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Abstract. A common task in business process modelling is the verifica-
tion of process models regarding syntactical and structural errors. While
the former might be checked with low efforts, the latter usually requires
a complex state-space analysis to prove properties like deadlock-freedom
of the models. In this paper, we address the issue of deadlock detection
with a novel approach based on business process querying. Using queries,
we are able to detect a broad range of common structural errors that lead
to deadlocks, such as misaligned splits and joins. While not being com-
plete, the proposed approach has the advantages of low computational
efforts as well as providing graphical outputs that directly lead to the
errors.

1 Introduction

With the maturing of business process management (BPM) as an integrated
approach ranging from modeling over execution up to evaluation [3], the veri-
fication of process models becomes ever more important. This is obvious, since
the direct execution of process models requires the detection of errors before the
process models are executed. Typical errors can be classified into two categories,
either syntactical or structural. A syntactical error is given if modeling elements
are used in an invalid manner. The valid and invalid combinations are usually
prescribed by the corresponding standard that is used. The Business Process
Modeling Notation (BPMN), for instance, does not allow events with more than
one outgoing arc [1]. Syntactical errors can usually be found within reasonable
time by simply parsing through the process model. Structural errors, such as
given by misaligned splits and joins, cannot be detected easily, since the run-
time behavior of the process needs to be investigated. To achieve a complete
judgement whether a process model fulfills certain structural criteria—such as
deadlock freedom—usually the complete state-space has to be analyzed. This
analysis, however, is costly in terms of required memory and computing time.
In some cases, the result cannot be computed at all [2].

In this paper, we address the structural analysis of business process models
regarding deadlocks. A deadlock in a process model is given if a certain instance
of the model (but not necessarily all) cannot continue working, while it has



not yet reached its end. The proposed approach is based on graphical queries
given in BPMN-Q as introduced in [7]. A BPMN-Q query is represented a as
small business process diagram that might contain additional query elements
that will be substituted with BPMN elements during its processing. The result
of such a graphical query is given by a sub-graph of the original process model.
We discuss the idea of detecting deadlocks in process models by formulating—
and evaluating—queries that only result in non-empty sub-graphs of the queried
process models if a deadlock is contained. For this purpose, we present a set of
so called deadlock patterns whose occurrence in process models usually leads to
deadlocks.

While the approach is not complete—in a sense of finding all possible dead-
lock sources—each matching query relates to a structural error in the process
model. The approach has two major advantages. First, we assume that is com-
putable in polynomial time, meaning that a majority of structural errors are
actually detectable. A formal proof, however, is ongoing research. Second, if an
error is found, it provides a direct graphical output leading to the error—the re-
sulting sub-graph of the query. In contrast to state-space analysis that requires
high efforts and is sometimes not computable, our approach is actually suited to
support business process modelers in finding errors in their process models.

The paper is structured as follows. We first extend the motivation and discuss
related work in section 2. In section 3 the preliminaries—that is BPMN-Q, the
graphical query language, as well as existing deadlock pattern—are introduced.
The contribution is presented in section 4, where we discuss BPMN-Q-based
deadlock queries. Section 5 gives a larger example. Finally, the paper is concluded
with a discussion of future work in section 6.

2 Motivation and Related Work

As already stated, the major motivation of our work is given by lowering the
required efforts for detecting deadlocks in process models. Obviously, a full
state-space analysis in a transition system underlying a graphical process model
(e.g. Petri nets, m-calculus) is sufficient and complete. The drawbacks—in many
cases—are the high computational efforts as well as the typically binary result.
The backtracking of transition sequences to actual elements of a graphical pro-
cess model is a complex process in itself. Our approach, in contrast, focuses on
the graphical model, allowing the designer to receive direct feedback on erro-
neous part(s) of the process model. The technique that we apply is based on
graphical queries denoted in BPMN-Q. While BPMN-Q in itself is very helpful
for process modelers, e.g. in searching existing process models, we discuss how
BPMN-Q can be applied to detect deadlocks in process models. Hence, we also
provide an additional application area for graphical process queries.

Our approach, however, does not resemble existing soundness properties [2].
We are not able to cover even weaker variants—such as lazy or weak soundness |8,
6]—since we do not have the possibilities to query all quantifications based on
structural properties only.
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Fig. 1. Extended Elements of BPMN-Q.

Analyzing the structure of a business process to detect deadlocks has already
been addressed in literature. In [9], the authors introduced a set of reduction
rules for the process graph as means to indicate the correctness. When a pro-
cess graph can be reduced to an empty graph, the process is said to be conflict
free. On the other hand, if the reduction algorithm fails to reduce the process
graph to an empty graph, this means the presence of a conflict. One limitation
of this approach is that it works on acyclic process graphs only. Another lim-
itation is, that when an identification of a conflict occurs, the reduced graph
possibly looks different from the original graph (due to elimination of nodes
and edges) which might make the visual identification of the problem difficult.
Another approach called causal footprints was introduced recently in [10]. It is
able to detect deadlock, trap, and multiple termination patterns by mapping the
structure of Event-driven Process Chains [5] into the notion of these causal foot-
prints. Afterwards, reasoning about properties of the resulting causality graphs
is possible. Both mentioned approaches, however, have the drawbacks that all
detection rules are hard-coded into the supporting tools. This means that any
attempt or discovery of further patterns necessitates the modification of source
code in these tools.

3 Preliminaries

This section introduces the preliminaries required for detecting deadlocks using
BPMN-Q. In particular, BPMN-Q is introduced, existing deadlock patterns are
discussed, and limitations and assumptions are given.

3.1 BPMN-Q

BPMN-Q [4] is a visual language that is based on BPMN [1]. It is used to query
business process models based on their structure. Beside the set of notations
defined in BPMN, BPMN-Q extends them with seven new elements. Some of
these elements are flow objects, the others are for connectivity. These elements
are shown in figure 1 and are described as follows:

(a) Variable Node: it resembles an activity but is distinguished by the @ sign
in the beginning of the label. It is used to indicate unknown activities in a
query.

(b) Generic: this indicates an unknown node in a process. It could evaluate to
anything—even null—except for start events.
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Fig. 2. Sample Query.

(¢) Generic Split: a generalization of any type of split gateway.

(d) Generic Join: a generalization of any type of join gateway.

(e) Negative Sequence Flow: states that two nodes A and B are not directly
related by sequence flow.

(f) Path: states that there must be a path from A to B. A query usually returns
all paths.

(g) Negative Path: states that there is not any path between two nodes A and
B.

An example is shown in figure 2. It shows a simple query that detects if a given
process model contains the tasks Check Credit and Verify Security in a parallel
order. Since arbitrary nodes might be in-between the AND-gateway and the
required tasks, path query elements are used. A path might have an additional
path expression, written in brackets on the path. The only path expression that
we use in this paper is the exclusion of certain nodes from a path, denoted as
exclude(NodeType). The upper path of the example excludes intermediate events
from the path for illustration purposes.

3.2 Deadlock Patterns

Deadlock patterns have already been identified by Onada et al. in [7]. Two con-
cepts were behind these patterns. The first is reachability. Reachability between
two nodes A and B in a process graph simply means that there is at least one
path from A to B. The second is absolute transferability. This is a much stronger
concept because it states that a token (work item) can always be transferred
from node A to all input points of node B. What makes absolute transferability
reduce reachability between two nodes is the existence of routing control nodes
in between. From the semantics of AND-join nodes, we know that a deadlock
occurs if not all its input points are activated. If we analyze the type of connec-
tivity between an AND-join node and its sources with respect to the absolute
transferability and reachability concepts, we can come out with three combina-
tions:

— Reachability with absolute transferability. The execution path from a node A
to the input points of an AND-join is free of XOR and OR splits. According
to the definition of absolute transferability, there is no chance for deadlocks.



— Reachability without absolute transferability. Here the execution path from
some node A to the input points of an AND-join node includes XOR (OR)
splits. Here, there is a possibility for deadlocks.

— No Reachability. This means that there is no path from a certain node to the
inputs of an AND-join, so no chance for deadlocks to occur.

It is now clear, that whenever there is a reachability without absolute transfer-
ability, there is a chance for a deadlock.

The authors of [7] also identified the possibility for a reachability without
absolute transferability from the output of an AND-join back to its input. They
called this behavior the loop deadlock type (see Table 3 row 4 in [7]). Another
pattern they identified is the multiple source deadlock type. It occurs when an
AND-join has input that stems from different sources (see Table 3 row 5 in [7]).
According to the above discussion, five deadlock patterns were identified. We
represent them next (in a compact form as three of them are variants of each
other) along with a discussion when applying them to BPMN models.

— Loop: occurs when there is an execution path from the output of an AND-join
back to a subset of its input points. If this path contains an XOR-split, dead-
lock occurs only when the branch leading to the loop is chosen. In case there
is a path that does not contain XOR-splits deadlock occurrence is certain.

— Multiple Source: occurs when an AND-join has input points which are at some
point in the process up-stream originate from two different sources. Assuming
that none of the source nodes is the AND-Join itself, we can see that the
multiple source pattern can occur (distinctly from other pattern) only when
the process structure is one of the following:

— One of the two sources is an XOR-split. This specification intersects with
the third type of patterns shown below.

— The process has multiple start points that are later on synchronized. In
case of models specified in BPMN, multiple starts are permissible. Actually,
multiple start points resemble an AND-split between the start events, hence
we can deduce that there is reachability between two or more sources (start
events) to the AND-join node.

— Improper structuring: an AND-join receives input that early started from an
XOR-split.

These types of patterns are shown in figure 3, where sequence flow edges labeled
with 1 show a trivial representation of the multiple source pattern. Edges labeled
with 2 show both patterns of loop and improper structuring, indicating that these
patterns are not disjoint.

3.3 Limitations and Assumptions

To highlight the key concepts, we limit our work on process models containing
only AND- and XOR- gateways. We leave the—more complex— discussion re-
lated to OR-joins for future work. We also assume that the queried process mod-
els do not contain implicit splits or merges. This means, that the pattern shown



Fig. 5. Implicit versus explicit XOR~join.

in figure 4 (a) must not appear; instead the explicit split shown in figure 4 (b)
must be used. The similarity is stated in the BPMN specification document [1,
p.111]. Unfortunately, implicit merges may not be mapped directly to explicit
representations. The equivalent explicit representation depends on the type of
the preceding split. Figure 5 shows the specific case, where an implicit merge is
interpreted as an XOR-split (for more details about other scenarios please refer
to the specification document). Another issue regarding multiple start events is
given when all outgoing flows from these start events are leading to the same
activity. In this case, there is an implicit AND-join node in front of the activity
and all start events are necessary to start execution. To remove this ambiguity,
we enforce an explicit AND-join.

4 Deadlock Queries

In this section we present a set of queries that detect the different deadlock
patterns. Some of these queries are direct representation of the patterns, whereas
others need more details to ensure correct capturing of the patterns.



4.1 Loop Deadlock Pattern

Figure 6 shows the corresponding query in BPMN-Q that declaratively describes
the loop pattern. We have numbered the nodes to ease the explanation. Nodes 1
and 2 are called generic nodes that at query evaluation can match to any type of
nodes in the process model. Both nodes 1, 2 represent input points to the AND-
join (node 3). The path edge starting from node 3 back to node 1 represents an
execution path from the AND-join back to node 1 (loop). To be sure that the
resolved paths only reach a subset of the input points to node 3, we have put an
extra constraint that is represented in the negative path from node 3 to node 2.
This means that for some input point(s) of node 3 we fail to find that loop; i.e.
the loop covers only a subset of the input points of the AND-join and hence a
deadlock occurs.

X I—

Fig. 6. Loop Deadlock Query.

4.2 Multiple Source Deadlock Pattern

With this pattern we address the case when a process has multiple start points
(start event) which are later on synchronized. The query in figure 7 indicates
two sources (nodes 1, 2), which are independent of each other. Each of them
provides input to a subset of input points (nodes 3,4) to the AND-join (node
5). If we assume that only one of the start events is required to instantiate the
process—such as in BPMN—a deadlock occurs at the AND-join.

4.3 Improper Structuring

The mapping of the first two deadlock pattern to BPMN-Q was almost straight-
forward. When we consider the third case of deadlocks, the mapping is not
straightforward. If we consider a direct mapping from the pattern description to
a query, we would come out with a query like the one shown in figure 8. If we
apply this query to the process model shown in figure 9(a), however, it would
result in figure 9(b), showing a match. Although the query found a match in the



Fig. 7. Multiple Source Query.
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Fig. 8. Direct Description of the Improper Structuring Pattern as a Query.

(a) Process Model

(b) Result of the query (with red color)

Fig. 9. Example: Deadlock-free Process Model and Query Result.

process model, the model actually is not suffering from deadlocks. The mistake
lies in the fact that there is mo improper structuring here because the AND-join
gate is not the match of the XOR-split, since there is an XOR-join in-between.

To solve the issue, we need to modify this query to address patterns where
an AND-join node is considered as the match to an XOR-split and whatever lies
in-between is properly structured. We look for patterns that start with an XOR-
split and end with an AND-join and what lies in-between is properly structured.
The different combinations of proper structures in-between an XOR-split and
an AND-join are given by:

— Balanced XOR-splits/joins and AND-splits/joins.
— Balanced XOR-splits/joins.

— Balanced AND-splits/joins.

— Sequence of nodes that does not contain gateways.

In the following subsections we will discuss each case along with the query that
expresses it.

Balanced XOR-splits/joins and AND-splits/joins. The query shown in
figure 10 looks for a pattern where there is some XOR-split (node 1) and an AND-
join (node 6) and in-between there are balanced structures of XOR-splits/joins
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Fig. 10. Improper Structure with in-between Balanced XOR/AND-splits/joins.

1 3 4

X X DSP;T
L, 7y ]
'y

Fig. 11. Improper Structure with in-between Balanced XOR-splits/joins.

and AND-splits/joins. To illustrate that the XOR-split (node 1) is not matched
by an XOR-join (node 3), we stated that there is some node in the process
graph (node 2) that follows the XOR-split (sequence flow edge between nodes 1,
2) but this node (node 2) is not enclosed in an execution path to the XOR~join
(negative path edge between nodes 2, 3). Also we account for the existence of
balanced AND-split/AND-join. In the same way we need to prove that there is
no AND-split (node 5) that is considered as a match to the AND-join (node 6),
by showing that there is some input node (node 4) to the AND-join (sequence
flow edge between nodes 4, 6) that is not included in an execution path starting
at the AND-split (negative path edge between nodes 5, 4).

Balanced XOR-splits/joins. In this case, we focus on only detecting balanced
XOR-gateways that lie between a source XOR-split node and a target AND-join
node. Figure 11 is the query that detects this type of deadlock. The detection
of the unmatched XOR-split is similar to figure 10. The difference is, that an
execution path from the XOR-join (node 3) to the AND-join (node 4) excludes
any AND-split nodes (path edge between nodes 3, 4).

Balanced AND-splits/joins. Here, only balanced AND-splits/joins are in-
between a source XOR-split and a destination AND-join. Figure 12 shows the
corresponding query. We follow the same approach as with balanced XOR-
split/joins, but this time we need to show that we fail to find and AND-split
(node 2) that acts as a match to the AND-join (node 4). We express this no
match by finding a node (node 3) which is an input to the AND-join that is not
enclosed by the AND-split (negative path edge between nodes 2, 3). We stress
that the path from the XOR-split (node 1) to the AND-split (node 2) contains
no XOR-joins (path edge between nodes 1, 2).
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Fig. 12. Improper Structure with in-between Balanced AND-splits/joins.

Sequence of nodes. The fourth case occurs when an XOR-split is matched by
an AND-join with only a sequence of activities or intermediate events in-between
(without any gateways). To express this as a query, we use the ezclude property
of path operator in BPMN-Q. The visualization of the query is the same as the
one in figure 8, but the path exclude condition is Type(Gateway).

Finally, we need to state that the different queries have to be applied in a certain
order. First, the query shown in figure 10 needs to be applied. If it does not find
a match, either the query shown in figure 11 or 12 are applied. If both do not find
a match, finally the query from figure 8 with the additional exclude condition of
gateways should be applied. If all these queries fail to find a match, the process
model is free of the kinds of deadlocks we discussed.

5 Example

Figure 13 shows a sample process model that should be examined. When we
check queries in the order specified in the end of section 4, the query in figure 10
is the one that finds a match in the process as follows: the XOR-Split (node 1)
in the query graph is bound to XOR-Split 1 in the process graph. Node 1 did not
bind to XOR-Split 2 because BPMN-Q failed to find a node (in process graph)
that is a successor of XOR-Split 2 and in mean time does not have a path to
XOR-Join. Generic node (node 2) is bound to activity Obtain Customer Info
as it is a direct successor to the XOR~Split (by the sequence flow edge) and it
has no path to an XOR-join node (negative path edge between node 2 and 3 in
the query graph). In turn, node 3 in the query is bound to the XOR-Join in the
process graph. Generic Node 4 is bound to the XOR-join as this node satisfies
the constraint of being a predecessor of an AND-Join node (AND-Join 2) and
there is no execution path from an AND-Split to it. Node 5 is bound to the
AND-Split node and the AND-Join node (node 6) is bound to AND-Join 2 as
we pointed shortly before.

To visualize the query, we reproduced the process model from figure 13 in
figure 14. It contains all nodes in the match of the query where the source of the
mismatch is XOR-Split 1 and the destination is the AND-Join 2.
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Fig. 13. Process Model suffering from a deadlock
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Fig. 14. Query of figure 10 matched to process model in figure 13

6 Conclusion

The paper discussed a novel approach to detect deadlocks in process models via
querying them with certain deadlock patterns. In particular, we discussed the
translation from deadlock patterns into BPMN-Q queries. This translation re-
quired a deeper understanding of the BPMN as well as the BPMN-Q semantics.
The results, however, may be applied by process designers without any deeper
understanding of BPMN-Q. If a BPMN-Q deadlock query produces a non-empty
subset of a process model’s graph, this sub-graph directly highlights the prob-
lematic areas of the process model. Hence, the process designer is able to directly
fix the problems that occur. Regard practical feasibility, our approach has the
advantage of requiring low computational effort. The drawback, however, is the



incompleteness of the results. If a query matches, a deadlock is found. If no dead-
lock query matches a given process model at all, this doesn’t guarantee that the
model is deadlock free. What has been proven instead, is that certain types of
deadlocks do not occur in the process model.

Future work will focus on expanding the deadlock detection patterns. We

will add support for additional types of unwanted behavior in process models,
like for instance lifelocks. We also plan to investigate the required efforts for a
larger set of process models, where we additionally plan to compare the results
with traditional soundness investigations [2].
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