
Soundness Verification of
Business Processes Specified in

the Pi-Calculus
Frank Puhlmann

Hasso Plattner Institut
Potsdam, Germany

Lazy Soundness
A Prototypical Tool-Chain

Lazy Soundness is a new kind of soundness dealing with so called

left-behind or lazy activities. Since these activities can be active while

the final activity of the business process has already been reached,

processes containing these activities can never be sound. Lazy

soundness provides a criterion to prove business processes containing

these activities to be free of deadlocks and livelocks.

Prof. Dr. Mathias Weske
Frank Puhlmann
Business Process Technology Group
Hasso Plattner Institute
Campus Griebnitzsee
14482 Potsdam, Germany

http://bpt.hpi.uni-potsdam.de

A business process containing Discriminator, N-out-of-M, or Multiple

Instances without Synchronization patterns (called the critical patterns),

such as

A

B

C

2 D

Problem

Solution

Structural

Sound Process

Initial

Node

Final

Node

A, B, and C represent three web service
interactions.

After two of them have completed, D is
executed and thereafter the process is
finished.

However, one of the activities is still active, and clean-up
work like payment and documentation has to be done.

As the remaining activity contradicts the soundness definition, we can

not use existing tools to verify the sample business process. Still,

automated verification regarding deadlocks and livelocks is quite

important even if you employ one of the critical patterns in your

business process.

Lazy Soundness proves business processes

containing the critical patterns (and all others) to

be free of deadlocks and livelocks. Technically, it

abstracts from all internals of the process and

just considers the initial and final node. The

abstracted process is verified using bisimulation

techniques.

Demo Presentation:

Thursday, Sep 7 10:30am, Room EI10

Lazy soundness has been implemented in a prototypical tool chain at

our research group. We provide a graphical editing of business

processes using BPMN, automatically formalize BPM diagrams into pi-

calculus expressions, and use existing tools to decide lazy soundness

for a given business process.

The theoretical background of Lazy Soundness will be presented on

Tuesday, September 5 16:30am, Room EI9.

Content

• Formal Description and

• Verification of

Business Rules for Process Models

• Warning: Simplified views!

2

Business Process
3

Create
Order

Update Shipping
Address

Ship
Order

Close
Order

Pack
Items

Create
Invoice

Charge
Credit Card

Business Rules

• Examples:

• It should be possible to select a different shipping
address

• Charge credit card must always be done before
ship order

• When the order is shipped, the process instance
must always be closed

4

Invariant

• Business rules represent invariants on process models

• They give an ordering of

• Optional activities (can, might, should)

• Technically: Exist quantifier

• Required activities (must)

• Technically: All quantifier

5

Formalized Business
Processes

• Business processes can be represented as
directed graphs, where each node has a certain
semantics

• The semantics can be given by a transition
system, such as

• Process Algebra, e.g. CSP, CCS, Pi-Calculus

• Petri nets, Abstract State Machines, etc.

6

Simulations and
Bisimulations

• Simulation: If a player A can do a move in
his transition system, player B must be able
to follow this move in her system

• Bisimulation: Like simulation, but both
players can change the active role at each
step

7

(Bi)-Simulation Example
8

S1 S2

S3

S4

a

b

c

S1

S2 S3

S4S2'

a

a

b

c

Player A

Player B

Proving Invariants

• Idea:

• Describe invariant as "minimalistic"
transition system

• Use simulation for invariants regarding
optional activities

• Use bisimulation for invariants regarding
required activities

9

Invariant:
It should be possible to

select a different shipping
address

10

Create
Order

Update Shipping
Address

Ship
Order

Close
Order

Pack
Items

Create
Invoice

Charge
Credit Card

Update Shipping
Address

//

Example 1
11

Invariant
Business
Process

i.update shipping address.0 ! BP

Invariant:
Charge credit card must
always be done before

ship order

12

Ship
Order

V
Charge

Credit Card

Create
Order

Update Shipping
Address

Ship
Order

Close
Order

Pack
Items

Create
Invoice

Charge
Credit Card

Example 2
13

Invariant
Business
Process

charge.ship.0 !≈ BP

Invariant:
When the order is shipped,
the process instance must

always be closed
(Related to weak soundness)

14

Ship

Order
V

Create
Order

Update Shipping
Address

Ship
Order

Close
Order

Pack
Items

Create
Invoice

Charge
Credit Card

Example 3
15

Business
Process

Invariant

τ.ship.0 + τ.s.ship.0 !≈ (BP | X)

Conclusions
• Formal representation of invariants in terms of

transition systems

• Application of simulation and bisimulation
techniques to verify process models according to
invariants

• The paper contains algorithms and extended
invariants given in the pi-calculus

• Prototypical implementations available

16

But...

• Simulation and bisimulation have high
computational efforts

• Works currently only for small process
models

• Advanced invariants require link passing
mobility for correlations

• Tool support is poor

17

Thank you!

18

The Formalized Business Process
19

agent N1=(^e771)(^e765)(^e772)(^e762)(^e753)(^e747)(^e764)(^e763)(^e746)(^e745)(^e731)
(^e730)(^e727)(^e729)(^e728)(^e773)(^e671)(N1_766(e771,e765,e772) | N1_754(e762,e753,e747)
| N1_748(e762,e764,e763) | N1_737(e747,e746,e745) | N1_732(e764,e765) |
N1_722(e731,e730,e745) | N1_717(e727,e729,e728) | N1_682(e729,e731) | N1_681(e728,e730) |
N1_538(e773) | N1_680(e772,e773) | N1_679(e763,e771) | N1_678(e746,e753) |
N1_677(e671,e727) | N1_534(e671))
agent N1_766(e771,e765,e772)=e771.e765.t.'e772.0
agent N1_754(e762,e753,e747)=(e753.N1_754_1(e762,e753,e747) +
e747.N1_754_1(e762,e753,e747))
agent N1_754_1(e762,e753,e747)=t.'e762.0
agent N1_748(e762,e764,e763)=e762.t.('e764.0 | 'e763.0)
agent N1_737(e747,e746,e745)=e745.N1_737_1(e747,e746,e745)
agent N1_737_1(e747,e746,e745)=(t.'e747.0 + t.'e746.0)
agent N1_732(e764,e765)=e764.t.'e765.0
agent N1_722(e731,e730,e745)=e731.e730.t.'e745.0
agent N1_717(e727,e729,e728)=e727.t.('e729.0 | 'e728.0)
agent N1_682(e729,e731)=e729.t.'e731.0
agent N1_681(e728,e730)=e728.t.'e730.0
agent N1_538(e773)=e773.t.0
agent N1_680(e772,e773)=e772.t.'e773.0
agent N1_679(e763,e771)=e763.t.'e771.0
agent N1_678(e746,e753)=e746.t.'e753.0
agent N1_677(e671,e727)=e671.t.'e727.0
agent N1_534(e671)=t.'e671.0

Create
Order

Update Shipping
Address

Ship
Order

Close
Order

Pack
Items

Create
Invoice

Charge
Credit Card

