
Extending BPMN for Modeling Complex
Choreographies

Gero Decker and Frank Puhlmann

Business Process Technology Group
Hasso Plattner Institut for IT Systems Engineering

University of Potsdam
D-14482 Potsdam, Germany

{gero.decker,frank.puhlmann}@hpi.uni-potsdam.de

Abstract. Capturing the interaction behavior between two or more
business parties has major importance in the context of business-to-
business (B2B) process integration. The Business Process Modeling No-
tation (BPMN), being the de-facto standard for modeling intra-organiz-
ational processes, also includes capabilities for describing cross-organiz-
ational collaboration. However, as this paper will show, BPMN fails to
capture advanced choreography scenarios. Therefore, this paper proposes
extensions to broaden the applicability of BPMN. The proposal is vali-
dated using the Service Interaction Patterns.

1 Introduction

With the rise of service-oriented architectures (SOA [1]), business process defini-
tions are more and more used as configuration artifacts for information systems.
Services, being loosely coupled components described in a uniform way, ideally
have such a granularity that they have business meaning. These services can be
orchestrated in executable business processes, e.g. described in BPEL [2]. This
enables an organization to quickly adapt to changing requirements and business
environments. Especially in inter-organizational settings, interconnected busi-
ness processes realized as services are at the center of attention. This calls for
languages suited for describing the interaction behavior between the different
services (a.k.a. the service choreography). Examples for such languages are Let’s
Dance [3] and WS-CDL [4]. Our aim is to use the popular Business Process
Modeling Notation (BPMN [5]) as choreography language.

The Service Interaction Patterns [6] describe a set of recurrent choreography
scenarios. They range from simple message exchanges to scenarios involving
multiple participants and multiple message exchanges. These patterns can be
used to evaluate choreography languages. Although the BPMN allows to define
choreographies through a swimlane concept and a distinction between control
flow and message flow, it only provides direct support for a limited set of the
patterns. This papers discusses these deficiencies and increases the suitability of
BPMN for choreography modeling by introducing language extensions.

2 Gero Decker and Frank Puhlmann

The remainder of this paper is structured as follows. The next section will
introduce a choreography example and assess BPMN for its pattern support.
Section 3 gives an overview of the proposed extensions, before section 4 validates
the extensions by investigating on their pattern support and section 5 further
discusses our results. Section 6 reports on related work and finally section 7
concludes and gives an outlook to future work.

2 Assessment of BPMN

Figure 1 shows an auctioning scenario represented in BPMN. It involves three
roles, namely seller, bidder and auctioning service. Every time a seller decides to
initiate an auction, it sends an auction creation request to the auctioning service.
This triggers the instantiation of the auctioning service’s process. The auction
is scheduled to start at a defined point in time. Once this moment is reached,
different bids are received by the auctioning service. Bids are placed by different
bidders and an individual bidder is allowed to place several bids. The latter
allows a bidder to react on higher bids from other bidders. Once the auction is
over, it is checked if at least one bid has been received. If this is not the case,
the auctioning service informs the seller and the choreography instance (a.k.a.
conversation) ends. Otherwise, the winning bidder is selected and the seller is
informed about who won. Those bidders who were not successful are notified.
The winning bidder is informed, which finally leads to payment and the delivery
of the goods.

The figure illustrates the different participant behavior descriptions which
are interconnected through message flow. We omitted the (required) BPMN end
events due to space reasons. We represented the receipt of multiple bids via a
loop marker in the “receive bid” task. The end of the auction is denoted with an
intermediate timer event attached to the receive and send bid activities of the
auctioning service and the bidder. We used the event-based gateway to route
the sequence flows of the seller and the bidder according to the outcome of the
auction. Furthermore, we used the multiple instances marker to represent the
parallel emission of all sorry messages.

The resulting BPMN diagram captures the processes of each participant, the
bidder, the auctioning service, as well as the seller. However, several aspects
could not be captured.

– Multiplicity of participants. In our scenario, several bidders take part in
one conversation. All bidders must conform to the same interaction behavior
as depicted in the BPMN diagram. However, in addition to the mere fact
that we have many bidders involved, we need to distinguish them: Only one
bidder can win the auction. It is only her to receive the completion message,
whereas the others receive sorry messages. It is only her to perform payment
and to receive the product.

– Correlation. The auctioning service receives messages from different bid-
ders. As we are dealing with an asynchronous setting, it is essential for a

Extending BPMN for Modeling Complex Choreographies 3

!
"
#
$
%&
'
((
)
%

*
"
&
&
+
,
"
%

-
.
/
01
'
#
%

2
"
,
1#
&

-
.
/
01
'
#
%

'
3
"
(

!
"
#
$
%+
.
/
01
'
#
%

/
("
+
01
'
#
%(
"
4
5

!
"
#
$
%/
'
*
6
7"
8

01
'
#
%#
'
01
95
%

!
"
#
$
%/
'
*
6
7"
8

01
'
#
%#
'
01
95
%

!
"
#
$
%

6
+
)
*
"
#
0%

!"77"(-./01'#1#,%!"(31/" :1$$"(

!'(()%*&,

;'*67"01'#%

#'0191/+01'#

<#&.//"&&9.7%

/'*675%#'0195

=+)*"#0

-./01'#%

/("+01'#%("4."&0

!
"
#
$
%2
1$
%

-
.
/
01
'
#
%

'
3
"
(

>
"
/
"
13
"

%2
1$
%

-
#
)
%

2
1$
&
?

!
"
#
$
%.
#
&
.
/
/
5%

/
'
*
6
7"
01
'
#
%

#
'
01
95

!
"
7"
/
0%

2
.
)
"
(

=('$./0

!
"
#
$
%6
('
$
.
/
0

;'*67"01'#%

#'0191/+01'#

#
'

)
"
&

Fig. 1. BPMN choreography describing an auctioning scenario

4 Gero Decker and Frank Puhlmann

participant to correlate messages exchanged with the same interaction part-
ner. Imagine more complex sub-conversations between the auctioning service
and the bidders. Here, the different sub-conversations with the different bid-
ders need to be distinguished from each other.

– Participant reference passing. The winning bidder—the buyer—needs
to contact the seller that is former unknown to her. To make this happen,
she somehow needs to gain knowledge about the seller. Hence, the auctioning
service passes the reference to the seller to her. In turn, the seller needs to
make sure that she only accepts payment from the winning bidder. This can
only be ensured if the auctioning service actually tells her who has won.

None of the these requirements can be properly represented in BPMN. This
has an effect on BPMN’s support for the Service Interaction Patterns as these
requirements also appear in the set of patterns.

Three of the four “single-transmission multilateral interaction patterns” in-
volve a set of participants, where the exact number might only be known at
runtime. Therefore, BPMN does not support this group of patterns (except for
Racing Incoming Messages, which is directly supported through the event-based
gateway). The multiplicity problem also applies to Contingent Request, where a
participant sends a request to another participant. If this participant does not
respond within a given timeframe, a third participant is contacted. As the length
of the list of potential recipients of request might not be known at design-time,
BPMN does not support this pattern.

Request with Referral involves participant reference passing. Also Relayed
Request might involve reference passing. Here, a participant A makes a request
to a participant B who delegates it to yet another participant C. C subsequently
interacts with A, while B observes a view of the interactions. As C might not
know A in advance, B might need to send the reference of A when delegating
the request. Therefore, both Request with Referral and Relayed Request are not
supported in BPMN. In analogy to [7], we do not consider Dynamic Routing in
this assessment as the pattern description is too imprecise.

Only patterns Send, Receive, Send/receive, Racing Incoming Messages and
Multi-responses are directly supported in BPMN. Therefore, we present BPMN
extensions that overcome the illustrated issues in the next section.

3 BPMN Extensions

We introduce extension for the BPMN that allow the representation of multiple
participants, correlations, and reference passing.

3.1 Participant Sets

Pools can represent individual participants in BPMN. As we have seen in the
previous section we need to distinguish those cases where at most one partici-
pant of a particular participant type is involved in one conversation or if there

Extending BPMN for Modeling Complex Choreographies 5

P
ar

tic
ip

an
t

(a) Participant sets

Task

name
<ref>

Task

name
<ref>

(b) References

name
<ref>

names
<ref>

(c) Reference sets

!"#$

%&$'(

)
"
&*
+,
+-
"
!
*

."/0

!"#$

%&$'(

."/0

!"#$

%&$'(

."/0

!"#$

%&$'(!"#$/

%&$'(

(d) Reference passing

Fig. 2. BPMN extensions

can be potentially many participants involved. In our auctioning example, there
is exactly one seller and one auctioning service involved in one conversation.
However, we have potentially many bidders involved.

For representing multiple participants we introduce shadowed pools as new
notational element, shown in figure 2(a). A set of participants of the same type
involved in the same conversation is called a participant set.

3.2 References

The main challenge with participant sets is that we need to distinguish individual
participants out of this set. We do this via references as shown in figure 2(b).
A reference is a special data object enhanced with 〈ref〉. A reference can be
connected to a flow object via associations. We give the following semantics to
the different connection directions:

– A reference can be written by a flow object (represented by an association
from the flow object to the reference). (i) If the flow object is a receive
activity, e.g. an intermediate message event or an activity with incoming
message flow, the reference will point to the sender upon message receipt. If
the reference already pointed to a participant, the reference will simply be
overwritten. (ii) If the flow object is not a receive activity, it is not specified
what participant the reference will point to. Consider the selection of the
buyer in our example.

– A reference can be read by a flow object (represented by an association from
the reference to the flow object). (i) If the flow object is a send activity,
the message will be sent to the participant the reference points to. In our
example the auctioning service sends a completion notification to exactly
that bidder out of the bidder set, who was selected to have won the auction.
(ii) If the flow object is a receive activity, then a message is only awaited

6 Gero Decker and Frank Puhlmann

from the defined participant. E.g. the seller only waits for payment from the
buyer. (iii) If the flow object is neither a send nor a receive activity, it is not
specified what happens with that reference inside the activity.

References cover those cases where an individual participant needs to be
identified. However, we might need to select subsets of the participants involved
in one conversation. In our example, this is the case for those bidders who did
not win the auction. We need to send a sorry message to all of them—but we
must not send this message to the winning bidder. We introduce reference sets
as shown in figure 2(c) with the following semantics:

– A reference set can be modified by a flow object (represented through an
association from the flow object to the reference set). (i) If the flow object is
a receive activity, a reference to the sender of the message will be added to
the reference set if such a reference is not already contained in the set. In our
example we find a “receive bids” activity where bids from different bidders
are received. In case a bidder who has already placed a bid in the same
auction places another bid, no reference will be added to the set. However,
if a new bidder takes part, a reference will be added. (ii) If the flow object is
not a receive activity, it is not specified, what exactly happens with the set.
It might be overwritten completely or references might be added, removed
or changed.

– A reference set can be read by a flow object. (i) If the activity is a looped
activity, i.e. a sequential loop or a multiple-instances activity, the reference
set determines the number of repetitions or instances. This requires that at
most one reference set serves as input for a looped activity. A special case
is a looped send activity. Here, a message is sent to every of the referenced
participants. In those cases, where the looped activity is a complex activity, a
reference can be placed inside this activity which will represents the selected
reference out of the set for a particular instance or repetition. (ii) If the
activity is not a looped activity, it is not specified how the reference set is
used within the activity. In our example, the “select buyer” activity takes
the reference set as input and selects the winning bidder.

3.3 Reference Passing

References can be passed to other participants as shown in figure 2(d). The ref-
erence is connected to a message flow with an undirected association. The passed
reference can be connected to other flow objects with directed associations. In
figure 2(d), the passed reference is used in the task.

3.4 Example

The example from figure 1 is extended with the proposed extensions, shown in
figure 3. First of all, a shadow was added to the pool of the bidder to repre-
sent a participant set. The “receive bid” task of the auctioning service collects

Extending BPMN for Modeling Complex Choreographies 7

Se
nd

 s
or

ry

m
es

sa
ge

Au

ct
io

n
be

gi
ns

A
uc

tio
n

ov
er

S
en

d
au

ct
io

n
cr

ea
tio

n
re

q.

S
en

d
co

m
pl

e-
tio

n
no

tif
.

S
en

d
co

m
pl

e-
tio

n
no

tif
.

S
en

d
pa

ym
en

t

Seller Auctioning Service Bidder

Sorry msg

Completion
notification

Unsuccessful
compl. notif.

Payment

Auction
creation request

S
en

d
bi

d

A
uc

tio
n

ov
er

R
ec

ei
ve

 b
id

bi
dd

er
s

<r
ef

>

An
y

bi
ds

?
S

en
d

un
su

cc
.

co
m

pl
et

io
n

no
tif

.

S
el

ec
t

bu
ye

r

bu
ye

r
<r

ef
>

ot
he

rs
<r

ef
>

se
lle

r
<r

ef
>

Product

S
en

d
pr

od
uc

t

Completion
notification

noye
s

bi
ds

se
lle

r
<r

ef
>

Fig. 3. The auctioning scenario represented using the extended BPMN

8 Gero Decker and Frank Puhlmann

the references of the different bidders into a reference set. The reference set
is forwarded to the “select buyer” task. Inside this task, the successful bidder
is selected and placed into a new reference, denoted as buyer. The remaining
references of the bidders reference set are placed into an others reference set.
The others reference set is used as an input to the “send sorry message” task.
Here, an instance is created for each element of the set. Hence, all unsuccessful
bidders are notified. The buyer reference is forwarded to the “send completion
notification” task, where it determines the instance of the bidder that should be
contacted. Furthermore, it is passed to the seller, where it is used as an input for
the reception of the payment as well as determining the reference of the bidder’s
instance to which the product should be sent. Finally, a reference of the seller
is passed to the successful bidder. This reference is acquired implicitly via the
initial interaction between the seller and the auctioning service.

4 Validation

This section validates the proposed BPMN extensions by investigating how the
Service Interaction Patterns can be represented. It is notable that many of the
patterns require multiple participants and/or dynamic binding of interaction
partners via reference passing.

4.1 Single Transmission Bilateral Interaction Patterns

The single transmission bilateral interaction patterns represent basic interaction
behavior. Graphical representations are shown in figure 4.

Send: A process sends a message to another process. The Send interaction pat-
tern is depicted in figure 4(a). It is an assumption that the receiver gains knowl-
edge about the reference of the requester. If the message flow is targeted at
a participant set, the matching instance has to be determined via a reference,
shown in figure 4(b).

Receive: A process receives a message from another process. The Receive inter-
action pattern is depicted in figure 4(c). According to the previous pattern, the
receiver automatically gains knowledge about the reference of the requester. If
the message should be received from a particular instance of a participant set, a
reference according to figure 4(d) has to be used. If a message is received from
an unspecified instance of the participant set, the corresponding reference can
be collected, shown in figure 4(e).

Send/Receive: A process X engages in two causally related interactions. In the
first interaction X sends a message to another process Y (the request), while
in the second one X receives a message from Y (the response). A combined
send/receive interaction is shown in figure 4(f). Once again, due to a one to
one multiplicity, the correlation between requester and provider is evident. If
the interaction partner is a certain instance of a participant set, a reference
according to figure 4(g) has to be used.

Extending BPMN for Modeling Complex Choreographies 9

X A
Y

(a) Send

X

A

y
<ref>

Y

(b) Send to Reference

X A

Y

(c) Receive

X

A

Y
<ref>

Y

(d) Receive from Reference
X

A

y
<ref>

Y
(e) Receive Reference

X A

Y

B

(f) Send/Receive

X

A

y
<ref>

Y

B

(g) Send to / Receive from Reference

Fig. 4. Single transmission bilateral interaction patterns

4.2 Single Transmission Multilateral Interaction Patterns

The single transmission multilateral interaction patterns represent one to many
or many to one interactions. Graphical representations are shown in figure 5.

Racing Incoming Messages: A process expects to receive one among a set of
messages. These messages may be structurally different (i.e. different types) and
may come from different categories of processes. The way a message is processed
depends on its type and/or the category of processes from which it comes. Fig-
ure 5(a) shows the solution to this pattern. If several instances of a participant
set should be used instead of Y and Z, a single receive task is sufficient.

One-to-many Send: A process sends messages to several other processes. The
messages all have the same type (although their contents may differ). This pat-
tern is depicted in figure 5(b). The multiple instance task A sends a message to

10 Gero Decker and Frank Puhlmann

(a) Racing incoming messages

$%&'(

)

(b) One-to-many send

$%&'(

)

(c) One-from-many receive

X

y
<ref>

Y

A B

y’
<ref>

(d) One-to-many send/receive

Fig. 5. Single transmission multilateral interaction patterns

each reference contained in the reference set. We assume that all participants
referenced are of the same type.

One-from-many Receive: A process receives a number of logically related mes-
sages that arise from autonomous events occurring at different processes. The
arrival of messages needs to be timely so that they can be correlated as a single
logical request. The one-from-many receive pattern is shown in figure 5(c). The
references of the senders are collected in a reference set created in the loop-type
task A. If enough messages have been gathered (decided internally inside A),
the standard outgoing sequence flow is activated. If instead a timeout occurred,
the interaction failed.

On-to-many send/receive: A process sends a request to several other processes,
which may all be identical or logical related. Responses are expected within a
given timeframe. However, some responses may not arrive within the timeframe
and some processes may even not respond at all. The One-to-many Send/receive
pattern is shown in figure 5(d). The associated reference set points to the par-
ticipants that should be included. Like in the preceding pattern, also in this
pattern the task B decides if enough responses have been gathered in the given
timeframe. The figure includes a reference y’ used within the sub-process. This

Extending BPMN for Modeling Complex Choreographies 11

(a) Multi-responses

(b) Contingent requests

Fig. 6. Multi transmission interaction patterns

reference is to be filled for every instance that is spawned, as already mentioned
in section 3.2.

4.3 Multi Transmission Interaction Patterns

The multi transmission interaction patterns represent many to many interac-
tions. Graphical representations are shown in figure 6.

Multi-responses: A process X sends a request to another process Y. Subsequently,
X receives any number of responses from Y until no further responses are re-
quired. The trigger of no further responses can arise from a temporal condition
or message content, and can arise from either X or Y’s side. This pattern is
depicted in figure 6(a). The task D of X sends an initial request to task A of Y.
Task B of Y responds until they are no more responses. Task E in X receives
the responses until (1) a timeout occurs, (2) E decides to have gathered enough
responses, or (3) a stop messages arrives from Y.

Contingent Requests: A process X makes a request to another party Y. If X does
not receive a response within a certain timeframe, X alternatively sends a request
to another process Z, and so on. This pattern is shown in figure 6(b). Initially, a
reference set is passed to a task that selects a certain reference out of the set. The

12 Gero Decker and Frank Puhlmann

(a) Request with Referral

./0

(b) Relayed Request

Fig. 7. Routing patterns

downstream task A receives this reference and initiates a request. Task B tries to
receive the response. If no response is received in the given timeframe, another
reference out of the reference set is selected and processed as described. What
cannot be captured with our extensions, however, is the reception of messages
from previous requests that failed due to a timeout.

Atomic Multicast Notification: A process sends notifications to several parties
such that a certain number of parties are required to accept the notification within
a certain timeframe. This pattern requires transactional behavior spanning mul-
tiple processes. Transactions are included in BPMN, however, they must only be
applied within one process. Distributed transactions are not supported. There-
fore, we can only provide a workaround for this pattern in our extended BPMN.
It looks similar to One-to-many Send/receive with a completion condition at the
notifying side.

4.4 Routing Patterns

The routing patterns describe flexible interaction behavior between a set of pro-
cesses. Graphical representations are shown in figure 7.

Request with Referral: Process X sends a request to process Y indicating that
any follow-up response should be sent to a number of other processes (Z1, Z2,
. . . , Zn) depending on the evaluation of certain conditions. The solution to this
pattern is shown in figure 7(a). It uses reference passing to denote the instances
of Z that should receive the follow-up responses.

Extending BPMN for Modeling Complex Choreographies 13

Pattern BPMN ext. BPMN

Send + +
Receive + +
Send/Receive + +
Racing Incoming Messages + +
One-to-many Send - +
One-from-many Receive - +
One-to-many Send/Receive - +
Multi-reponses + +
Contingent Request - +/-
Atomic Multicast Notification - -
Request with a Referral - +
Relayed Request - +

Table 1. BPMN vs. extended BPMN

Relayed Request: Process X makes a request to process Y which delegates the
request to other processes (Z1, . . . , Zn). Processes Z1, . . . , Zn then continue
interacting with process X while process Y observes a “view” of the interactions
including faults. The interacting parties are aware of this “view”. The Relayed
Request pattern is shown in figure 7(b). While participant Z has immediate
knowledge of Y, it needs a reference to participant X. This is received via refer-
ence passing from Y.

4.5 Validation Summary

A comparison on the supported Service Interaction Patterns for the standard
BPMN as well as our proposed extension is shown in table 4.5. As already
argued previously, we do not support Atomic Multicast Notification and did not
consider Dynamic Routing in this assessment. Contingent Requests is also only
partly supported, since (late) responses from earlier requests are ignored.

5 Discussion

Our proposals make heavy use of refined data objects. A major problem with
BPMN data objects is that their semantics is not clearly defined in the BPMN
specification. E.g. it is unclear what it means if different activities write on the
same data object. Here, we simply assume that if an activity has write-access
to a data object, it (might) overwrite the entire content of the data object upon
completion. BPMN does not have the notion of collections or buffers, as they
are present in UML Activity Diagrams [8]. Therefore, we introduced a distinc-
tion between simple data objects and data object sets, where we assume that
write-access to a data object set typically means that the activity (might) add
an object to the set. We do not require that data objects are only placed within
pools or only accessed from within one pool. However, we have to leave a detailed

14 Gero Decker and Frank Puhlmann

discussion on BPMN data objects and their semantics to future work.

The BPMN extensions presented in this paper are aligned with the work
done on BPEL4Chor [9], an extension to abstract BPEL for modeling chore-
ographies. This becomes evident in the semantics of references and reference
sets. Awaiting messages from any sender vs. awaiting messages from a particular
sender expressed through the absence or presence of a read-relationship between
references and receive activities is analogous to the semantics of BPEL4Chor
participant references that are either uninitialized or already set. Furthermore,
the notion of adding references to a reference set in case a message is received
from a sender that is not yet referenced in the set, is analogous to the notion
of containment of a BPEL4Chor participant reference in a participant reference
set. However, a detailed transformation of our extended BPMN to BPEL4Chor
goes beyond the scope of this paper and must be left to future work.

References express correlation in those cases where receive activities read ref-
erences. This defines who messages are to be received from. However, this notion
of correlation only covers a limited set of scenarios. Imagine settings, where the
same pair of participants engage in different parallel conversations. Here, our
notion of references is not sufficient to distinguish the different conversations.
Furthermore, it might be important to specify what message parts correlation
is actually based on. E.g. a customer id or a shipment invoice number might be
used as concrete correlation identifiers. There might be even more sophisticated
correlation mechanisms needed, such as ranges of values or time-based corre-
lation of messages. [10] provides a set of correlation patterns that might be a
starting point for further refinements for correlation support.

In this paper we have left BPMN unchanged as much as possible while pro-
viding increased support for the Service Interaction Patterns. However, there is
a general discussion whether the interconnection modeling approach, as it is the
case for BPMN, is suited for choreography modeling at all. We have seen that
we basically define control flow on a per-participant basis. Corresponding send
and receive activities are connected through a message flow, jointly representing
interactions.

An alternative to this approach is interaction modeling, where atomic inter-
actions are the basic building blocks and control and data flow is defined between
them. The main advantage of this approach is that incompatibility between dif-
ferent participants cannot occur in choreography models. It also reduces the
number of modeling elements for representing a certain choreography. This in-
creases modeling speed and helps to keep the models readable. Control and data
flow dependencies are defined from a global perspective in the sense that (for
most constructs) it does not need to be expressed explicitly, to what particular
participant it actually belongs. Techniques for generating participant behavior
descriptions out of the interaction model then care about which participant ac-
tually has to enforce a certain dependency later on.

Extending BPMN for Modeling Complex Choreographies 15

Sometimes it is not possible to generate participant behavior descriptions
such that all dependencies in the choreography are collectively enforced by them
without adding synchronization interactions. Such choreographies are called lo-
cally unenforceable. For details please refer to [11] and [12]. A detailed comparison
between interconnection models and interaction models goes beyond the scope
of this paper and needs to be discussed in future work.

6 Related Work

BPMN enjoys widespread use in both industry and academia. [13] delivers an
assessment of BPMN regarding its support for the Workflow Patterns [14] as
well as its capabilities for the data and resource allocation perspective. However,
this assessment does not include the Service Interaction Patterns.

A range of languages where introduced for modeling choreographies. BPEL4-
Chor [9] adds a thin layer on top of abstract BPEL, interconnecting the different
participant behavior descriptions. Let’s Dance [3] and WS-CDL [4] follow the
interaction modeling approach as described in the previous section. Like BPMN,
Let’s Dance is mainly targeted at business analysts and comes with a graphi-
cal notation. WS-CDL is tightly linked to other web services standards such as
WSDL. Both languages have been assessed for their Service Interaction Pattern
support (cf. [7]). It turns out that Let’s Dance directly supports most patterns.
WS-CDL is a little less suited for choreography modeling as it only comes with
limited support for expressing those scenarios where multiple participants of the
same type are involved in a conversation and the actual number of participants
is only known at runtime. Event-driven Process Chains (EPC) is another widely-
used process modeling language. In [15] extensions for inter-organizational pro-
cess modeling are proposed. However, there has not been an assessment using
the Service Interaction Patterns regarding their suitability.

There has also been work on mapping (subsets of) BPMN to formalisms.
Dijkman et al. present a mapping to Petri nets in [16], enabling the verification
of soundness and liveless. However, the formalization does not include message
flows. Therefore, reasoning on choreographies is out of scope of their work. Wong
et al. present another formalization of BPMN based on Communicating Sequen-
tial Processes (CSP) in [17]. In [18] they then show how compatibility checking
can be carried out for BPMN choreographies. Other approaches for compatibility
checking in choreographies are introduced by Martens [19], Puhlmann et al. [20]
and Massuthe et al. [21]. A general introduction into the different viewpoints of
choreographies can be found in [22].

7 Conclusion

In this paper we have identified weaknesses of BPMN regarding its suitability
for choreography modeling. We based our assessment on the Service Interaction
Patterns and concluded that there is direct support for only five out of the twelve

16 Gero Decker and Frank Puhlmann

patterns considered. We then proposed extensions to overcome these limitations
and validated the extended BPMN with the patterns.

In future work we are going to introduce a formal mapping for the new con-
cepts. This enables the verification of complex choreographies, including compat-
ibility and conformance checking. In [23] we have already shown that name cre-
ation and restriction in π-calculus are useful concepts for formalizing choreogra-
phies. Therefore, we consider using π-calculus or a Petri net version enhanced
with a name concept, e.g. similar to ν-nets as presented in [24], as formal basis.
The latter would enable us to reuse and extend the Petri-nets-mapping in [16].

References

1. Burbeck, S.: The Tao of E-Business Services (2000)
2. Fallside, D.C., Walmsley, P.: Web Services Business Process Execution Lan-

guage Version 2.0. Technical report (2005) http://www.oasis-open.org/apps/

org/workgroup/wsbpel/.
3. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: A Language for Service

Behavior Modeling. In: Proceedings 14th International Conference on Cooperative
Information Systems (CoopIS 2006), Montpellier, France, Springer Verlag (2006)

4. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation. Technical
report (2005) http://www.w3.org/TR/ws-cdl-10.

5. OMG.org: Business Process Modeling Notation. 1.0 edn. (2006)
6. Barros, A., Dumas, M., Hofstede, A.: Service Interaction Patterns. In Aalst, W.,

Benatallah, B., Casati, F., eds.: Business Process Management, volume 3649 of
LNCS, Berlin, Springer Verlag (2005) 302–318

7. Decker, G., Overdick, H., Zaha, J.M.: On the Suitability of WS-CDL for Choreog-
raphy Modeling. In: Proceedings of Methoden, Konzepte und Technologien für die
Entwicklung von dienstebasierten Informationssystemen (EMISA 2006), Hamburg,
Germany (2006)

8. : UML 2.0 Superstructure Specification. Technical report, Object Management
Group (OMG) (2005)

9. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4chor: Extending BPEL
for Modeling Choreographies. In: Proceedings International Conference on Web
Services (ICWS). (2007)

10. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-
Oriented Architectures. In: Proceedings of the 9th International Conference on
Fundamental Approaches to Software Engineering (FASE), Braga, Portugal (2007)

11. Zaha, J.M., Dumas, M., ter Hofstede, A., Barros, A., Decker, G.: Service Inter-
action Modeling: Bridging Global and Local Views. In: Proceedings 10th IEEE
International EDOC Conference (EDOC 2006), Hong Kong (2006)

12. Decker, G., Weske, M.: Local Enforceability in Interaction Petri Nets. In: Proceed-
ings 5th International Conference on Business Process Management (BPM 2007).
LNCS, Brisbane, Australia (2007)

13. Wohed, P., van der Aalst, W.M., Dumas, M., ter Hofstede, A., Russell, N.: On
the Suitability of BPMN for Business Process Modelling. In: Proceedings 4th
International Conference on Business Process Management (BPM 2006). LNCS,
Vienna, Austria, Springer Verlag (2006)

http://www.oasis-open.org/apps/org/workgroup/wsbpel/
http://www.oasis-open.org/apps/org/workgroup/wsbpel/
http://www.w3.org/TR/ws-cdl-10

Extending BPMN for Modeling Complex Choreographies 17

14. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14 (2003) 5–51

15. Seel, C., Vanderhaeghen, D.: Meta-model based extensions of the epc for inter-
organisational process modelling. In: Proceedings 4th GI-Workshop EPK 2005 -
Geschäftsprozessmanagement. (2005)

16. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis
of BPMN process models. Preprint 7115, Queensland University of Technology,
Brisbane, Australia (2007)

17. Wong, P.Y., Gibbons, J.: A process semantics for BPMN. Technical report,
Oxford University Computing Laboratory (2007) http://web.comlab.ox.ac.uk/

oucl/work/peter.wong/pub/bpmnsem.pdf.
18. Wong, P.Y., Gibbons, J.: Verifying business process compatibility. In: Proceedings

3rd International Workshop on Methods and Tools for Coordinating Concurrent,
Distributed and Mobile Systems (MTCoord’07), Paphos, Cyprus (2007)

19. Martens, A.: Analyzing Web Service based Business Processes. In Cerioli, M.,
ed.: Proceedings of Intl. Conference on Fundamental Approaches to Software En-
gineering (FASE’05), Part of the 2005 European Joint Conferences on Theory and
Practice of Software (ETAPS’05). Volume 3442 of Lecture Notes in Computer
Science., Edinburgh, Scotland, Springer-Verlag (2005)

20. Puhlmann, F., Weske, M.: Interaction Soundness for Service Orchestrations. In
Dam, A., Lamersdorf, W., eds.: Service-Oriented Computing – ICSOC 2006, vol-
ume 4294 of LNCS, Berlin, Springer Verlag (2006) 302–313

21. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1 (2005) 35–43

22. Dijkman, R., Dumas, M.: Service-oriented Design: A Multi-viewpoint Approach.
International Journal of Cooperative Information Systems 13 (2004) 337–368

23. Decker, G., Puhlmann, F., Weske, M.: Formalizing Service Interactions. In Dust-
dar, S., Fiadeiro, J., Sheth, A., eds.: Business Process Management, volume 4102
of LNCS, Berlin, Springer Verlag (2006) 414–419

24. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in petri net
systems. In: Proceedings 28th International Conference on Application and Theory
of Petri Nets and other Models of Concurrency (Petri Nets 2007), Siedlce, Poland
(2007)

http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmnsem.pdf
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmnsem.pdf

	Extending BPMN for Modeling Complex Choreographies
	Gero Decker and Frank Puhlmann

