEL can be defined using a
subclass of the class Activity. BPEL provides various classes to defines basic
and structured activities of a process. Whereas basic activities define a certain
execution step, structured activities define the execution order of a number of
activities. Because we only want to represent basic processes in our simulations,
we want to focus on the three activity classes Invoke, Flow and Sequence of
BPEL.

With an Invoke activity, we can define the invokation of a particular Web
Service operation. We therefore reference a particular port and operation defined
in the abstract part of a WSDL service description and a certain partner link
that is also defined in the BPEL process. The partner link references a certain
partner link type that is usually defined in a separate BPEL partner definition.
This partner link type, finally, references the port type and the address defined
in the concrete part of the WSDL service description via a WS-Addressing [6]
endpoint reference.

With Flow and Sequence activities, we can define the execution order of a
number of activities. With a Sequence activity, we can define the sequential
execution of a number of activities. Using a Flow activity, we can define the
concurrent execution and synchronization of a number of activities. Concurrent
execution means that the execution path can be split into multiple execution
paths that are executed in parallel. Synchronization means that a number of
execution paths that run in parallel are synchronized to one single execution
path. We can express the synchronization dependencies between activities using
the Link class. A Link represents a synchronization point that can be used to
link two activities. Therefore, for each Activitiy we can define a number of
incoming and outgoing links. To synchronize a number of incoming links we can
also define a joinCondition, that defines the condition under which the activity
can be enacted. We can also define transitionConditions for outgoing links
to define which path(es) should be taken after an activity has been enacted.

We can see that BPEL provides basic constructs to describe business processes,
although we did not present all of them in detail. We have also shown how Web
Services can be integrated into BPEL processes. However, because a WSDL ser-
vice description does not reference the software element that actually implements
the services, the link between service and service providing software element is
missing.

2.3 Describing IT Infrastructures with CIM

The Common Information Model (CIM) developed by the Distributed Manage-
ment Task Force (DMTF) is an approach to the management of different aspects
of IT infrastructures, such as systems, networks and users, that is based on the
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object-oriented paradigm. CIM provides a management model to establish a
common conceptual framework for the description of the managed environment.

The management model is based on a mature meta model that defines con-
cepts like Class, Property, Qualifier to be able to classify managed elements
and concepts like Association and Reference to describe relationships and
dependencies between them. It consists of:

– a core model - that contains a basic set of classes that are applicable to all
management domains

– common models - that contain classes common to particular management
domains, such as network, operating or database systems

– extension schemas - that represent technology-specific extensions of the com-
mon models, such as classes for the description of the windows operating
system.

The core model establishes a basic classification of the elements and as-
sociations of the managed environment. The base class of the class hierar-
chy is ManagedElement which is further subclassed to ManagedSystemElement,
Configuration, Setting, StatisticalInformation and others. The Managed
SystemElement is further subclassed to LogicalElement and PhysicalElement.
Whereas a PhysicalElement represents any component of a system that has
a physical identity, a LogicalElement represents systems themselves, system
components, system capabilities, software and services. The difference between
ManagedElement and ManagedSystemElement is therefore that the later one also
has a state like ’OK’ or ’Starting’ that indicates the operational status of the
represented element. A Configuration aggregates Settings that define certain
parameters to be applied to one or more ManagedSystemElements and there-
fore defines a certain behaviour or functional state of such an element. The
class StatisticalInformation is the base class for any kind of statistics for a
managed element.

The core model provides two different association types, Component and
Dependency association, that can be established between ManagedElements resp.
ManagedSystemElements and all subclasses. Whereas a Component association
establishes a ’part of’ relationship between ManagedSystemElements, a Dependency
association describes a functional dependency or existence dependency between
two ManagedElements. An association in CIM is represented by a class that has
two or more references to the associated classes.

There are three other classes of the core model, that are important for
this work: System, Service and ServiceAccessPoint (SAP). A System rep-
resents individual entities that can be uniquely identified and are more than
the sum of their parts. A System is therefore a host for Services, SAPs and
SoftwareElements which are all subclasses of ManagedSystemElement. A Service
describes a certain functionality provided by a System (e.g. the capability to val-
idate a credit card). A SAP defines the way the provided functionality can be
accessed (e.g. via a certain URI). The functionality is implemented by one ore
more SoftwareElements. A Service can be composed out of other Services
and can depend on the functionality of other Services of the System. A Service
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might also depend on SAPs that provide access to Services of other Systems.
All the mentioned associations are represented by subclasses of the Component
and Dependency association.

The power of CIM lies in the ability to define an arbitrary number of rela-
tionships and dependencies between Managed Elements without changing the
referenced classes. With the described classes of the core model and the sub-
classes of the various common models it is possible to describe a number of
different systems ranging from database systems to network systems. However,
we can state that CIM does not provide a common model for process manage-
ment.

2.4 Problems Concerning Traceability

When we look at the two presented models, we can see that, on the one hand,
BPEL and WSDL allow to describe the business processes and enterprise services
of a SOA, and that traceability between both aspects is established. However,
a WSDL description of a service does, besides an URI by which the service can
be accessed, not define which software element actually provides the service.
Therefore, BPEL and WSDL cover the aspects of the process and service layer
but not of the software layer.

CIM, on the other hand, allows to define all logical elements and physical
elements of the IT infrastructure. We also know that in CIM a SAP can de-
scribe an URI that can be used to access the provided service. Therefore CIM
covers aspects of the service, software and technical infrastructure layer and es-
tablishes traceability between them; but it does not cover aspects of the process
layer. Thus, to establish traceability across all four layers, we obviously have to
somehow connect BPEL and CIM.

3 Connecting the Models to Establish Traceability

When we connect the models, we want to use the CIM core model as base model
and use the concepts of BPEL to add a common process model to CIM. We
use the CIM core model as base because, as aforementioned, it is based on a
mature meta model and allows to define Dependency and Component associa-
tions between arbitrary classes. This perfectly fits our requirements for a model
for failure simulation. Because only through the definition of dependencies we
are able to analyze the impact of a failure of one element to the other elements
described in an instance model.

Why can BPEL and CIM be connected? We can connect both models
because the service definition used in BPEL and WSA is basically the same
as in CIM. WSA defines a service as ”an abstract resource that represents a
capability of performing tasks that represent a coherent functionality”. This
definition fits with the service definition used in CIM, in which a service provides
some (technical) functionality that is implemented by a software element and
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can be accessed by a SAP. We have already mentioned that a SAP can be used
to describe an URI, which basically defines the access to a certain resource.

How can BPEL and CIM be connected? Because in the CIM core model
a service can be accessed via a SAP, an invoke activity in our new process
model relies directly on one SAP. It relies on only one SAP, because we do not
want to consider situations where multiple SAPs provide access to basically the
same service that is only implemented differently (e.g. service bus). The SAP
that is used is actually the one defined in a WSDL service description by an
address, referenced through a WS-Addressing endpoint reference in a BPEL
partner definition and used by an invoke activity of a BPEL process definition
through referencing a certain partner link.

3.1 Formalizing the Process Model

Figure 3 illustrates the formalization of the process model as a UML class
diagram. The process model is build around the two classes BPMSystem and
Process.

A BPMSystem represents a System (BPMS) that is able to enact processes
based on the known process definitions. However, process definitions can be
known and used for enactment by multiple BPMSs. This relationship is described
by the BPMSystemProcess dependency.

A Process represents a BPEL process definition. The Process class and
the classes used to describe the elements of a process are all subclasses of
ManagedElement because they contain basic management information. To de-
scribe a BPEL process for simulation purposes, we decided to take a minimized
set of classes from the BPEL model that can be extended by additional classes
when necessary. These classes are the abstract class Activity, the class Invoke
for defining service invocations, the class Flow to define concurrent as well as
sequential activity executions and the class Link to be able to define synchro-
nization points.

A Process has exactly one initial Activity in the process model, which is ex-
pressed by the ProcessActivity dependency. An Activity can either be a Flow
activity or an Invoke activity. A Flow activity contains a number of Activities
and Links. Both dependencies are described by the classes FlowActivities
and FlowLinks. The activities are linked together using the OutgoingLink and
IncomingLink dependency. Both dependencies represent the link concept used
in BPEL. An Invoke activity is connected to exactly one SAP. The InvokeSAP
class describes this dependency. The dependency establishes the desired trace-
ability between the process and the service layer. A SAP actually provides access
to the functionality of exactly one Service.

The introduced dependencies bascially state that if an error in a Service
occurs, the SAP that provides access to the Service, all Invoke activities that
use the SAP to access the provided functionality, the successor Activities and
the Process itself are affected.
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Fig. 3. Classes and dependencies of the process model added to CIM. The classes
drawn with red color are part of the new process model.

Thus, having the extended model and an instance model that describes a
certain service landscape, we are now able to analyze the impact of an error
across all four layers.

3.2 Applying the Formalization to the Example Scenarios

The application of the new process model to the two defined scenarios is illus-
trated in figure 4. The illustrated object diagram does not contain each detail
of the created instance model but is sufficient to demonstrate the core concept.

In scenario 1, we have defined that the first instance of the SAP/R3 cluster
has an error. We therefore create two instances SAP/R3 I1 and SAP/R3 I2 for the
elements of the cluster. The service is provided via one single SAP, which is a web
service modelled as instance SAP/R3 WS. This SAP is used by the invoke activity
Do D of Process 2, which are both modelled as instances. Having this part of
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Fig. 4. Instance models of the two scenarios described in the introductory example.
Elements that are drawn with red color indicate an error or the impact of an error.

the instance model and the correspoding model, an algorithm can determine
that an error of the first SAP/R3 instance will have no impact to the business
process because the other instance of the cluster is still providing the service.

However, in scenario 2, we have defined that both instances SAP/R3 I1 and
SAP/R3 I2 of the cluster have an error. Therefore, an algorithm would be able
to determine that the error of both instances affects the enactment of process
instances of Process 2 because the required service can no longer provided.

3.3 Evaluating the Results

With the application of the extended model to the two described scenarios, we
were able to say whether a certain business process is affected by an error in the
IT infrastructure or not.

What does affected actually mean? Affected means, that it depends on
the execution path taken during process enactment, whether a certain process
instance that is enacted based on a process definition is affected by an error or
not. Thus, to determine the magnitude of an error to the business processes of an
enterprise, it is necessary to know how important the affected business processes
are, for example if they are primary business processes or supporting processes.
It is also necessary to now by which percentage certain execution paths in a
process are taken. Only having this statistical information, one can say which
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impact an error in the IT infrastructure really has to the business processes of an
enterprise. This also defines which strategies have to be developed and applied
to reduce the impact of such an error in the future.

4 Conclusion

In this paper, we described how CIM can be enhanced by a process model to
establish traceability between a SOA and the IT Infrastructure. We achieved
this by adding a number of concepts from BPEL as classes and associations to
CIM. We have also shown that the classes can be used to create instance models
and that the established traceability allows us to analyze the impact of a failure
to different elements of a service landscape.

However, having a model with established traceability between all aspects is
not sufficient to conduct the desired simulations. Therefore, a number of further
research steps have to be done.

Firstly, with the presented approach, we only scratched the surface of CIM.
To create meaningful instance models that allow to represent all elements of
a real service landscape, we certainly have to add new common models and
extension schemas to CIM.

Secondly, we left open where the data for the creation of concrete instance
models comes from. For simple simulations, we could create setup files that
contain the required data about the elements of a particular service landscape
by hand. However, it would be more appropriate to leverage the data stores
spread across the organizations of an enterprise to gather the desired information
automatically. The advantage using CIM is thereby that various management
enabled systems, such as J2EE servers, database servers and storage systems,
and physical elements, such as routers, switches and bridges, are able to provide
management information in the CIM format.

Finally, we did not mention that we require special algorithms that are able to
analyze the impact of an error using the extended CIM model and a particular
instance model. These algorithms are actually the complex part when using
CIM, because they have to be able to traverse and evaluate the dependencies
and relationships between the various elements of an instance model and across
the four layers of the model.

Thus, to really be able to conduct the desired simulation, a lot of research
is still to be done. It is questionable whether a self-defined model that supports
the concepts and relationships for the desired domain would make it easier at
least to conduct the desired simulation.

However, CIM is adopted by the industry. Microsoft uses it to manage some
of there software systems and IBM to manage there storage systems for example.
This definitively shows the applicability of CIM.
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