
Automated Generation of Business Process Models

from Natural Language Input

Master Thesis

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE (M.Sc.)

IN INFORMATION SYSTEMS

AT THE SCHOOL OF BUSINESS AND ECONOMICS OF THE

HUMBOLDT-UNIVERSITÄT ZU BERLIN

submitted by

Fabian Friedrich

Matriculation number 509709

Supervisor: Prof. Dr. Jan Mendling

Associate Supervisor: Dr. Frank Puhlmann

Berlin, 29th November 2010

ACKNOWLEDGEMENT

Acknowledgement

This part of my thesis is dedicated to express my appreciation and sincere gratitude

to all the people who influenced and supported me in its creation.

First of all I want to thank my supervisor Prof. Jan Mendling for awaking my interest

in BPM, for his great and supportive teaching style, and, of course, for supervising this

thesis. In the last months he has not only supported my with scientific advice, help on

structuring the thesis and valuable comments and ideas, but also with encouragement

and friendship. Thank you! I also want to thank him to establish the contact to Frank

Puhlmann and the inubit AG in one of his seminars in the first year of my master studies.

I also want to express my gratitude to Frank who had the initial idea for the topic of this

thesis, for his feedback and valuable suggestions, and for providing me with a challenging

and inspiring work environment in the last two years.

Moreover, I want to thank my fellow student for their support and friendship through-

out all of my master studies. I particularly want to thank Christopher, Henrik, Thomas,

Johannes, Matthias, Roland, Robert, Daniel. I greatly appreciated your company. With-

out the several study groups, collaborations on seminar papers and collective exam prepa-

rations the time of study would have been rather dull and incomparably harder.

My special thanks go to Christopher, Christian, Henrik, Anne, Robert and Felix for

proof reading my thesis and their valuable corrections and recommendations.

For helping me to collect all of the test data I want to thank Frank Puhlmann,

Oliver Holschke, Jan Recker, Thomas Kohlborn, Dirk Breitkreuz, Hajo Reijers, Ben-

jamin Fabian, Felix Elliger, Matthias Schrepfer, Nicolas Peters, and Christian Zimmer.

They made a large part of this work possible.

Lastly, I want to thank my family for their support and understanding during times of

high work load. Anne and Josephin thank you for your love and warmth, encouragement,

patience, and for believing in me. I am looking forward to a bright and happy future

together with you.

- I -

ABSTRACT

Abstract

A first step to enable effective business process management (BPM) is the design of

appropriate conceptual models. These models are used to describe the roles and respon-

sibilities of the employees in an organizational chart, the structure of data, e.g. in an

UML class-diagram, and the flow within a process, e.g. as a BPMN-model. They provide

the foundation for BPM-initiatives to increase operational performance, but apart from

their importance it is also a time and resource intensive task to create such models. On

the other hand, information on all the aforementioned subjects is usually available in a

company within unstructured textual documents. To reduce the modeling efforts and to

accelerate the realization of benefits from a BPM-initiative, we propose an approach for

the automated generation of business process models from text documents. In order to

create this approach, we analyzed several texts and the corresponding manually created

models and derived transformation heuristics from the identified syntactic and semantic

patterns. Furthermore, the approach was implemented in a research prototype and evalu-

ated using a similarity metric based on the graph edit distance. Our evaluation has shown

encouraging results. In average we were able to generate models which are 76% similar

to those created manually by a human.

“Within a computer natural language is unnatural.”

Alan Perlis

- II -

Contents

List of Figures VI

List of Tables XI

List of Algorithms XI

1 Introduction 1

1.1 Motivation . 1

1.2 Research Contribution . 2

1.3 Research Methodology . 3

1.4 Structure of this Thesis . 8

2 Background 9

2.1 Business Process Management . 9

2.1.1 Business Process Model and Notation 2.0 12

2.1.2 Process Model Labeling and Quality Aspects 16

2.2 Natural Language Processing . 18

2.2.1 Syntax Parsing . 18

2.2.2 Anaphora Resolution . 22

2.2.3 Semantic Analysis . 23

2.3 Application of NLP for Process Model Creation 26

2.4 Other Related Work . 29

3 Transformation Approach 31

3.1 Categorization of Issues . 31

3.1.1 Semantics 6= Syntax . 33

3.1.2 Atomicity . 35

3.1.3 Relevance . 36

CONTENTS

3.1.4 Referencing . 37

3.1.5 Solution Strategy . 41

3.2 Intermediate Data Structure (World Model) 43

3.3 Sentence Level Analysis . 47

3.3.1 Text and Sentence Decomposition 47

3.3.2 Element Extraction . 50

3.3.3 Element Creation and Semantic Analysis 58

3.4 Text Level Analysis . 66

3.4.1 Anaphora Resolution Technique . 67

3.4.2 Conditional Marking . 73

3.4.3 Action combination . 79

3.4.4 Inter-Action Link determination . 82

3.4.5 Flow Generation . 83

3.5 Process Model Generation . 89

3.5.1 Model Creation . 90

3.5.2 Model Augmentation . 94

3.6 Lane Split-off Procedure . 98

3.6.1 SequenceFlow Transformation . 98

3.6.2 Building Semantic Communication Links 102

4 Evaluation of Generated Process Models 105

4.1 Test Data Set . 105

4.2 Evaluation Methodology . 109

4.2.1 Text Preparation . 109

4.2.2 Model Preparation . 110

4.2.3 Evaluation Metrics . 112

4.3 Test Results . 115

4.4 Discussion . 117

- IV -

CONTENTS

5 Conclusion 120

5.1 Limitations . 121

5.2 Further Research . 121

References 124

Appendix A Detailed Evaluation Results 140

Appendix B Detailed Test Data Sets 146

Appendix B.1 Models provided by the Humboldt-Universität zu Berlin . . . 146

Appendix B.2 Models provided by the Technische Universität Berlin 156

Appendix B.3 Models provided by the Queensland University of Technology 166

Appendix B.4 Models provided by the Technische Universiteit Eindhoven . . 178

Appendix B.5 Models taken from BPM Vendor Tutorials 182

Appendix B.6 Models provided by the inubit AG 189

Appendix B.7 Models provided by BPM Practitioners 199

Appendix B.8 Models taken from the BPMN practical handbook 200

Appendix B.9 Models taken from the BPMN Modeling an Reference Guide . 203

Appendix B.10 Models taken from a Federal Network Agency Enactment . . 211

Appendix C Employed Stop Word Lists 238

Appendix D Description of the implemented Prototype 239

- V -

List of Figures

1 Research methodology underlying this thesis. 5

2 The Generate/Test Cycle [50]. 7

3 The Business Process Management Life-cycle [81]. 10

4 Levels of Abstraction [134]. 11

5 The process of information modeling. 12

6 Considered subset of BPMN nodes. 14

7 Considered subset of BPMN edges. 15

8 A syntax tree generated by the Stanford Dependency Parser. 19

9 Structural overview of the presented transformation approach. 42

10 Structure of the intermediate data structure (World Model). 46

11 Structural overview of the steps of the Sentence Level Analysis. 47

12 Structural overview of the steps of the Text Level Analysis. 67

13 Example model Where two Gateways are directly following each other. . 86

14 Process model resulting from a “Mixed Situation”. 87

15 Structural overview of the steps of the Process Model Generation phase. . 90

16 Example for the result of a Lane split-off. 102

17 Example for the creation of extra communication links. 103

18 Test-data by source type. 106

19 Graphical representation of the conducted linear regressions. 116

20 Examples of failed syntax parses. 118

B.21 Model 1-1 as generated by our system. 147

B.22 Model 1-1 as created by a human modeler. 148

B.23 Model 1-2 as generated by our system. 149

B.24 Model 1-2 as created by a human modeler. 150

B.25 Model 1-3 as generated by our system. 152

B.26 Model 1-3 as created by a human modeler. 153

LIST OF FIGURES

B.27 Model 1-4 as generated by our system. 154

B.28 Model 1-4 as created by a human modeler. 155

B.29 Model 2-1 as generated by our system (part 1). 157

B.30 Model 2-1 as generated by our system (part 2). 158

B.31 Model 2-1 as created by a human modeler (part1). 159

B.32 Model 2-1 as created by a human modeler (part 2). 160

B.33 Model 2-2 as generated by our system (part 1). 162

B.34 Model 2-2 as generated by our system (part 2). 163

B.35 Model 2-2 as created by a human modeler (part1). 164

B.36 Model 2-2 as created by a human modeler (part 2). 165

B.37 Model 3-1 as generated by our system. 167

B.38 Model 3-1 as created by a human modeler. 168

B.39 Model 3-2 as generated by our system. 169

B.40 Model 3-2 as created by a human modeler. 169

B.41 Model 3-3 as generated by our system. 169

B.42 Model 3-3 as created by a human modeler. 169

B.43 Model 3-4 as generated by our system. 170

B.44 Model 3-4 as created by a human modeler. 170

B.45 Model 3-5 as generated by our system. 172

B.46 Model 3-5 as created by a human modeler. 173

B.47 Model 3-6 as generated by our system. 174

B.48 Model 3-6 as created by a human modeler. 174

B.49 Model 3-7 as generated by our system. 175

B.50 Model 3-7 as created by a human modeler. 175

B.51 Model 3-8 as generated by our system. 176

B.52 Model 3-8 as created by a human modeler. 177

B.53 Model 4-1 as generated by our system (part 1). 179

- VII -

LIST OF FIGURES

B.54 Model 4-1 as generated by our system (part 2). 180

B.55 Model 4-1 as created by a human modeler. 181

B.56 Model 5-1 as generated by our system. 182

B.57 Model 5-1 as created by a human modeler. 183

B.58 Model 5-2 as generated by our system. 183

B.59 Model 5-2 as created by a human modeler. 184

B.60 Model 5-3 as generated by our system. 185

B.61 Model 5-3 as created by a human modeler. 186

B.62 Model 5-4 as generated by our system. 187

B.63 Model 5-4 as created by a human modeler. 188

B.64 Model 6-1 as generated by our system (part 1). 190

B.65 Model 6-1 as generated by our system (part 2). 191

B.66 Model 6-1 as created by a human modeler. 192

B.67 Model 6-2 as generated by our system. 193

B.68 Model 6-2 as created by a human modeler. 193

B.69 Model 6-3 as generated by our system. 195

B.70 Model 6-3 as created by a human modeler. 196

B.71 Model 6-4 as generated by our system. 197

B.72 Model 6-4 as created by a human modeler. 198

B.73 Model 7-1 as generated by our system. 199

B.74 Model 7-1 as created by a human modeler. 199

B.75 Model 8-1 as generated by our system. 200

B.76 Model 8-1 as created by a human modeler. 200

B.77 Model 8-2 as generated by our system. 201

B.78 Model 8-2 as created by a human modeler. 201

B.79 Model 8-3 as generated by our system. 202

B.80 Model 8-3 as created by a human modeler. 202

- VIII -

LIST OF FIGURES

B.81 Model 9-1 as generated by our system. 203

B.82 Model 9-1 as created by a human modeler. 204

B.83 Model 9-2 as generated by our system. 205

B.84 Model 9-2 as created by a human modeler. 205

B.85 Model 9-3 as generated by our system. 206

B.86 Model 9-3 as created by a human modeler. 206

B.87 Model 9-4 as generated by our system. 207

B.88 Model 9-4 as created by a human modeler. 207

B.89 Model 9-5 as generated by our system. 208

B.90 Model 9-5 as created by a human modeler. 208

B.91 Model 9-6 as generated by our system. 209

B.92 Model 9-6 as created by a human modeler. 210

B.93 Model 10-1 as generated by our system. 212

B.94 Model 10-1 Sequence Diagram transformed to BPMN. 212

B.95 Model 10-1 originally provided Sequence Diagram. 212

B.96 Model 10-2 as generated by our system. 214

B.97 Model 10-2 Sequence Diagram transformed to BPMN. 215

B.98 Model 10-2 originally provided Sequence Diagram. 216

B.99 Model 10-3 as generated by our system. 216

B.100 Model 10-3 Sequence Diagram transformed to BPMN. 217

B.101 Model 10-3 originally provided Sequence Diagram. 217

B.102 Model 10-4 as generated by our system. 219

B.103 Model 10-4 Sequence Diagram transformed to BPMN. 219

B.104 Model 10-4 originally provided Sequence Diagram. 220

B.105 Model 10-5 as generated by our system. 220

B.106 Model 10-5 Sequence Diagram transformed to BPMN. 220

B.107 Model 10-5 originally provided Sequence Diagram. 221

- IX -

LIST OF FIGURES

B.108 Model 10-6 as generated by our system. 221

B.109 Model 10-6 Sequence Diagram transformed to BPMN. 221

B.110 Model 10-6 originally provided Sequence Diagram. 222

B.111 Model 10-7 as generated by our system. 223

B.112 Model 10-7 Sequence Diagram transformed to BPMN. 224

B.113 Model 10-7 originally provided Sequence Diagram. 224

B.114 Model 10-8 as generated by our system. 225

B.115 Model 10-8 Sequence Diagram transformed to BPMN. 226

B.116 Model 10-8 originally provided Sequence Diagram. 226

B.117 Model 10-9 as generated by our system. 227

B.118 Model 10-9 Sequence Diagram transformed to BPMN. 227

B.119 Model 10-9 originally provided Sequence Diagram. 228

B.120 Model 10-10 as generated by our system. 229

B.121 Model 10-10 Sequence Diagram transformed to BPMN. 229

B.122 Model 10-10 originally provided Sequence Diagram. 230

B.123 Model 10-11 as generated by our system. 230

B.124 Model 10-11 Sequence Diagram transformed to BPMN. 231

B.125 Model 10-11 originally provided Sequence Diagram. 231

B.126 Model 10-12 as generated by our system. 232

B.127 Model 10-12 Sequence Diagram transformed to BPMN. 233

B.128 Model 10-12 originally provided Sequence Diagram. 233

B.129 Model 10-13 as generated by our system. 234

B.130 Model 10-13 Sequence Diagram transformed to BPMN. 234

B.131 Model 10-13 originally provided Sequence Diagram. 234

B.132 Model 10-14 originally provided Sequence Diagram. 235

B.133 Model 10-14 as generated by our system. 236

B.134 Model 10-14 Sequence Diagram transformed to BPMN. 237

- X -

D.135 Graphical user interface of the implemented research prototype. 240

List of Tables

1 Stanford dependencies as generated by the Stanford Parser. 20

2 References in the literature to the analyzed issues. 32

3 Stanford dependencies for a copula phrase. 54

4 Score values used in algorithm 12. 71

5 Anaphora resolution performance comparison 72

6 Characteristics of the test data set by source. 108

7 Result of the application of the evaluation metrics to the test data set. . . 114

8 Results of a linear regression on 5 textual features regarding similarity. . . 116

A.9 Model ID, Source and Name Overview . 140

A.10 Detailed characteristics of the analyzed text and models 143

B.11 List of abbreviations and translations used in the FNA Test Data Set. . . . 211

List of Algorithms

1 Sentence Decomposition . 49

2 Extract Elements . 52

3 Determine Actors . 53

4 Determine Actions . 55

5 Check Conjunctions . 57

6 Determine Objects . 59

7 Create Actor . 62

8 Create Object . 63

9 Determine Frame Element . 65

10 Create Action . 66

11 Anaphora Resolution . 69

LIST OF ALGORITHMS

12 Get Resolution Candidate . 70

13 Marker Detection . 75

14 Detect Compound Indicators . 77

15 Add Implicit Markers . 78

16 Correct Order . 79

17 Combine Actions . 81

18 Merge Actions . 82

19 Determine Inter-Action Links . 84

20 Determine Link-Type . 84

21 Build Flows . 88

22 Handle Single Action . 89

23 Create Nodes . 93

24 Create Black Box Pools . 95

25 Build Black Box Pool . 96

26 Get Data Object Candidates . 97

27 Lane Split-off Mechanism . 99

28 Transformation To Message Flow . 101

29 Build Extra Communication Link . 104

- XII -

1 INTRODUCTION

1. Introduction

This section provides an introduction to this master thesis. After a discussion of

the motivational aspects in section 1.1, the contribution to the body of knowledge of

Information Systems research is highlighted in section 1.2. Section 1.3 will enlighten the

contribution in the perspective of design science. Then, the introduction concludes by

providing an outlook on the structure of this thesis in section 1.4.

1.1. Motivation

Business process management is a discipline which seeks to increase the adaptability

and value creation potential of companies by holistically analyzing and optimizing their

processes regardless of departmental boundaries. But, in order to be able to analyze a

process and to tap the full efficiency potential a thorough understanding of the process is

required first. The necessary level of understanding can be achieved by creating formal

models of business processes. Such business process models act as a means to document

and analyze the underlying process and can serve as a blue print for subsequent imple-

mentation and automation activities. Several formal or semi-formal graphical notations

are available to map a process to its graphical representation containing the performed

tasks, involved actors, required data and documents, and business rules, which describes

the logical and temporal aspects of the process execution [102].

The knowledge needed to construct process models has to be extracted from the partic-

ipating actors [49]. However, these actors are usually not qualified to create formal models

[35]. For this reason, modeling experts are required to iteratively formalize and validate

the models in collaboration with the domain experts. But, this traditional procedure of

extracting process models through interviews, meetings, or workshops [110] tends to be

cost- and time-intensive due to the informal setting and ambiguity or misunderstandings

between the involved participants [105]. Therefore, the initial elicitation of conceptual

models presents a knowledge acquisition bottleneck [46]. According to Herbst [49] the

acquisition of the as-is model in a workflow project requires 60% of the total time spent.

- 1 -

1 INTRODUCTION

Thus, substantial savings are possible by providing automation support to a business

analyst.

Having said that, we also have to consider that information about the internal pro-

cesses of an organization is often already present in the form of informal textual speci-

fications. Such textual documents can be policies (e.g., for travel or expenses), reports,

forms, manuals, knowledge management systems, and e-mail messages. Content manage-

ment professionals estimated that 85% of the information in companies is stored in such

an unstructured way, mostly as text documents [6]. Moreover, the amount of unstruc-

tured textual information is growing at a much faster rate than traditional structured data

[135]. It seems reasonable to assume that these texts are potential sources of information

for the construction of conceptual models.

Thus, in order to enable domain experts to create formal models simply through a

textual description and to leverage the information potential of already existing text

documents an automatic transformation technique is needed. The discipline concerned

with this type of analysis is Natural Language Processing (NLP). It enables the automated

analysis of the syntax and semantics of natural language texts. By applying state-of-the-

art NLP techniques to business process descriptions we are able to automatically create

formal process models. This will make it possible to list the mentioned time- and resource-

savings potentials and to enable a quicker realization of BPM-projects and their benefits.

Therefore, the goal of this thesis is to investigate possibilities for such an automated

transformation technique, to describe a prototypical implementation, and to evaluate it.

1.2. Research Contribution

As stated in the previous section, the goal of this thesis is the development of a system

which is able to generate conceptual models needed for a BPM-initiative from text. Using

our approach a system analyst is relieved from the time-intensive modeling task. By

pursuing this research goal, we evaluated related works in the field of BPM and NLP,

developed a novel transformation approach, and created and evaluated it. Therefore, this

- 2 -

1 INTRODUCTION

thesis provide the following contributions:

Literature Review we collected several works dealing with the problem of automated

process model generation and evaluated their strengths and weaknesses.

Categorization of Issues Based on these findings we developed a theoretical framework

which categorizes important issues which are relevant for a transformation approach.

Novel Transformation Approach We transfered our theoretical framework into prac-

tice and developed a novel transformation approach. It is the first which does not

rely on a pure syntax parse of sentences, but uses grammatical relations — Stan-

ford Dependencies. Furthermore, it is the first which effectively combines four well

known NLP tools, namely the Stanford Syntax Parser, FrameNet, WordNet and

an anaphora resolution algorithm. Moreover it covers a wider spectrum of model-

ing constructs then other approaches and includes novel solutions for problems like

activities which are spread over several sentences.

Prototype This approach was implemented and tested in our research prototype.

Comprehensive Test Data Set In order to evaluate our approach a comprehensive

test data set containing 47 process descriptions and manually created models cov-

ering various domains was collected. Additionally, all of the texts and models are

included in this thesis, which enables other researchers to verify our approach and

to build upon this test data set. Thereby, we also addressed a shortcoming of other

research conducted in this area which hardly ever incorporated the underlying test

data.

Evaluation Approach To assess the accuracy of our transformation approach we cre-

ated an evaluation methodology using graph edit distance and reported all results.

1.3. Research Methodology

To develop the transformation procedure, we followed a four step approach.

- 3 -

1 INTRODUCTION

Test Data Collection The first step was to collect initial test data sets, consisting of

natural language process specifications and a corresponding process model. They

provided us with insights on how humans are translating a textual description to

a process model. Occasionally, the process model was not provided as a BPMN

diagram in which case we applied a transformation procedure as described in section

4.2.2.

Analysis of Syntactic and Semantic Patterns By analyzing the linguistic patterns

we were able to map text constructions to their corresponding modeling fragments.

This also revealed issues regarding the quality of the syntax parse and the text it-

self. We systematically categorized these issues and developed a conceptual solution

strategy.

Transformation Rules Derivation To effectively mitigate the detected issues we de-

rived appropriate transformation heuristics and refined them iteratively. The rules

were then implemented in our research prototype to assess the output.

Evaluation We defined, e.g., a similarity metric to compare the models generated by

our transformation procedure to those manually created by humans. We applied

these metrics to evaluate the performance of our transformation procedure. The

gathered information could then be used in another iteration to refine or discover

new patterns and rules and to improve the performance regarding the test data set.

The structure of this methodology is illustrated in figure 1. By following this method-

ology, the contributions of the research conducted in this thesis follows the paradigm of

design science, as defined by Hevner [50]. In his paper, Hevner states that Information

Systems Research is characterized by behavioral sciences and design science. While be-

havioral science “seeks to develop and verify theories that explain or predict human or

organizational behavior”, design science tries to “extend the boundaries of human and

organizational capabilities by creating new and innovative artifacts” [50]. The transfor-

- 4 -

1 INTRODUCTION

Transformation
Rules

Textual Process
Descriptions

Manually Created
Process Models

Test Data Sets

Syntactic and
Semantic Patterns

1)

2)

3)

Evaluation
4)

Figure 1: Research methodology underlying this thesis.

mation approach which is developed and presented in the context of this thesis can be

classified as such an artifact as it provides a model, the transformation method and an

instantiation in form of a research prototype. In order to achieve an easier understand-

ing of what can be considered effective design science research, Hevner proposed seven

research guidelines which should be addressed to attain complete research.

Guideline 1: Design as an Artifact “Design-science research must produce a viable

artifact in the form of a construct, a model, a method, or an instantiation.”[50]

As the aim of our research is to analyze and describe an approach to transform

natural language text into process models and to build and evaluate a corresponding

prototype, this guideline can be deemed to be fulfilled.

Guideline 2: Problem Relevance “The objective of design-science research is to de-

velop technology-based solutions to important and relevant business problems.”[50]

As outlined in section 1.1 a full automation of the as-is design process could re-

duce the resource requirements of a workflow project by up to 60%. Therefore, the

business relevance of our research can be derived from the financial and temporal

- 5 -

1 INTRODUCTION

implications of a successful implementation.

Guideline 3: Design Evaluation “The utility, quality, and efficacy of a design artifact

must be rigorously demonstrated via well-executed evaluation methods.” [50] As

mentioned before, an evaluation, which also captures quality and utility aspects,

will be conducted in section 4. We will employ different analytical methods to

compare the models generated by our approach with those manually created by a

human modeler.

Guideline 4: Research Contributions “Effective design-science research must pro-

vide clear and verifiable contributions in the areas of the design artifact, design

foundations, and/or design methodologies.” The contributions of this thesis were

outlined in section 1.2. Furthermore, all natural language texts and the resulting

models which were used for deriving our transformation approach and to conduct

the final evaluation are fully listed in the Appendices, so a verification by external

parties is easily possible.

Guideline 5: Research Rigor “Design-science research relies upon the application of

rigorous methods in both the construction and evaluation of the design artifact.”

[50]. Hevner argues that rigor in a design-science context is often achieved by

mathematical formalism and by making effective use of the existing knowledge base.

Our approach builds on existing research by making use of, e.g., the Stanford Parser,

WordNet and FrameNet [3] in the area of Natural Language Processing (NLP).

Furthermore, we are relying on BPM standards like BPMN 2.0, foundations of

graph theory, and are taking existing publications on the topic of model generation

from text into account.

Guideline 6: Design as a Search Process “The search for an effective artifact re-

quires utilizing available means to reach desired ends while satisfying laws in the

problem environment.” [50] Due to the nature of natural language, it is not possible

- 6 -

1 INTRODUCTION

Generate
Design

Alternatives

Test Alternatives
Against

Requirements/Constraints

Figure 2: The Generate/Test Cycle [50].

to analyze the whole problem space and find an optimal solution. Because of this

characteristic, the problem of parsing and interpreting natural language text is a

“wicked” problem, according to the terminology of Hevner. Therefore, the design

of our transformation system can be regarded as a search process, where heuristics

are designed, tested for their suitability and then further refined. This fits into the

generate/test cycle (see figure 2) depicted in [50], which was described in [116].

Guideline 7: Communication of Research “Design-science research must be present-

ed effectively both to technology-oriented as well as management-oriented audi-

ences.” [50] As a copy of this Master Thesis will remain in the library of the

Humboldt-Universität zu Berlin it is publicly available for all types of audiences.

Furthermore publications of the most important findings to a wider audience on

workshops and/or conferences is planned.

By relating the elements of this thesis to the aforementioned guidelines for informa-

tion systems research, we demonstrated that the conducted research extends the body of

knowledge and conforms to accepted research standards in the discipline of information

systems.

- 7 -

1 INTRODUCTION

1.4. Structure of this Thesis

Section 2 provides background information on the usage, techniques, and goals BPM

and Natural Language Processing (NLP) and will introduce their basic concepts and the

components we build upon. For BPM we focus on the aspects of process modeling and

how to create a valid and formally correct model. In the area of NLP we will explain

the workings of the Stanford Parser which enables the analysis of the syntactic structures

of a sentence, the resolution of anaphoric references and the analysis of the semantics of

a word or phrase with the help of WordNet and FrameNet. Afterward, related articles

which describe approaches similar to the one presented in this thesis are explained and

differences are highlighted.

In section 3 the details of the transformation procedure are developed. Firstly, the

structure and identified issues of documents describing process models are explained and

the requirements imposed on a system capable to transform process descriptions into

process models are highlighted in section 3.1.

Based on these issues, we propose a two step analysis. We star with the analysis of each

sentence using its syntax parse in section 3.3 and continue by analyzing the information

contained in the whole text in section 3.4. Then, we show how process models can be

generated from the collected information in section 3.5 and how the user can be enabled

to quickly adapt important parts of the model to his preferences in section 3.6.

After explaining our transformation approach, we apply it to several examples in sec-

tion 4. First, our test data set containing 47 process descriptions and their corresponding

process models is introduced in section 4.1. Afterward, we define a similarity metric based

on the graph edit distance in section 4.2 and show the results of the comparison of models

generated by our approach to those created by a human modeler in order to evaluate the

accuracy of our approach.

The thesis will conclude in section 5 by outlining perspectives for further research and

by highlighting the limitations of our work.

- 8 -

2 BACKGROUND

2. Background

This thesis covers an interdisciplinary topic. It relies on concepts and research in the

areas of Conceptual Modeling and BPM in particular, as well as NLP. First we will give

a rough overview about the topics covered by BPM and will present the “Business Pro-

cess Model and Notation” (BPMN) standard. Furthermore, the fundamental concepts of

quality of process models are introduced and we will highlight how these can be transfered

to our approach in order to create correct models.

Afterward, Natural Language Processing is introduced and three specific problems

out of its domain are illustrated. These three problems are syntax parsing of sentences,

anaphora resolution techniques, and the semantic analysis. During these descriptions, we

will demonstrate the capabilities and sketch the internal workings of the four tools we

employ for our approach, the Stanford Parser, WordNet, FrameNet, and an Anaphora

Resolution technique which is an adapted version of Hobb’s algorithm.

2.1. Business Process Management

Business Process Management (BPM) is a management discipline and was defined as:

“Supporting business processes using methods, techniques, and software to de-

sign, enact, control, and analyze operational processes involving humans, or-

ganizations, applications, documents and other sources of information.” [124]

BPM is concerned with the documentation, automation, optimization, and integration

of processes.[4]. To achieve these goals companies follow the BPM life-cycle (see figure

3). The first phase of the life-cycle is concerned with the analysis and definition of the

current processes within the organization. The next step is the creation of a formal

process model which represents these processes [119]. The formal models serve as a basis

for the implementation phase. It includes the provision of the appropriate hardware

infrastructure, the configuration and implementation of the associated systems and also

the training of the involved employees. Finally, the process can be enacted and the process

- 9 -

2 BACKGROUND

1.2 Definition of Business Process Management 5

Roller provide a classification scheme1 for processes based on their business value
and their degree of repetition [248]. They use the term “production process” to refer
to those processes that have both a high business value and a high degree of repeti-
tion. Administrative processes are also highly repetitive but of little business value.
Furthermore, collaborative processes are highly valuable but hardly repeatable. Fi-
nally, ad hoc processes are neither repetitive nor valuable. Leymann and Roller con-
clude that information systems support should focus on production processes. In
particular, workflow management systems are discussed as a suitable tool. Further
definitions and classifications can be found, for example, in [264, 251, 114].

Business process management can be defined as the set of all management ac-
tivities related to business processes. In essence, the management activities related
to business processes can be idealistically arranged in a life cycle. Business process
management life cycle models have been described in [9, 310, 114]. In the remainder
of this section, we mainly follow the life cycle proposed in [310, pp.82-87] because it
not only includes activities but also artifacts, and because it consolidates the life cy-
cle models for business process management reported in [176, 134, 420, 317]. This
life cycle shares the activities analysis, design and implementation with the gen-
eral process of information systems development identified by [448]. The life cycle
comprises the management activities of analysis, design, implementation, enactment,
monitoring and evaluation. The solid arcs represent the typical order of these activi-
ties (see Figure 1.1). Organizations differ in the level of sophistication in which they
support these phases and the smooth transition between them. A related model of
business process management maturity is discussed in [363].

Analysis

Design

Implementation

Enactment

Evaluation

Monitoring

Requirements

Process Model

Infrastructure

Case Data

Case Data

Requirements

Figure 1.1. Business process management life cycle

1 The authors refer to the GIGA group who originally introduced the scheme.

Figure 3: The Business Process Management Life-cycle [81].

is executed with full information system support. While the process is executed, data

about the handled cases can be collected. This case data in turn can be used to monitor

the performance of the executed process, to trigger alerts when certain key performance

indicators are not met and to decide on the necessary counteractions. In the evaluation

phase, the collected case data can be analyzed to derive new requirements, which enable

further process improvements in the next iteration of the BPM life-cycle.

Companies have to put considerable effort into the design, implementation, execution,

monitoring, and evaluation of processes and the corresponding data. Thus Business Pro-

cess Management Systems (BPMS) are often employed to provide the necessary software

support for those activities. In his book, Weske defined BPMS as “a generic software

system that is driven by explicit process representations to coordinate the enactment of

business processes”. Such explicit representations are conceptual models, which are the

result of the design phase as depicted in the BPM life-cycle. In the area of BPM differ-

ent kinds of conceptual models are required, including representations of functions, data,

organization, system landscapes, and most importantly for our perspective process mod-

els [110]. Such process models provide an abstracted representation of several business

- 10 -

2 BACKGROUND

76 3 Business Process Modelling Foundation

For instance, a set of similar business process instances are classified and rep-
resented by a business process model. In object modelling, a set of similar
entities is represented by a class, and in data modelling using the Entity Re-
lationship approach, a set of similar entities is represented by an entity type,
and similar relationships between entity types are represented by a relation-
ship type.

M3: Meta-Metamodel

M2: Metamodel

M1: Model

M0: Instance

Instance-of describes

Instance-of describes

Instance-of describes

Notation

ex
pr

es
se

s

Fig. 3.2. Levels of abstraction

Models are expressed in metamodels that are associated with notations,
often of a graphical nature. For instance, the Petri net metamodel defines Petri
nets to consist of places and transitions that form a directed bipartite graph.
The traditional Petri net notation associates graphical symbols with meta-
model elements. For instance, places are represented by circles, transitions by
rectangles, and the graph structure by directed edges.

In data modelling, the Entity Relationship metamodel defines entity types,
relationship types, and connections between them. Typical graphical notations
of the Entity Relationship metamodel are rectangles for entity types and di-
amonds for relationship types, connected by lines.

While often there is one graphical notation for one approach, a one-to-one
correspondence between notation and metamodel is not mandatory. In a Petri
net, the concept of a transition could also be represented by another symbol
in a graphical notation. There are different notations for representing Petri

Figure 4: Levels of Abstraction [134].

process instances which are the interactions within a company conducted to create value.

It includes activities conducted by humans and/or software systems and is able to show

interdependencies. To visualize process models, different notations can be used, like EPC

[20, page 258ff], YAWL [125], BPMN [87], UML Activity Diagrams [88], or Petri Nets

[92]. These languages define the metamodel — the rules and structure the model has to

follow (see figure 4).

The process of crafting and refining such conceptual models in general was character-

ized in by Frederiks [35]. He distinguishes four phases: elicitation, modeling, verification,

and validation. The results of the elicitation phase is an informal specification. In our

case this can be a process description in natural language. Next, this informal specifica-

tion is transformed into a formal representation during the modeling phase. This formal

representation is then verified and checked for conformance to its metamodel. As it is

- 11 -

2 BACKGROUND

informal
specification

formal
specification

Validation Modeling

Universe of
Discourse

Verification

informal
specification

formal
specification

Validation Generation

Universe of
Discourse

Revision

Figure 5: The process of information modeling adapted from [35] (left) and

revised including generation capabilities (right).

our goal to automate the modeling process, we can directly generate a preliminary for-

mal specification from the informal specification. During this generation procedure we

can ensure that only constructs which are valid regarding the metamodel are created.

Therefore, instead of verifying the generated model, it has to be revised and corrected to

account for possible errors in the transformation procedure. The original process taken

from Frederiks [35] and an adapted version which reflects improvements of introducing an

automated transformation approach are shown in figure 5.

2.1.1. Business Process Model and Notation 2.0

For the approach developed in this thesis we decided to use BPMN 2.0 as language

or metamodel for the resulting process models. The main reason for this decision is

that BPMN is an official standard supported by the Object Management Group (OMG)

for process modeling. Furthermore, it provides rich expression capabilities and is wide-

spread. This is also reflected within our test data set (see section 4.1), where the majority

of the contained process models were directly provided in BPMN. We used the most

- 12 -

2 BACKGROUND

recent version — BPMN 2.0 —, which was last revised in June 20101 [87]. With the

introduction of BPMN 2.0, each element of a BPMN process diagram has clearly defined

semantics. Furthermore, it is based on several former modeling techniques like “UML,

IDEF, ebXML, LOVeM, and Event-driven Process Chains” [103] and seeks to combine

their strengths.

From a graph theoretic point of view, a BPMN business process model can be regarded

as a directed graph with the nodes N and edges E ⊆ N x N connecting those nodes [45].

Thereby, an edge always connects two nodes, starts at a node which we define as source and

ends at a node which we define as target. During the descriptions of our transformation

procedure in section 3 we will utilize these definitions.

BPMN distinguishes between four types of elements.

• Flow Objects (Activities, Events and Gateways)

• Swimlanes (Pools and Lanes)

• Artifacts (e.g. Data Objects, Text Annotations or Groups)

• Connecting Objects (Sequence Flows, Message Flows and Associations)

While the first three types of elements are nodes, the latter ones are edges. In figure 6

we are displaying a subset of BPMN Flow Objects, Swimlanes and Artifacts. All of these

elements are considered potential generation results of our transformation approach.

“A Task is an atomic Activity within a Process Flow. A Task is used when the

work in the Process cannot be broken down to a finer level of detail.” [87, page 160].

Whenever a group of activities is combined or reusage of a process fragment is intended,

a Subprocess can be used instead of a Task. A Subprocess can be collapsed and expanded

(hence the plus sign at the bottom) to either show or hide its details. Gateways play

an important role as they enable the process flow to be split and joined. An exclusive

1http://www.bpmn.org/; last accessed 2010-11-05

- 13 -

http://www.bpmn.org/

2 BACKGROUND

Figure 6: Considered subset of BPMN nodes.

Gateway (or XOR Gateway) is used to model a decision. Out of all its incoming or

outgoing edges only one path will be selected. An event-based exclusive Gateway shows

the same behavior, but requires that all of its successors are events. The semantics of

a parallel Gateway are different as it will activate all of its outgoing paths or requires

that all of its incoming paths are activated. Thus it can be used to model concurrent

behaviors. The inclusive Gateway (also OR Gateway) can activate 1–n of its in-/outgoing

edges or requires them to be activated in order to proceed. It is thus more versatile, but

also more complex [80]. Event nodes can be used to denote the start or end of a process.

Additionally, intermediate Events can be used within the process flow to make clear that

the process will halt and wait for the expected Event to occur. The nature of the Event

can be signified by additional symbols, e.g., for Messages, Time or Exceptions as shown

in figure 6. BPMN specifies 13 different event types which are fully listed in the BPMN

2.0 specification [87].

The presented transformation approach is also able to generate Data Object artifacts.

These can be connected to nodes and edges to demonstrate the kind of data which is used

- 14 -

2 BACKGROUND

Figure 7: Considered subset of BPMN edges.

within this process step.

Lastly, Pools, and Lanes are an important part of the process. “A Pool is the graphical

representation of a Participant in a Collaboration. A Participant (see page 115) can be

a specific PartnerEntity (e.g., a company) or can be a more general PartnerRole (e.g., a

buyer, seller, or manufacturer)” [87, p 112]. Hence, a Pool can represent a human, organi-

zation, or software system involved in a business process. While a Pool is used to show the

boundary of an organization and to determine the involved process participants, a Lane

can be used to partition the Pool and show the different process participants within that

body. Again, this could be different individual, organizational units or software systems.

Whenever the behavior of an involved participant is supposed to be left unspecified, a

Black Box Pool can be used. This way other process participants and the interactions

with them can be shown in a diagram without the need to specify their behavior directly.

BPMN distinguishes between three types of edges or Connecting Objects. Firstly,

Sequence Flows which are used to connect Flow Objects within the same Pool. Secondly,

Message Flows which have to be used whenever an edge crosses the boundary of a Pool.

Therefore, it can be used to visualize the interactions between several process participants

- 15 -

2 BACKGROUND

in a Collaboration Diagram. Lastly, Associations are used to connect Artifacts to Flow

or Connecting Objects.

According to zur Muehlen [84] only few BPMN diagrams use more than 15 different

elements. The subset we defined contains 21 elements. Therefore, we are confident that

the required elements for the majority of BPM projects can be provided by our transfor-

mation procedure as it covers the important and most widely used elements [84]. When

creating process models questions about their understandability and quality arise. There-

fore, the next section will provide an insight into research which is concerned with these

aspects, which are relevant for the automated generation of process models.

2.1.2. Process Model Labeling and Quality Aspects

The quality of a conceptual model including process models can be characterized

by three major aspects according to Lindland [73]. These are semantic, syntactic, and

pragmatic quality. These aspects can be roughly described as:

Semantic Quality describes whether the model correctly reflects the modeled domain.

Syntactic quality defines if the model conforms to its modeling language and the meta-

model.

Pragmatic Quality is concerned whether the involved actors are able to understand

the model correctly.

These are the basic pillars of quality in the area of conceptual modeling. Lindland’s

model was specialized to take more detailed aspects into account (e.g. [61]) and has

been applied to process modeling languages including BPMN ([86, 132]). Next we will

take a look at the importance of the individual quality categories for our transformation

approach. As the congruence of the model with the domain depends on the underlying

text, it is hardly verifiable. Syntactic quality aspects are concerned with the usage of

modeling constructs in our process model. As we followed the BPMN 2.0 specification

- 16 -

2 BACKGROUND

[87] during the generation phase and as we are creating a new model from scratch the

syntactic quality should be assured. The pragmatic quality is remaining as an interesting

research object. While the modeling constructs we are able to employ are fixed the

composition of the model and the labels used for the elements are not. In order to create

an understandable model structural guidelines were proposed [79, 5]. We should try to

consider these guidelines, e.g. creating an appropriate joining gateway for each split, or

minimizing the in- and out-degrees of nodes. However, as we are working with textual

process descriptions appropriate labeling of nodes and edges will be a more important

factor for the pragmatic quality of the generated models. Recently, there has been an

increased academic interest in quality of labels within process modeling [37, 78, 66, 65].

According to a recent article [78] three main labeling styles for process models can be

identified:

Verb-Object style consisting of a verb in the imperative and the according business

object (e.g. approve claim)

Action-Noun style utilizing of a nominalized verb or its gerund instead of its infinitive

(e.g. creation of a quotation, Notification printing)

Rest style which subsumes all other labels apart from those in the former two styles

An empirical evaluation led to the results that label formed in the verb-object style are

easier to understand and, hence, this style should be preferred. Other works [66, 65] have

shown that by using the, e.g. the Stanford Parser it is possible to automatically determine

the labeling style and to disambiguate verb and business object. Therefore, we will

generate verb-object style labels in our process model generation procedure. Furthermore,

as we create the labels on a basis of a whole sentence, the detection of the verb and object

is possible with high accuracy. Thus, we are able to enhance our models with meta

information, which is useful in a later quality analysis.

- 17 -

2 BACKGROUND

While this section provided insights into the research revolving our business process

modeling, the next section will deal with Natural Language Processing and will describe

the tools and concepts which we will employ in order to process textual input.

2.2. Natural Language Processing

Methods in the area of Computational Linguistics and Natural Language Processing,

which are a branch of artificial intelligence, try to analyze and extract useful information

from natural language texts or speech. Therefore, it is concerned, e.g., with the recognition

and synthesis of speech in natural languages such as English [55]. An exemplary area of

application is sentiment analysis, where the goal is to automatically determine the attitude

or opinion towards e.g. a product or company from online articles [90]. For the creation of

our transformation approach, three concepts are of vital importance and will be described

in more detail in the upcoming subsections.

• Syntax Parsing - the determination of a syntax tree and the grammatical relations

between the parts of the sentence.

• Anaphora Resolution - the identification of the concepts which are references using

pronouns (“we”,“he”,“it”) and certain articles (“this”, “that”).

• Semantic Analysis - extraction of the meaning of words or phrases using the lexical

databases WordNet and FrameNet.

2.2.1. Syntax Parsing

In the area of text processing, a goal is the automated determination of parts of speech

(POS) and the recognition of syntactic structure, like which words form a phrase, and

grammatical relations between words within a sentence. Examples for such syntactical

parsers are the UC Berkley parser 2 and the Stanford parser 3. Other parser or POS-taggers

2http://nlp.cs.berkeley.edu/Main.html#Parsing; last accessed 2010-10-27
3http://nlp.stanford.edu/software/lex-parser.shtml; last accessed 2010-11-25

- 18 -

http://nlp.cs.berkeley.edu/Main.html#Parsing
http://nlp.stanford.edu/software/lex-parser.shtml

2 BACKGROUND

Figure 8: A syntax tree generated by the Stanford Dependency Parser.

are, for example, the Brill tagger [9], the parser developed by Eugen Charniak [14], or

the freely available NLP toolkits NLTK 4, OpenNLP5, GATE 6, or the RASP system

[11], which apart from a POS-tagger also contain other instruments like tokenization and

transformation utilities.

The Stanford Parser is able to determine a syntax tree, as shown in figure 8. This tree

shows the dependencies [77] between the words of the sentence through the tree structure.

Additionally, each word and phrase is labeled with an appropriate POS/phrase-tag. The

tags the Stanford Parser uses are the same which can be found in the Penn Tree Bank [76].

4http://www.nltk.org/; last accessed 2010-10-05
5http://opennlp.sourceforge.net/; last accessed 2010-10-05
6http://gate.ac.uk/; last accessed 2010-10-05

- 19 -

http://www.nltk.org/
http://opennlp.sourceforge.net/
http://gate.ac.uk/

2 BACKGROUND

det(Parser-3, The-1) xcomp(able-5, determine-7) advcl(determine-7, shown-12)

nn(Parser-3, Stanford-2) det(tree-10, a-8) prep in(shown-12, figure-14)

nsubj(able-5, Parser-3) amod(tree-10, syntax-9) num(figure-14, 8-15)

cop(able-5, is-4) dobj(determine-7, tree-10)

aux(determine-7, to-6) mark(shown-12, as-11)

Table 1: Stanford dependencies as generated by the Stanford Parser.

But apart from that, the Stanford Parser also produces Stanford Dependencies [25, 23],

which is the reason why it was used for the approach explained in section 3. These

dependencies reflect the grammatical relationships between the words. As an example,

the first sentence of this paragraph contains the dependencies shown in table 1.

The det relation shows that the first word in the sentence “The” is a determiner for

the third word “Parser”. the nsubj relation in turn shows that “Parser” is the subject of

the sentence and that “(be) able” is its predicate. The first element of this grammatical

relation is called the governor (gov) while the second element is called the dependent

(dep). These grammatical relations provide an abstraction layer to the pure syntax tree.

They also contain information about the syntactic role of all elements. Thus, the task of

deriving appropriate transformation rules was simplified by using the Stanford Parser and

our approach becomes more robust to changes in the word or phrase order. A list with

detailed explanation of all 55 dependency relations can be found in the Stanford parser

manual [24]. Nevertheless, we provide an overview about the 12 most frequently referred

relations:

agent Describes the complement of a passive verb. It is usually found in a prepositional

phrase introduced by the word ”by”.

ccomp “A clausal complement of a verb or adjective is a dependent clause with an inter-

nal subject which functions like an object of the verb, or adjective” [24] (Example:

- 20 -

2 BACKGROUND

“It tells the other department that they need to restart their work”).

conj Describes a conjunction relation between two elements such as “and” or “or”.

cop A copula shows the relation between the subject and the complement of a copula

verb (“is”, “seem”, “appear” etc.).

dobj A direct object or “accusative” object directly follows a verb phrase.

mark The “mark” relation points to the word introducing an adverbial clausal comple-

ment, like “if”, “because”, or “after”.

neg The negation modifier indicates that a word is negated, e.g., using “not”.

nn The noun compound modifier shows that several nouns are part of a compound (e.g.

“Stanford Parser”).

nsubj The nominal subject is the subject of an active phrase.

nsubjpass The passive nominal subject is the syntactic subject in a passive clause.

prep “A prepositional modifier of a verb, adjective, or noun is any prepositional phrase

that serves to modify the meaning of the verb, adjective, or noun” [24].

rcmod A relative clause modifier indicates the presence of a relative clause modifying a

word.

xcomp “An open clausal complement (xcomp) of a VP or an ADJP is a clausal com-

plement without its own subject, whose reference is determined by an external sub-

ject. These complements are always non-finite. The name xcomp is borrowed from

Lexical-Functional Grammar” [24] (e.g. “Then we start calling the customer.”) .

The parser uses a probabilistic context free grammar (PCFG) [57] to determine the

best parse, which can be achieved, for example using conditional random fields (CRF) [63],

- 21 -

2 BACKGROUND

maximum entropy [101] or hidden markov models (HMM) [99]. As was shown in [58] the

accuracy of the PCFG is further increased by applying a factored model which includes

the probabilities of the respective dependency parse [18]. The Stanford parser achieved a

F1- measure, an average of the two standard accuracy measures in information retrieval

- precision and recall [129, 2], of 86.7% when used on Wall Street Journal articles, which

were also used as training data [58]. As mentioned, this is below other pure lexicalized

PCFG parsers, like the one presented in [15], but mainly due to “many finely wrought

enhancements”, which can be extracted and incorporated into the Stanford Parser.

2.2.2. Anaphora Resolution

Another problem which has to be tackled to produce conceptual models from text

is the resolution of anaphoric references. Anaphoras include possessive pronouns (e.g.,

“my”, “your”, “her”), personal pronouns (e.g., “I”, “you”, “she”), certain determiners

(“this”, “that”), relative pronouns (“who”, “which”) or phrases describing the object

under investigation with different expressions (e.g., “Steve Jobs”, “the CEO of Apple”).

In [51] a simple algorithm for the resolution of pronouns is proposed. It was later ex-

tended in [38]. Here a personal pronoun is resolved by scanning the text for noun phrases

which could be candidates for a resolution. For each candidate then a score is calculated

consisting of:

1. the distance between the anaphoric reference and the candidate (closer candidates

are preferred),

2. the gender, number, person, and animaticity of a candidate (e.g. “it” cannot refer

to a person),

3. the role of the candidate within its own sentence (e.g. subjects are preferred), and

4. the number of previous occurrences of the candidate (a higher number of occurrences

is preferred).

This technique is able to correctly resolve 84.2% in the tests which are described in [38].

Jurafsky and Martin [55, chapter 21] also mention further possibilities of restricting the

- 22 -

2 BACKGROUND

selection process through the usage of parallelisms, verb semantics, and selectional re-

strictions. Examples for implementations of anaphoric reference resolution algorithms are

the GuiTAR Framework7 [94], BART 8 [130] or the Reconcile framework9 [121]. Although

these libraries are written in Java, they require a special XML-Format as input or are not

seamlessly usable with the output provided by the Stanford Parser. Thus, a simplified

implementation, which is explained and evaluated in section 3.4.1, was used to develop

our approach and compared with the performance of two of these libraries.

2.2.3. Semantic Analysis

The third part relevant for our system is the possibility to include semantics analyses.

Apart from the syntactical role, each word in a sentence also has a specific meaning -

the semantics. Systems which try to capture semantic relations are, e.g., FrameNet10 [3],

developed at the University of Berkley and the lexical database WordNet11 [83]. Both

were used for the development of our prototype.

WordNet is a semantic database which was developed in 1985 [83] at the University

of Princeton. Since then, it has steadily grown and today it contains more than 155,000

unique words and more than 200.000 word-sense pairs12. These words are organized into

so called SynSets (Synonym Sets). A SynSet contains several words which share the same

meaning. Furthermore, the SynSets in WordNet are linked to each other through pointers

of different types. Therefore, a program is able to extract different semantic relations for

a given word. For example:

• Synonyms - Words which have the same meaning (to work on - to process).

7http://cswww.essex.ac.uk/Research/nle/GuiTAR/; last accessed 2010-10-05
8http://www.bart-coref.org/; last accessed 2010-10-05
9http://www.cs.utah.edu/nlp/reconcile/; last accessed 2010-10-05

10http://framenet.icsi.berkeley.edu/; last accessed 2010-11-26
11http://wordnet.princeton.edu/; last accessed 2010-11-26
12http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html; last accessed 2010-10-05

- 23 -

http://cswww.essex.ac.uk/Research/nle/GuiTAR/
http://www.bart-coref.org/
http://www.cs.utah.edu/nlp/reconcile/
http://framenet.icsi.berkeley.edu/
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html

2 BACKGROUND

• Homonyms - Words which are written identically, but have a different meaning.

• Hypernyms/Troponyms - Nouns which are superordinate to the given noun. The

opposite of a hypernym is a Hyponym. The same principle can also be applied to

verbs which is called a troponym then (sue - challenge, tree - plant).

• Meronyms - Structures nouns in a “part-of” relationship (car - wheel).

• Antonyms - Mainly used for adjectives and adverbs and describes the opposite

(wet - dry, hot - cold).

• Entailment - An implication which can be drawn logically (divorce - marry).

• Nominalizations - A verb, adjective or adverb which is used as a noun (creation -

create).

Thus, WordNet can be used as a general purpose ontology to distinguish, e.g., an

unanimated object from an acting person or system. Since version 3.0 WordNet also

incorporates a word stemming technique. The purpose of word stemming is to reduce

a word to its base form without any suffixes (lexeme). The technique implemented in

WordNet makes use of morphological rules which do not obstruct the word as it is e.g.

done by Porter’s Stemming Algorithm [96]. Therefore, we can also use it to normalize the

different representations of a lexemes during our transformation approach.

Other usage which can be relevant for an extension of our approach beyond what is

described in this thesis include the calculation of word similarity [113] and semantic word

sense disambiguation [122, 137].

The philosophy of FrameNet is different. The FrameNet project is based on the notion

of frame semantics [31], which states that we cannot understand a word without its context

— the Frame. To create these Frames and connect them with each other 135.000 sentences

- 24 -

2 BACKGROUND

[106] were annotated and over 1.030 Frames with 11.656 Lexical Units defined13. A Lexical

Unit represents a Word-Sense pair similar to WordNet, but additionally each Lexical Unit

belongs to a semantic frame. A frame describes a particular situation, event, or object and

defines common properties and roles, which are called Frame Elements. As an example

we look at the Lexical Unit “approve”, which belongs to the “Grant Permission” Frame14.

The “Grant Permission” Frame contains two core Frame Elements, Grantee, and Grantor.

Addtional non-core Frame Elements are, e.g., Action, Allowed Category, Manner, Place,

Purpose, and Time. If the Frame is instantiated by the use of one of its Lexcial Units,

e.g., “permit”, “authorize” or “approve”, the different elements of a sentence fill the roles

of the Frame Elements as shown in these two annotated sentences taken from the report

of the Lexical Unit “approve”.

• [This study]Action was APPROVED [by the ethical committee of the hospital]Grantor.

• Mrs Bradshaw had met my mother a couple of times and [they]Grantor [plainly]Manner

APPROVED [of each other]Grantee.

It is also possible that core Frame Elements are not expressed within a sentence. This

is the case in our first example where no Grantee can be identified. In this case, Frame

Elements are marked as “definite null instantiation” (DNI) or as “constructional null in-

stantiation” (CNI) if the omission is “licensed by a grammatical construction” [106, p. 25].

The FrameNet data files do not only provide the defined Frames, their Frame Elements,

and Lexical Units, but also the Annotation Corpus. Within this Annotation Corpus all

annotated sentences and their syntactical occurrence patterns, which are called Valence

Pattern, are included. Therefore, it is possible to look up each annotated sentence and

13http://framenet.icsi.berkeley.edu/index.php?option=com_content&task=view&id=

17881&Itemid=66; accessed 2010-11-05
14http://framenet.icsi.berkeley.edu/fnReports/data/lu/lu11734.xml?mode=lexentry, last

accessed 2010-11-05

- 25 -

http://framenet.icsi.berkeley.edu/index.php?option=com_content&task=view&id=17881&Itemid=66;
http://framenet.icsi.berkeley.edu/index.php?option=com_content&task=view&id=17881&Itemid=66;
http://framenet.icsi.berkeley.edu/fnReports/data/lu/lu11734.xml?mode=lexentry

2 BACKGROUND

the Valence Patterns of the different Frame Elements. A Valence Patterns describes the

syntactic patterns which are associated to the Frame Elements within a certain annotated

sentence. For example, the Grantor of our first example sentence would be marked with

the Valence Unit “PP[by]”, because it is contained in a prepositional phrase headed by

the word “by”. A Valence Pattern summarizes the usage of those Valence Units in combi-

nation, as it could be possible for a Frame Element to appear in a predominant syntactical

pattern only in combination with other Frame Elements. This information can be used

to automatically identify and assign semantic roles within a given sentence [42, 41] or to

build a semantic parser [115].

2.3. Application of NLP for Process Model Creation

Recently, there has been an increased academic interest in defining methods for the

derivation of conceptual models from text. One of such approaches is [21], from the

federal University of Rio de Janeiro, which has been further extended and verified in [22].

There the authors focus on the derivation of models from group stories and provided a

prototype which handles Portuguese texts. Participants of the process to be analyzed

are asked to write down their experiences. These texts are then interpreted using NLP

techniques and BPMN process models are derived. The approach was further tested with

a course enrollment process modeled by students. The examples of this paper show that

process models can be created successfully, but only a limited set of BPMN elements is

considered. Furthermore, a couple of their exhibits show that syntactical problems occur

in some cases — issues we want to tackle with our approach.

A research group at the University of Wollongong also developed a system called R-

BPD [39]. The toolkit uses a syntax parser to identify verb-object phrases in the given

text and it also scans the text for textual patterns, like “If <condition/event>, [then]

<action>.”[40]. The result are BPMN model snippets rather than a fully connected

model. Nevertheless, this toolkit does not only derive BPMN snippets from unstructured

text, but also takes existing model, e.g. an UML sequence diagram, into account. As

- 26 -

2 BACKGROUND

some of the models used as a source might be a graphical representation of the texts

which were also analyzed, a cross validation and check for duplicates is performed.

At the University of Klagenfurt a procedure called KCPM (Klagenfurt Conceptual Pre-

design Model) [59] and a corresponding tool were developed [60]. It parses textual input

in German and fills instances of a generic meta-model, the KCPM. Using the information

stored in this meta-model an UML activity diagram [108] and a UML class diagram [34]

can be created . The transformation from natural language input to the aforementioned

meta-model is not a fully automated process, but rather semi-automated as a user has

to be involved in the process. Using the tool, the user has to make decisions about the

relevant parts of a sentence or has to correct the automatic interpretations. Therefore,

the approach does not leverage the full time- and cost-savings potential.

In contrast to that, the approach described in [139] is fully automated. It uses use-

case descriptions in a format called RUCM [138] to generate UML activity [140] and class

diagrams. But, the system is not able to parse free-text. The RUCM input has to be in a

very restricted format allowing only 26 types of sentence structures and relies on keywords

like “VALIDATES THAT” or “MEANWHILE” to determine the semantics inherent in

the text. Thus it cannot be used in an initial process definition phase as it would require

rewriting of all documents present in a company to comply with the RUCM format.

A fifth approach is the one of Policy-Driven Process Mapping, a joint work of the Uni-

versity of Delaware, the City University of Hong Kong, and IBM Research in Hawthorne

[133]. First, a procedure was developed which creates a BPMN diagram, given that data

items, tasks, resources (actors), and constraints are identified in an input text document.

Although the approach does not require a process description to be sequential, as items

are combined e.g. on their required inputs and outputs, it only supports a very limited set

of BPMN elements. Pools, Data Objects, and Gateways other than an exclusive split are

not considered. Furthermore, a Gateway is not allowed to have more than two outgoing

arcs, reducing the space of available modeling constructs considerably [133]. Further-

more, user-interaction is required at several stages throughout the process. In a more

- 27 -

2 BACKGROUND

recent study [68] the authors evaluated statistical classifiers to automatically detect (a)

which sentences out of a large corpus are essential for the creation of process models and

(b) which words correspond to the aforementioned items within a relevant sentence. To

determine the quality of the detected sentences and elements, the standard measures pre-

cision, recall, and F-measure [129, 2] are computed. Although the approach achieves good

results with respect to precision, only a low recall is reached, which is also represented in

the F1-measure which is below 60% for all cases.

Another approach, which is similar to ours was presented in [118, 117, 62]. The authors

of these papers employ a linguistic analysis engine based on the UIMA Framework. The

UIMA Framework enables the constructions of linguistic analysis systems by combining

different blocks into a pipeline. Specifically, in [118] the following steps are mentioned:

Texts are preprocessed with a part-of-speech tagger in combination with a shallow parser.

Afterward, the words are annotated with dictionary concepts, which classify verbs using

a domain ontology created by the authors. Then an anaphora resolution algorithms and

a context annotator, which determines the likelihood of an identified noun phrase to be

an actor in the system, is applied. The information is then transferred to a Use Case

Description metamodel and later into a BPMN process model. The focus of this system

is the analysis of very structured use-case descriptions. A single use case consisting of few

sentences is turned into a small process model. The authors then combine Subprocesses

containing these models into a def-use graph [120], which is subsequently optimized.

Unfortunately, none of their works contains a full example text and model. Therefore, a

verification of their results and a comparison to our approach is not possible. Furthermore,

the approach can be regarded as text type specific as only use-case descriptions were used.

Furthermore, the dictionary concepts, which are a vital part of their approach, rely

on the underlying domain ontology which has to be hand-crafted. This imposes a manual

effort when transferring the system to other types of texts or languages. In contrast to

that, our approach builds on the freely available WordNet and FrameNet lexical databases,

which possess a large corpus and are available for different languages.

- 28 -

2 BACKGROUND

2.4. Other Related Work

We also inspected related work where NLP was used to achieve other BPM relevant

goals or areas where the creation of process models was not the focus. This includes:

• Research on the automatic matching of WebServices to user queries written in nat-

ural language [7, 19].

• The identification of process model relevant sections in accompanying documenta-

tion [54].

• The mining of process models from event logs [126].

• The generation of process models from text without linguistic analysis [75].

• The usage of NLP techniques to provide machine-assistance during the modeling

process [72].

• Works on the automated generation of data models, e.g. in UML, from text [69].

In [7, 19] frameworks for the analysis of user queries in natural language based on a

domain ontology are used to determine an appropriate service composition. The services

which were composed that way can then directly be parameterized with the information

provided by the user to answer a query. The systems were used to answer question

regarding entertainment, e.g. “Which cinemas play the movie x”, or to control devices

which support the UPnP protocol.

Ingvaldsen [54] described a methodology which can be used to automatically deter-

mine links from an existing process model to the corresponding passages within a textual

description. Because both, the model and the text, are already assumed to be present,

it becomes a matching problem, which is solved by applying a vector model to the text

and the labels, respectively. As our approach uses the textual information to create the

process model, such links can automatically be included. This enables the user to quickly

gather additional information or verify the generated model.

- 29 -

2 BACKGROUND

Process Mining [126] is another approach for the automatic generation of process

models. But instead of text, it uses event logs, e.g. from an ERP system, and then

applies algorithms to construct a process model which is able to explain the logical and

temporal relations between the events found in the log.

In [74] a different approach to the generation of business processes in the EPC no-

tation from use case templates is presented. A strict tabular form of use-cases where

the action, trigger, pre- and postconditions are clearly defined is required. By applying

string matching to the pre- and postconditions, a process model is created. The approach

was tested with a single use-case describing a student enrollment process. Additionally,

the approach was transfered to BPMN in [75], but the requirement of a fully structured

use-case template remain.

In [72] the Stanford Parser was used to analyze existing process models. The results

of this analysis is a Descriptor Space which contains information about entity life-cycles

and activity hierarchies. This information can then be utilized to assist a modeler when

creating a new model. Succeeding activities can be proposed based on the life-cycle of

the used business objects in the analyzed model repository.

The idea to automatically generate create conceptual models from natural language

input was pursued ten years ago already. Examples are the CM-Builder system [48],

GOOAL [91], or LIDA [89], which create UML class diagrams out of a software require-

ment text. They analyze textual input using a POS tagger and create classes out of the

identified noun phrases. Additionally, relations between the classes are created out of the

S-V-O structure of a sentence. The mentioned approaches were compared and the limited

set of supported UML modeling constructs was mentioned as the major limitation in a

study conducted at the Heriot-Watt University, Edinburgh [69]. Although not exactly

related to our research goal, we considered these six lines of research during the construc-

tion of our transformation approach as it provided valuable insights into the issues and

considerations which are relevant for the automatic transformation of natural language

input.

- 30 -

3 TRANSFORMATION APPROACH

3. Transformation Approach

The previous sections provided an overview of BPM and NLP techniques. This section

focuses on the proposed transformation approach. Therefore, we first investigate the

issues of natural language process descriptions in more detail. Based on these issues we

can formulate our basic assumptions from which we then derive a structural framework

comprising three phases: a sentence level analysis, a text level analysis and the process

model generation phase. Additionally, a lane split-off procedure was developed, which

enables the user to quickly adapt the model to his preferences. We will delve into each of

these phases and their workings will be described in detail using procedural descriptions

and pseudo code. A user is able to configure the algorithm using several options, which

will be explained in the text. The presented algorithms were implemented in a research

prototype which is briefly explained in Appendix D.

3.1. Categorization of Issues

The most important issue we are facing when trying to build a system for the under-

standing of natural language is its complexity. We collected issues related to the structure

of natural language texts from the scientific literature discussed in section 2.3 and ana-

lyzed the test data that was collected and is thoroughly described in section 4. Thereby,

we were able to identify four broad categories of issues which we have to solve in order to

analyze natural language process descriptions successfully.

1. Semantics 6= Syntax - the mismatch between the semantic and syntactic layer of a

text

2. Atomicity - the question of how to construct a proper phrase-activity mapping

3. Relevance - parts of the text or just of a sentence might be irrelevant for the gener-

ated process model

4. Referencing - how to resolve relative references not just between words, but also

between sentences and their content

- 31 -

3 TRANSFORMATION APPROACH

For each of those categories we will show three specific issues and provide examples out

of our test data set to illustrate the problems that arose.

Additionally, table 2 summarizes our findings of the conducted literature review. Inter-

estingly, no comprehensive study on the problems relevant to the structural analysis was

found, although this provide the starting point for the construction of a transformation

engine.

Issue References

1 Syntax 6= Semantics [1]

1.1 Active-Passive [1]

1.2 Rewording/Order [140, 59, 34]

1.3 Implicit Conditions [40, 39]

2 Atomicity

2.1 Complex Sentences [68, 34]

2.2 Action Split over Several Sentences [118]

2.3 Relative Clauses [68]

3 Relevance [118]

3.1 Relative Clause Importance [68]

3.2 Example Sentences [59]

3.3 Meta-Sentences [68]

4 Referencing

4.1 Anaphora [1, 118, 22]

4.2 Textual Links [33]

4.3 End-of-block Recognition [59, 68]

Table 2: References in the literature to the analyzed issues.

- 32 -

3 TRANSFORMATION APPROACH

Different solution strategies were applied in all of the mentioned works to overcome the

stated problems, e.g. by constricting the format of the textual input [140], but no study

considers all mentioned problems and offers a comprehensive solution strategy. Another

interesting fact is that none of the works using a shallow parser shows how they deal

with passive constructions [1, 118, 22, 140]. While we were able to solve this problem by

the usage of the Stanford Parser and the grammatical relations it creates, those works

should be facing problems when passive sentences are considered. The rest of this chapter

is dedicated to analyzing and discussing these issues. We will then seize the developed

suggestions and reference the issues as stated in table 2 during the description of our

transformation approach in the following sections.

3.1.1. Semantics 6= Syntax

To express the same semantic concept in a language different syntactic patterns can

be used [1] and the syntactic structure of a clause is not necessarily directly linked to its

semantics [31]. Thus, to build a process model, it is necessary to extract the different

parts of an action for, e.g., a task node. To accomplish this goal the different semantic

roles of the words in a sentence (Actor, Resource, Action) have to be determined.

As an example consider the following two sentences, the first one in active, the second

one in passive voice:

• John broke the window with a football.

• The window was broken with a football by John.

In the first sentence “John” is the syntactic subject of the sentence and also the acting

person. In the second sentence the syntactic subject is “the window” and “John” is only

mentioned in a prepositional phrase, which could also be omitted, although the semantic

pattern of both sentences is the same.

Another example is the exchangeability of certain words or phrases without changing

the meaning of a sentence, as in this example:

- 33 -

3 TRANSFORMATION APPROACH

• John should run away if the window is broken.

• In case the window is broken, John should run away.

One of the most difficult problems we are facing is the recognition of the rhetoric

structure of the text, as conditions and the timely order are most relevant for process

models. Whenever these discourse relations are expressed explicitly with an appropriate

marker, we can detect and correctly handle it. Problems arise when the text contain

implicit discourse relations, as in this sentence:

• “For new patients, a patient file is created.”

Obviously, we would like to create a condition here. The patient file only needs to be

created when we are dealing with a new patient. In case of a known patient, we can

skip this step. But, to recognize this condition a thorough semantic analysis and domain

knowledge are needed and we are not able to detect this conditions simply using the

syntactic means that are provided by the tools we used. However, in [93] researchers of

the University of Pennsylvania analyzed the amount of explicit15 and implicit discourse

relations within the Penn Discourse TreeBank [97]. According to them temporal and

contingency relations, which are most important for us, are stated explicitly in 79.55%

and 46.75% of the cases, respectively. While the high number of explicit discourse relations

for temporal relations is promising a low degree of contingency relations is problematic.

Nevertheless, we are mostly interested in conditional relations, which are only a subset of

the contingency relations. Therefore, we expect the fraction of explicitly stated conditional

relations to be higher. Further, we can expect a process description to be more structured

and contain more explicit connectives than the corpus of Wall Street Journal articles,

which was used to build the Penn Discourse TreeBank.

15A discourse relations is explicit if it is expressed through syntactic elements and implicit if it is “not

related explicitly by any of the syntactically defined set of Explicit connectives” [98]

- 34 -

3 TRANSFORMATION APPROACH

3.1.2. Atomicity

The question of Atomicity deals with the question of which parts of a sentence should

be mapped to a BPMN Task. It is possible that some sentences require a 1–1 mapping

of activities, but within our test data set we also encounter complex sentences like these:

• “Sometimes, we buy details for cold calls, sometimes, our marketing staff partic-

ipates in exhibitions and sometimes, you just happen to know somebody, who is

interested in the product.”

• “The GO or the MPON confirms the invoice with payment advice to the MPOO

or the MSPO, or the GO or the MPON rejects the invoice of the MPOO or the

MSPO.”

While we would expect the first case to be mapped to three distinct activities in the

resulting process model (“buy details”, “participate in exhibitions”, and “happen to know

somebody”), the second sentence even requires four activities to be represented correctly

(GO: “confirm invoice”, “reject invoice”; MPON: “confirm invoice”, “reject invoice”),

because of the conjunctions.

On the other hand a full action can also be split up over several sentences as in this

example also taken from the test data set described in section 4.1.

• “Then we start calling the customer.”

• “That is done by the call center staff.”

Although these are two full sentences, the reference which is made by “That” indicates

that the second sentence simply adds information to the first one. This is also represented

in the corresponding model within the test data set, where the activity “call customer”

can be found within the Lane “Call Center Staff”. Therefore, we have to check whether

we can combine the information of two sentences and create a single activity.

- 35 -

3 TRANSFORMATION APPROACH

Another aspect is that a sentence can consist of several clauses, which can (but do not

have to) represent actions important for the process model to generate. The following

sentence contains two relative clauses:

• “If the treasurer accepts the expenses for processing, the report moves to an auto-

matic activity that links to a payment system.”

The first relative clause (“If the treasurer accepts the expenses for processing”) repre-

sents an important condition which should be represented in a generated process model,

while the second relative clause (“that links to a payment system”) just explains further

characteristics of the “automatic activity”. Of course, this information can also be vital,

but we would probably not include it into a process model in order to keep it concise and

easily understandable.

3.1.3. Relevance

Thus, the usage of relative sentences does not only pose the question of whether it is

the part of an action or an action itself, but also whether the relative sentence is relevant

for the generated model or not. The following sentence are also illustrating the issue of

relevance:

• “For instance, a sales person on a trip rents a car.”

• “[...] is given a chance to edit it, for example to correct errors or better describe an

expense.”

The author of these sentences tried to create a more vivid text by using examples to

clarify the abstract concepts. Unfortunately, this information is unwanted within a process

model, as a model is supposed to be a generalized abstract representation of the underlying

process. Therefore, sentences which give examples should be ignored during the process

model generation.

- 36 -

3 TRANSFORMATION APPROACH

Another issue of relevance which can be observed quite often is that the process is

described on a meta level. This means that the author does not explain the steps which

have to be conducted, but rather described the process model.

• “After the Process starts, a Task is performed to [...]”

• “If the design fails the test, then it is sent back to the first Activity.”

• “After the payment is confirmed, the process ends.”

• “The process starts when a customer submits [...]”

The information conveyed using these sentence will be explicitly presented in the process

model, e.g. through the shape of a node within the process model or simply by an

appropriate message flow, but parsing the text becomes harder. These few examples

illustrate that an effective filtering technique is needed to reliably identify and ignore

certain relative sentences, examples and meta descriptions.

3.1.4. Referencing

In section 3.1.2 we demonstrated that the information of two sentences has to be

combined in order to determine the following activity:

• “[The call center staff]Agent calls [the customer]object”

But, this example also demonstrates the problem of anaphoric references (section 2.2.2).

The personal pronoun “we” is a cathaphora in this case, as it refers to “the call center

staff” introduced in the next sentence. In contrast the determiner “That” is an anaphora,

referring to the previously mentioned action “calling the customer”. Within our test data

set we also found several exaphoras, as in the sentence “There are circumstances, where

[...]”. Here the word “There” refers to a concept which is not captured linguistically within

the text, but rather is determined from its context. Another special position is taken by

the the word “it” which can sometimes be used as a pronoun, similar to “he” or “she”,

- 37 -

3 TRANSFORMATION APPROACH

but also pleonastically as in “Sometimes it also happens that [...]”. Although, in [70]

it was shown that such pleonastical usages of “it” can be identified with high accuracy.

The problem of implementing this algorithm and treating such special instances of “it”

remain. Thus, in order to determine a fully qualified actor and to be able to combine

sentences, an accurate and robust anaphora resolution mechanism is required.

A different kind of referencing is used to describe alternative paths within process

models. Whenever two or more alternative branches, which are not immediately joined

again, have to be described, the previous position has to be referenced. By analyzing our

test data, three different usage pattens were identified:

Forward references occur whenever an alternative path is described, where the same

goal as in the main process flow can be reached. The intention is then to join

the flow while moving forward with the description. As an example consider the

following excerpt of of a textual process description:

“Of course, asking the customer whether he is generally interested

is also important. If this is not the case, we leave him alone, except

if the potential project budget is huge. Then the head of development

personally tries to acquire the customer. If the customer is interested

in the end, the next step is [...]”

In the first sentence two new branches are opened. The customer could be interested

or not. The following two sentences describe an attempt to convince the customer,

though he did not show interest, by having the head of development contact him.

If the manager succeeds and convinces the customer the process proceeds as if the

customer had been interested in the beginning. Therefore, the flows from the two

decision points where the customer can indicate that he is interested should be

joined.

Backward references were used to create loops. Whenever the same task must be per-

- 38 -

3 TRANSFORMATION APPROACH

formed again or loops to check a certain business object until it has an appropriate

level of quality need to be created we found sentences like these:

• “Otherwise, he calls the next customer.”

• “If receipts are missing or do not match the report, he sends it back to the

employee.”

• “Then I correct the description and submit it again for consideration.”

An interesting characteristic all these sentences have in common is a word signaling

the repetition or the backward loop, like “next”, “back” or “again”. We will use

this feature to detect backward references within texts.

Jumps occur when a process can have different outcomes. After a split of the process

flow was described, the author of a textual process description has to follow one

of those paths to the end. Afterward, he has to reference the position of this split

again, before he can start to describe the other branch.

• “[..] the supervisor can accept or reject the report [...]. If the supervisor rejects

the report, the employee, who submitted it, [...]. If the supervisor approves the

report, it goes to the treasurer.”

• “If all is in order, the treasurer accepts the expenses for processing. If receipts

are missing or do not match the report, he sends it back to the employee. [...]

If the treasurer accepts the expenses for processing, [...]”

All three types of textual references have to be recognized and taken into account for

the process model creation. Problems are whenever the reference is not made explicit or

it is described on a meta level (“the first task has to be performed again” - see section

3.1.3). In those cases the reference cannot be inferred by syntactic means, but it requires

knowledge of the semantics and problem domain.

- 39 -

3 TRANSFORMATION APPROACH

Another issue which is strongly dependent on domain knowledge is the recognition of

an end or join of a block. Consider the following example sentences:

• “The GO examines the application of the MSPN. The GO rejects the application

of the MSPN or the GO confirmes the application of the MSPN. The GO assigns

the MSPN.”

• “ In case the customer is premium, the process will link to an extra problem fix

process (this process will not be detailed here).”

• “If the loan is small and the customer is low risk, the loan is approved. If the

customer is high risk, the loan is denied. If the customer needs further review or the

loan amount is for $10,000 or more, the request is sent to the approver Web service.

The customer receives feedback from the assessor or approver.”

In both cases a condition is the appropriate means to employ within the process model.

A human can now infer that in case of a rejection of the application the process is finished

an the task “assign MSPN” will not be executed. But, in order to recognize this implicit

relationship knowledge of the semantics, of the word “reject”, and domain knowledge is

necessary.

The same applies to the second example. It is unclear whether the process is finished

after linking to the “extra problem fix process” or if this path of the process should be

joined with the other branch.

Example three highlights a similar issue. The text first describes three possible

branches of the flow, each with an if-statement. The last sentence explains that the cus-

tomer receives a feedback, but it is not clear whether this applies to the last if-statement

or if the customer receives feedback in any case. Intuitively, adding a gateway and always

sending feedback to the customer appears to be the correct way, but to automatically

detect this pattern a deep semantic analysis of the text and its domain is required. Addi-

- 40 -

3 TRANSFORMATION APPROACH

tionally, in a static system without learning mechanism like ours, the approach is always

dependent on the amount of knowledge encoded a priori.

3.1.5. Solution Strategy

As shown, the automatic generation of process models from text poses problems which

cannot be solved easily for the general case. However, as the goal of the proposed approach

is not to replace a human modeler, but to complement him, we can accept some deviations

in the generated model and leave the customization to the user.

Nevertheless, to overcome the issues outlined in this section we propose a syntactic

and semantic analysis of the text input. Furthermore, sentences cannot be parsed in

isolation of each other, but an overarching text level analysis has to be conducted, e.g.,

to resolve anaphoric and textual references and to combine information where possible.

To achieve this we employ four computational linguistic tools, which were introduced

in section 2. These tools are the Stanford Syntax Parser, WordNet, FrameNet, and an

Anaphora Resolution Technique. Furthermore, the analysis will be conducted in different

stages, which are independent of each other. To enable an efficient data transfer between

the stages we will store the extracted information in a World Model. We borrowed this

terms from the field of robotics, where the structural representation of all information

known to a robot is usually referred to as a World Model (see e.g. [112]). A structural

overview of the approach taken can be seen in figure 9. As shown, we also considered

the possibility of using other sources of information than text documents. This could be

structured information in other information systems, e.g., Content Management Systems

(CMS) or Enterprise Resource Planning (ERP) software. Moreover, existing models can

also be analyzed and taken into account during the generation procedure. Furthermore,

organizational and data models are another possible output which can be created from

the collected information.

Lastly, we base our transformation approach on five basic assumptions in order to

restrict the set of required analyses. These assumptions are:

- 41 -

3 TRANSFORMATION APPROACH

Input
Sentence Level

Analysis
Output

Text Level
Analysis

Process Models
Text

Documents
WorldModel

Stanford
Parser

P
ro

ce
ss

 M
o

d
el

 G
e

n
e

ra
ti

o
n

WordNet FrameNet

Te
xt

 P
ro

ce
ss

in
g

Anaphora
Resolution

Figure 9: Structural overview of the presented transformation approach.

• The text actually describes a process and not, e.g., data objects or organizational

structure.

• The text contains no questions.

• The text describes the process as perceived by an involved Actor and not on a meta

level (“the next task is ...”, “then the process...”).

• The Process is described sequentially, meaning that the actions in adjacent sentences

are related to each other.

• If a non sequential description is needed, the textual jump is made explicit in the

text.

While the first assumption is self-evident, the second one is used to narrow the scope

of dependencies and sentence structures to consider, as special tags exist for questions.

- 42 -

3 TRANSFORMATION APPROACH

Furthermore, questions are expected to be very rare in general. Within our test data

set no questions were contained and, therefore, this limitation appeared to be practical.

While we will present mechanisms to detect and reduce the impact of meta-descriptions on

the generated process model, in general a directly involved style of writing is preferred.

By demanding a sequential description, we make sure that a process as a whole can

be understood by our system. This assumption is different from e.g. [133] where the

sentences can be processed independently of each other, but instead connections have to

be expressed by the input and output of activities. While, the last assumption is the most

restrictive one and was actually violated by several elements within our test data set it

relieves us from conducting a deep semantic analysis. Otherwise, this analysis would be

required, in order to detect textual dependencies which are not visible by analyzing the

surface structure of the sentences. However, violating an assumption does not render the

parsing of the text impossible, but will merely reduce the quality of the transformation

result. Hence, we are confident that viable results are achievable despite these constraints.

3.2. Intermediate Data Structure (World Model)

To obtain a structured representation of the knowledge we extract from the text,

we decided to store it in a World Model, as opposed to a direct straight through model

generation. This approach was also taken by most of the other works which built a similar

system [140, 118, 34, 22].

The data structure used by the approach of the University of Rio de Janeiro [22] was

taken from the CREWS project [1]. The authors argue that it is suited well for this task

as a scenario description corresponds to the description of a process model. Therefore,

we used the CREWS scenario metamodel as starting point for the creation of our own

intermediate data structure.

However, we modified several parts as, e.g., a distinction between a normal and an

exceptional scenario was not necessary, because both can be expressed within the same

process model. Furthermore, we renamed “Agent” to “Actor” so it is not confused with the

- 43 -

3 TRANSFORMATION APPROACH

passive agent relation mentioned earlier. Furthermore, we explicitly represent connections

between the elements using the class “Flow”. During the construction of the World

Model we introduced “SpecifiedElement” and “OriginatedElement” as further abstraction

layers to avoid redundancies. Additionally, we explicitly considered traceability as a

requirement. Thus, attributes which were required to relate an object to the text, sentence

and word is was extracted from were added to our World Model.

The four main elements of our World Model are Actor, Resource, Action, and Flow.

The following descriptions give an overview of the elements contained in the World Model

and their purpose.

Originated Elements represent the most abstract class within our data structure. It

represents an entity which was extracted from the text. In order to enable traceabil-

ity it stores a link to the text and the sentence to which it relates. These properties

are shared by all elements contained in the World Model.

Specified Elements are a further refinement of an Originated Element. They are used

to describe structures which can be traced down on a word level. Thus it also stores

a reference to the Word within its sentence. Furthermore, at handles and manages

Specifiers.

Specifiers are part of an object and can be used to further describe or refine it. This

includes, e.g., prepositional phrases (PP), compound parts of a noun compound

(NN), relative clauses (RCMOD), infinitival modifiers (INFMOD), or numeric mod-

ifiers (NUM). If it is possible, an object is also extracted an stored if it directly

belongs to his specifier, e.g., for prepositional phrases (“to the customer”).

An Extracted Object represents a static parts of the text extracted from noun phrases.

It corresponds to the element “Object” within the CREWS metamodel [1]. It can

also refer to an anaphoric reference in which case the Extracted Object will have to

be resolved. It is further refined by the sub-classes Actor and Resource.

- 44 -

3 TRANSFORMATION APPROACH

An Actor describes an acting entity within the text. This can be a person, a software

system an organization or department. Additionally, all entity which take the places

of a subject within the text are classified as Actors, but are declared “unreal” if the

first property is not fulfilled. A sub-class of these “unreal”-Actors are Actors which

related to modeling concepts on a meta level (e.g., a process, a task, an activity).

Such Actors are called ”meta”-Actors and are also marked.

Resources do not make this distinction. They possess in an objective position within

the sentence and are not related to a person, software system, organization, or

department. Like the Actor, it derives all its properties from the class ”Extracted

Object” and can thus be resolved and further specified.

Actions are the core of the World Model. They represent an Activity extracted from

the textual process specification. They can possess an Actor as subject and an

Extracted Object as object. Furthermore, we incorporated the possibility of a link.

Therefore, an Action can link to another Action within the World Model an establish

textual links (Issue 4.2). As an Action can be supplemented with an open clausal

complement, which possesses the same properties, another Action “xcomp” can be

added.

Flows are used to represent the process flow and the relations of the Actions to each

other. One side of the flow links to a single Action and to multiple Actions on the

other side. A flow is directed and can be either defined as a “split” or a “join”.

Depending on the direction, the single object either is the source or the target of

that flow. The type of the flow indicate how the process flow is split or joined.

We defined four different flow types: concurrency, sequence, choice and exception.

The first three are analogous to the definition in the CREWS metamodel [1]. From

these types we are able to determine the appropriate BPMN construct in the process

model generation phase.

- 45 -

3 TRANSFORMATION APPROACH

Figure 10: Structure of the intermediate data structure (World Model).

- 46 -

3 TRANSFORMATION APPROACH

Figure 11: Structural overview of the steps of the Sentence Level Analysis.

By defining the World Model the manner described, we are able to reflect the infor-

mation extractable through the syntactic and semantic analysis proposed in the previous

section appropriately. This World Model will be used throughout all phases of our trans-

formation procedure. Each phase is allowed to access, modify and add data. All objects

are accessible through the World Model object which will be used in several algorithmic

description in the following sections.

3.3. Sentence Level Analysis

Within this section we will describe the sentence level analysis using pseudo-code. The

extraction procedure consists of several steps which are outlined as a BPMN process model

in figure 11. Within this overview the different components upon which our transformation

procedure builds and their usage are shown using Data Sources.

3.3.1. Text and Sentence Decomposition

The text is processed in several stages. The first stage is a tokenization of the text

which includes splitting it up in individual sentences. The challenge here is to distinguish

a period which is only user for an abbreviation (e.g. M.Sc.) from a period marking the

- 47 -

3 TRANSFORMATION APPROACH

end of a sentence. This task can be handled by the document preprocessor included in the

Stanford Parser library, which is a deterministic scanner created using the JFlex scanner

generator16.

Afterward, each sentence is parsed by the Stanford Parser, using the factored model

for English, which is provided with the API. We decided to utilize the factored model

instead of the PCFG (Probabilistic Context Free Grammar) model, because it provided

better results in determining the dependencies between the sentence elements and markers

as “if” or “then”, which are important for the process model generation. The resulting

Parse Tree and the collapsed dependencies [24] are then passed to algorithm 1, which splits

up complex sentences into individual phrases. This is accomplished by scanning the tree

for sentence tags (S,SBAR,SINV)[76] on the highest level of the Parse Tree and within

prepositional (PP), adverbial (ADVP), and noun phrases (NP) they contain (line 1). If the

sentence is simple and does not contain any sub-sentences, an extraction procedure can be

triggered directly (line 3). If it contains only one sub-sentence (line 4), then this sentence

is analyzed by applying the sentence decomposition algorithm recursively (line 6). For

this analysis the typed dependencies have to be filtered as only those dependencies where

governor and dependent are contained within the sub-sentence are relevant. Afterward,

the sub-sentence is deleted from the syntax tree (line 7 and 8) and if the remaining parse

tree and dependencies contain one of the necessary relations to extract an Action (line 9)

it is also analyzed. If more then one sub-sentence was found we are probably dealing with

several main clauses which can be analyzed independently of each other (lines 13-16).

This algorithm detects top-level sentences and ignores relative sentences which could be

found within one of the sub-sentences. Relative sentences will be analyzed in a later stage,

in algorithm 4. By following this approach we tackle the problem of complex sentences

(Issue 2.1) as described in section 3.1.2

16Klein, G. 2001. JFlex the fast scanner generator for Java. http://www.jflex.de/.

- 48 -

3 TRANSFORMATION APPROACH

Algorithm 1 Sentence Decomposition

Require: Tree parsedSentence, TypedDependencies dependencies

1: List<Tree> subSentences ← determineSubSentences(parsedSentence)

2: if |subSentences| = 0 then

3: extractElements(parsedSentence,dependencies)

4: else if |subSentences| = 1 then

5: TypedDependencies filteredDependencies ← filter(dependencies,subSentence[0])

6: sentenceDecomposition(subSentence[0],filteredDependencies)

7: Tree restTree ← parsedTree \ subSentence[0]

8: TypedDependencies restDependencies ← dependencies \ filteredDependencies

9: if {“nsubj”,“nsubjpass”,“agent”,“dobj”} ∩ restDependencies 6= ∅ then

10: extractElements(restTree,restDependencies)

11: end if

12: else

13: for ∀ Tree subSentence ∈ subSentences do

14: TypedDependencies filteredDependencies ← filter(dependencies,subSentence)

15: sentenceDecomposition(subSentence,filteredDependencies)

16: end for

17: end if

- 49 -

3 TRANSFORMATION APPROACH

3.3.2. Element Extraction

After the sentence was broken down into individual constituent phrases actions can

be extracted. That is accomplished using algorithm 2. It first determines whether the

parsedSentence is in active or passive voice by searching for the appropriate grammatical

relations (line 1), which enables use to handle active and passive sentences alike (Issue

1.1). Afterward, all Actors and Actions are extracted using the algorithms 3 and 4.

To overcome the problem of example sentences mentioned in section 3.1.3 (Issue 3.2) the

actions are then filtered (line 4). This filtering method simply checks whether the sentence

which contains the action contains a word of a stop word list called example indicators.

This and all other stop word lists used within the algorithm are listed in Appendix C.

The next block (lines 6-16) first extracts all objects from the phrase (line 7). In line 8

these objects and the actors are then used within filterSpecifiers to remove Specifiers from

the Action which contain any. This is necessary e.g. in passive sentences where the actor

is mentioned in a prepositional phrase headed by the word “by”. For such sentences a

specifier is created as it is a prepositional phrase attached to the verb phrase. At the

same time the corresponding Actor is also extracted from that phrase. Applying the filter

solves this problem of redundancy. Afterward, each Action which was extracted from the

sentence is combined with each Object. The same is done with all Actors in the following

block (lines 18-26). This procedure is necessary as an Action is supposed to be atomic

according to section 3.1.2 (Issue 2.1). Therefore, a new Action has to be created for each

piece of information as illustrated in the following example sentences. In each sentence the

conjunction relation which causes the extraction of several Actors,Actions or Resources

is highlighted. As a last step all extracted Actions are added to the World Model.

• “Likewise the old supplier creates and sends the final billing to the customer.”

(Action)

• “It is given either by a sales representative or by a pre-sales employee in case

of a more technical presentation.” (Actor)

- 50 -

3 TRANSFORMATION APPROACH

• “At this point, the Assistant Registry Manager puts the receipt and copied

documents into an envelope and posts it to the party.” (Resource)

The determination of Actors from a sentence, which is needed for 2 is straightforward

(see algorithm 3). If the sentence is written using the active voice, we determine the

Actor from the “nsubj” relation. In case of a passive sentence, “agent” is used instead.

It is also possible that no such relation can be found, e.g. in an imperative sentence

(“Send the report to the customer!”) or in passive sentences. In those cases the variable

“mainNode” is not assigned (represented as ε) and no actor can be determined. If an

Actor was identified successfully, further grammatical relations are analyzed and a new

Actor object is created (line 14). The next section will explain this procedure in more

detail. The last step is to check whether the identified actor is also part of a conjunction

relation (line 16) and to return the resulting list of Actors (line 18).

Algorithm 4 demonstrates how an Action is identified within a phrase. It works similar

to the Actor extraction in algorithm 3. A difference is that if an “nsubj” relation was

found it still has to be checked against all “cop” relations if they are present in the text.

This issues arises due to the collapsing of Stanford Dependencies. As illustrates in table

3, the governor of the nsubj relation is not the copula verb, but its referent (interested in

this case). Nevertheless, for the later analyses it is more appropriate to store “is” as the

main verb of the Action. Therefore, we perform the check in lines 6-9. Another difference

is that while it is possible not to instantiate an Actor, an Action is always required. Thus,

even if no “nsubj” relation can be found (e.g. an imperative) it is possible to determine

the main predicate in an “dobj” relation. In case of a passive sentence, the action can be

found within the “nsubjpass” relation. In order to deal with Issue 2.3 and 3.1 we then

proceed by analyzing relative clauses attached directly to the verb (line 19). In contrast

to that, relative clauses attached to noun phrases will not be analyzed, but added as a

Specifier. This heuristic is motivated by the observation that relevant relative clauses are

usually attached to verbs instead of nouns. Similar to the Actor, the algorithm ends by

- 51 -

3 TRANSFORMATION APPROACH

Algorithm 2 Extract Elements

Require: Tree parsedSentence, TypedDependencies dependencies

1: boolean active ← isActive(parsedSentence,dependencies)

2: List<Actor> actors ← determineActors(active,sentence,dependencies)

3: List<Action> rawActions ← determineActions(active,sentence,dependencies)

4: removeExampleSentences(actions)

5: List<Action> actionsWithObject ← new List<Action>

6: for ∀ Action action ∈ rawActions do

7: List<ExtractedObject> objects ← determineObject(active,sentence,dependencies, action)

8: filterSpecifiers(action,objects,actors)

9: if |objects| > 0 then

10: for ∀ ExtractedObject object ∈ objetcs do

11: actionsWithObject ∪ (action+object)

12: end for

13: else

14: actionsWithObject ∪ rawActions

15: end if

16: end for

17: List<Action> finalActions ← new List<Action>

18: for ∀ Action action ∈ actionsWithObject do

19: if |actors| > 0 then

20: for ∀ Actor actor ∈ actors do

21: finalActions ∪ (actor+action)

22: end for

23: else

24: finalActions ∪ actionsWithObject

25: end if

26: end for

27: addToWorldModel(finalActions)

- 52 -

3 TRANSFORMATION APPROACH

Algorithm 3 Determine Actors

Require: boolean active, Tree parsedSentence, TypedDependencies dependencies

1: List<Actor> result ← new List<Actor>

2: if active then

3: TypedDependency nsubj ← findDependency(“nsubj”, parsedSentence, dependencies)

4: if nsubj 6= ε then

5: TreeGraphNode mainNode ← nsubj.dependent()

6: end if

7: else

8: TypedDependency agent ← findDependency(“agent”, parsedSentence, dependencies)

9: if agent 6= ε then

10: TreeGraphNode mainNode ← agent.dependent()

11: end if

12: end if

13: if mainNode 6= ε then

14: Actor actor ← createActor(mainNode, dependencies)

15: result ∪ actor

16: result ∪ checkConjunctions(actor,active,dependencies)

17: end if

18: return result

- 53 -

3 TRANSFORMATION APPROACH

checking if the Action is part of any conjunction relation (line 21) and returns the result

list (line 22).

mark(interested-5, If-1) advcl(presentation-17, interested-5)

det(customer-3, the-2) det(end-8, the-7)

nsubj(interested-5, customer-3) prep in(interested-5, end-8)

cop(interested-5, is-4)

Table 3: Stanford dependencies for the copula phrase “If the customer is interested in the

end, [...]”.

Algorithm 5 describes the procedure of finding and adding elements which are in a

conjunction relation. It was used within the algorithms 3,4, and 6. As it has to be able to

handle Actors, Resources, and Actions as input, it uses their common superclass Specified

Element (see 3.2) so it can be applied and used for all of them. It first determines all

typed dependency relations with the name “conj” (line 2). Line 3 then handles Action

which have an associated open clausal complement (xcomp) and checks whether they are

the governor of a conjunction relationship. If a relation with either the element itself or

the open clausal complement of an Action as governor was found and the element is not

part of a copula relation (line 4), a new element has to be created. The check for the

copula relation has to be performed, as it is possible to create an object from the copula

element and have a conjunction assigned to it, as in this example sentence:

“Established underwriters are careful of their reputation and will not handle

a new issue [...]”

In this sentence a Resource is created from the noun phrase “careful of their reputation”

and careful is in a conjunction relationship with “handle”. But this relation was already

captured during the conjunction analysis of the Action. Then, again, we make a dis-

tinction between a match of the open clausal complement and all other cases (line 6), as

- 54 -

3 TRANSFORMATION APPROACH

Algorithm 4 Determine Actions

Require: boolean active, Tree parsedSentence, TypedDependencies dependencies

1: List<Action> result ← new List<Action>

2: if active then

3: TypedDependency nsubj ← findDependency(“nsubj”, parsedSentence, dependencies)

4: if nsubj 6= ε then

5: TreeGraphNode mainPredicate ← nsubj.governor()

6: TypedDependency cop ← findDependency(“cop”, parsedSentence, dependencies)

7: if cop.governor() = mainPredicate then

8: TreeGraphNode mainPredicate ← cop.dependent()

9: end if

10: else

11: TypedDependency dobj ← findDependency(“dobj”, parsedSentence, dependencies)

12: TreeGraphNode mainPredicate ← dobj.governor()

13: end if

14: else

15: TypedDependency nsubjpass ← findDependency(“nsubjpass”, parsedSentence, dependencies)

16: TreeGraphNode mainPredicate ← nsubjpass.governor()

17: end if

18: Action action ← createAction(mainPredicate, dependencies)

19: checkSubSentences(action,dependencies)

20: result ∪ action

21: result ∪ checkConjunctions(action,active,dependencies)

22: return result

- 55 -

3 TRANSFORMATION APPROACH

we do not want to lose the information stored in the parent-action of the open clausal

complement. Therefore, we first create a copy of the parent object and simply replace the

xcomp element (line 7 and 8). This is necessary to create the desired actions as illustrated

by the following example.

• “The customer then has the chance to check the contract details and based on this

check may decide to either withdraw from the switch contract or confirm it.”

Using algorithm 5 two activities are correctly recognized within this sentence:

1. (The customer)actor (may decide)action (to withdraw)xcomp ...

2. (The customer)actor (may decide)action (to confirm)xcomp ...

The last steps of the algorithms are to add the new element to the result set and call itself

recursively, as the new element could also be in a conjunction relation (e.g., “A and B

and C perform an action”). Furthermore, the relation between the two elements is stored

globally in a structure called Conjunctions, which is needed e.g. in algorithm 6, which is

introduced next.

Correctly determining the object of an Action is the most complex operation. As

shown in algorithm 6 the first step is to determine the object of the open clausal com-

plement of the previously extracted Action (line 4). Next, we try to determine a direct

object by checking the “dobj” relation (line 7). If no appropriate relation was found,

a direct object can still be determined by consulting the globally available conjunction

relations of the action, which were created as outlined in algorithm 5. This is motivated

by sentences like those:

• “Otherwise, the matter details (types of action) are captured and provided to

the Cashier [...].”

• “[...] a Task is performed to locate and distribute any relevant existing designs

[...].”

- 56 -

3 TRANSFORMATION APPROACH

Algorithm 5 Check Conjunctions

Require: boolean active, Tree parsedSentence, TypedDependencies dependencies,

SpecifiedElement element

1: List<SpecifiedElement> result ← new List<SpecifiedElement>

2: for ∀ TypedDependency conj ∈ findDependencies(“conj”,parsedSentence,dependencies,element) do

3: xCompMatch ← element instanceof Action ∧ conj.governor() = ((Action)element).getXComp()

4: if conj.governor() = element ∧ !partOfCop(conj.governor()) ∨ xCompMatch then

5: TreeGraphNode conjNode ← conj.governor()

6: if xCompMatch then

7: Action newElement ← ((Action)element).clone()

8: newElement.getxComp() ← createAction(conjNode,dependencies)

9: else

10: if element instanceof Action then

11: Action newElement = createAction(conjNode,dependencies)

12: else

13: ExtractedObject newElement = createObject(conjNode,dependencies)

14: end if

15: end if

16: result ∪ newElement

17: result ∪ checkConjunctions(active, parsedSentence, dependencies, newElement)

18: conjunctions ∪ new Conjunction(conj,element,newElement)

19: end if

20: end for

21: return result

- 57 -

3 TRANSFORMATION APPROACH

For example in the second sentence the direct object “any relevant existing designs” is

directly attached to “distribute”, while no direct object relation can found for “locate”.

By also checking the conjunctions we solved this problem and correctly attach the object

“any relevant existing design” to locate. An important constraint for this procedure is

that the object has to be placed after the conjunct verb to avoid false positives. This

procedure is not necessary if the open clausal complement (xcomp) of the given action

already has an object assigned. As demonstrated by the following sentences:

• “The customer then has the chance to check the contract details and [..] may

decide to either withdraw from the switch contract or confirm it.”

If no direct object was found (line 11) it is possible that we are dealing with a copula

sentence, as in this example:

• “Customer service is a shared service center [...]”

We are then able to extract an object from the governor of the “cop” relation (line 16). If

the sentence was written in passive voice the “nsubjpass” relation can be used to determine

the object as shown in the lines 20 and 21. Similarly to the Actors, an Object does not

necessarily have to exist (line 23), but if it a corresponding TreeGraphNode was found an

ExtractedObject is created (line 24), added to the result list (line 25), and checked for

conjunctions (line 26). In line 24 we defined the result to be of the type ExtractedObject,

as the algorithm createObject, which is explained in detail in the next section, is able to

create either an Actor or a Resource.

3.3.3. Element Creation and Semantic Analysis

In the last section, we explained how to decompose a text and how to detect and

combine its main elements. This section describes how the Action, Actor, and Resource

objects are created within the algorithms 3,4, and 6 and how WordNet and FrameNet are

employed in order to add semantic information to the objects. In order to access these

- 58 -

3 TRANSFORMATION APPROACH

Algorithm 6 Determine Objects

Require: boolean active, Tree parsedSentence, TypedDependencies dependencies, Action action

1: List<ExtractedObject> result ← new List<ExtractedObject>

2: TreeGraphNode objectNode ← ε

3: if action.getXComp() 6= ε then

4: action.getXComp().getObject() ←

determineObjects(active,parsedSentence,dependencies,action.getXComp())

5: end if

6: if active then

7: TypedDependency dobj ← findDependency(“dobj”, parsedSentence, dependencies,action)

8: if dobj = ε ∧ action.getXComp().getObject = ε then

9: TypedDependency dobj ←

findDependency(“dobj”, parsedSentence, dependencies, conjunctions)

10: end if

11: if dobj 6= ε then

12: objectNode ← dobj.dependent()

13: else

14: TypedDependency cop ← findDependency(“cop”, parsedSentence, dependencies,action)

15: if cop.governor().parent().parent() = NounPhrase then

16: objectNode ← cop.governor()

17: end if

18: end if

19: else

20: TypedDependency nsubjpass ← findDependency(“nsubjpass”, parsedSentence, dependencies)

21: TreeGraphNode objectNode ← nsubjpass.dependent()

22: end if

23: if objectNode 6= ε then

24: ExtractedObject extractedObject ← createObject(objectNode, dependencies)

25: result ∪ extractedObject

26: result ∪ checkConjunctions(extractedObject,active,dependencies)

27: end if

28: return result

- 59 -

3 TRANSFORMATION APPROACH

lexical database we employed the JWNL library 17 and the FrameNet API 18 developed by

Nils Reiter. As FrameNet API in its current version19 was not able to handle FrameNet

1.5 we adjusted it to the new format and extended it to be able to extract Valence Patterns

and Units.

Algorithm 7 describes the main creation steps for an Actor. First, a new Actor object is

created (line 1). During this creation, the Actor is also provided with a link to the sentence

that is currently under investigation and its position within that sentence. This was not

explicitly shown in algorithm 7, but is important to mention as this ensures traceability

between the text and the later model. In line 2 WordNet is used to check whether the node

is a “real”-Actor, as a person, an organization or a software system. To perform that check

WordNet is used as a general purpose ontology. First the value of the node is looked up

in WordNet and the hypernyms for all its senses are traversed. If one of those hypernyms

matches a concept of a previously defined stop word list “true” is returned. As all other

stop words list used during the transformation, it can be adapted by the user. For the

test data set provided with this thesis, three concepts, namely “person”, “social group”,

and “software system” (Real Actor Determiners), were sufficient. Additionally, a stop

word list which directly classifies a noun as a person or organization (Person Corrector

List)20 is also provided. This is necessary as domain specific abbreviations and proper

nouns are not contains in WordNet and would be misclassified otherwise. Additionally,

Names of companies, departments or individual have to be stated in this lists as well, as

we excluded the “Hypernym Instance” relation [82] for our search. The reason for this

exclusion is the high rate of false positives which were produced otherwise. For example

in the sentence “The post is advertised”, “post” would be identified as a person due to

the containment of Mr. Wiley Post in WordNet.

17http://sourceforge.net/projects/jwordnet/
18http://www.cl.uni-heidelberg.de/trac/FrameNetAPI
19The latest version available at the time of development was 0.4.1
20This list is fully listed in Appendix C

- 60 -

3 TRANSFORMATION APPROACH

Additionally, a check is performed so certain construction involving cardinal numbers

are not misclassified, e.g. “one of the physicians”. Specifically, we check if a prepositional

phrase headed by “of” contains a “real”-Actor if we encounter a cardinal number as

the head of the given noun phrase. If all those checks fail the actor is classified as

“unreal” in line 3. This distinction is important for the later process model generation as

“unreal”-Actors will not be represented by Lanes. In line 5, important noun specifiers are

determined from the grammatical relations and added as a Specifier to the Actor. These

specifiers comprise:

• possession modifiers and determiners (“poss”,“det” - e.g. the, a, my, our)

• adjectival modifiers (“amod” - e.g. electronic, potential, social-medical)

• noun compound modifiers (“nn” - e.g. customer service department, service

center)

• indirect objects (“iobj” - e.g. He send the customer the bill)

• infinitival modifiers (“infmod” - e.g. a chance to edit)

• participial modifiers (“partmod” - e.g. customer data being stored multiple

times)

• prepositional modifiers (“prep” - e.g. to the customer, into the system)

• relative clause modifiers (“rcmod” - e.g. somebody, who is interested in the product)

In the lines 6 and 7 it is determined whether the created Actor will need to be resolved

or not. If the Actor turns out to be a personal preposition (“PRP”), e.g. he, she, it, they,

or a determiner (“DT”) without any dependencies within the parse tree of the sentence

(line 7; e.g. That is done by...) the Actor is marked for resolution. Additionally, certain

nouns, e.g. “someone”, can be added to the Relative Resolution Words stop word list and

- 61 -

3 TRANSFORMATION APPROACH

Algorithm 7 Create Actor

Require: TreeGraphNode node, TypedDependencies dependencies

1: Actor actor ← new Actor()

2: if !WordNet.isPersonOrSystem(node) ∧ !checkPP(node,dependencies) then

3: actor.getUnreal() ← true

4: end if

5: determineNounSpecifiers(actor,dependencies)

6: if node.parent.value() ⊂ {“PRP”,“DT} ∨ node.value() ⊆ RelativeResolutionWords then

7: if node.parent().parent().children().size() = 1 ∧ @ Specifier sp:sp.getHeadWord()=“of” then

8: actor.needsResolve() ← true

9: end if

10: end if

11: if WordNet.isMetaActor(node) then

12: actor.setMetaActor(true)

13: end if

14: return actor

will then also be resolved, except if they occur in a genitive compound with another noun

(e.g. someone of the sales department).

Lastly, we consult WordNet again to determine if the Actor helps to describe the

process on a meta level. To achieve this, we apply the same mechanism as for the “real”-

Actor determination described earlier. The stop word list used in this case (Meta Actor

Determiners) contained “step”,“process”,“case”, and “state” for our test data set. By

tagging these “meta”-Actors we can handle the associated action differently, as they are

most likely part of a meta-sentence (Issue 3.3) After creating the Actor and adding the

necessary semantic information it is returned in line 14.

Within algorithm 8 we proceed similarly to the creation of an Actor. The main

difference is that createObject is able to return either an Actor or a Resource depending

on the check in line 1. Furthermore, another attribute of an Actor, called SubjectRole, is

explicitly set to false within this algorithm. Per default SubjectRole is set to “true”, but

- 62 -

3 TRANSFORMATION APPROACH

Algorithm 8 Create Object

Require: TreeGraphNode node, TypedDependencies dependencies

1: if WordNet.isPersonOrSystem(node) ∨ isPersonalPronoun(node) then

2: Actor actor ← createActor(node,dependencies)

3: actor.getSubjectRole() ← false

4: return actor

5: else

6: Resource resource ← new Resource()

7: determineNounSpecifiers(resource,dependencies)

8: return resource

9: end if

as this algorithm is only called for objects, it gives us the opportunity to mark this Actor

with its role in the sentence, which in turn is useful for the relative reference resolution

in section 3.4.1.

Another detail which is not shown in algorithm 8 is the marking of prepositional mod-

ifiers using FrameNet. Whenever a new prepositional modifier is extracted the simple

resolution procedure shown in algorithm 9 is triggered. The goal of this procedure is to

determine an appropriate Frame Element according to the frame semantics as defined

by Fillmore [32]. While optimally a Frame Element can be defined for each phrase, the

procedure fails often, simply because a lexeme is not captured within FrameNet. There-

fore, we shift our interest onto the Phrase Type. In his book Ruppenhofer defined four

main types: “core”, “peripheral”, “extra-thematic”, and “core-unexpressed” [106, page

26]. For our disambiguation technique, we added two more types for phrases: “genitive”

and “unknown”. Algorithm 9 is then able to heuristically classify a given prepositional

phrase. First, the algorithm check if the type “Genitive” can be assigned to the given

prepositional phrase. This is the case when the head word of the phrase is “of” and the

Specified Element is not an Action (which means it is either an Actor or a Resource, but

in either case a noun). If the element is an Action or the head word differed a search

heuristic is applied (lines 4-14). A new map which we use to count the occurrences of a

- 63 -

3 TRANSFORMATION APPROACH

Frame Element is initialized in line 4. In line 5 the element is transformed into its base

form using the stemming procedure and look up capabilities of WordNet. Afterward, all

matching lexical units with an appropriate part of speech (Verb for Actions, Noun for

Actors/Objects) can be extracted from FrameNet (line 6). Consulting the Annotation

Corpus of FrameNet, it is then possible to search for all matching Valence Units (line

7 and 8). The phrase type of the Valence Unit and the Specifier are treated as equal

(line 9) if the phrase type is PP (prepositional phrase) and the head words match. If

the Valence Unit matches the specifier, the corresponding Frame Element, and its count

are added to the ”countMap”. After all Valence Units were checked the Frame Element

with the highest overall count is selected (line 15). This maximizes the probability of

determining the appropriate Frame Element. If no matching Frame Element was found

for the given lexeme the phrase type “Unknown” is assigned (line 17). Otherwise, we save

the information in the Specifier object (line 19 and 20). These pieces of information can

then be used during the process model generation to create clear and concise labels for

activities. Furthermore, the next algorithm will demonstrate how certain Frame Elements

can be used to add semantic information to Actions.

The creation of a new Action is described in algorithm 10. Similar to the creation

of an Actor or Resource, several Specifiers are created and added (line 2), but different

grammatical relations are considered:

• auxiliaries (“aux” - e.g. has, should, is)

• adverbial modifiers and adjectival complements (“advmopd”,“acomp” - e.g. leave

alone, to come back)

• negation modifiers (“neg” - e.g. not, neither)

• the copula (“cop” - e.g. interested, huge)

• phrasal verb particle (“prt” - e.g. send out, build up, turn out)

- 64 -

3 TRANSFORMATION APPROACH

Algorithm 9 Determine Frame Element

Require: SpecifiedElement element, Specifier specifier

1: if specifier.getHeadWord() = “of” ∧ !(element instanceof Action) then

2: specifier.getPhraseType() ← GENETIVE

3: else

4: Map<FrameElement,Integer> countMap ← new Map<FrameElement,Integer>()

5: String lexeme ← WordNet.getBaseForm(element)

6: for ∀ LexicalUnit lu ∈ FrameNet.getLexcialUnits(lexeme) do

7: for ∀ ValencePattern vp ∈ FrameNet.getAnnotationCorpus().getPatterns(lu) do

8: for ∀ ValenceUnit vu ∈ vp.getValenceUnits() do

9: if vu.getPhraseType() = specifier then

10: countMap ∪ (vu.getFrameElement(),vp.getTotalCount())

11: end if

12: end for

13: end for

14: end for

15: FrameElement bestElement ← countMap.getBestElement()

16: if bestElement = ε then

17: specifier.getPhraseType() ← UNKNOWN

18: else

19: specifier.getFrameElement() ← bestElement

20: specifier.getPhraseType() ← bestElement.getPhraseType()

21: end if

22: end if

- 65 -

3 TRANSFORMATION APPROACH

Algorithm 10 Create Action

Require: TreeGraphNode node, TypedDependencies dependencies

1: Action action ← new Action()

2: determineVerbSpecifiers(resource,dependencies)

3: TypedDependency xcomp ← findDependency(“xcomp”, dependencies)

4: if xcomp 6= ε then

5: TreeGraphNode xcompNode ← xcomp.dependent()

6: action.getXComp() ← createAction(xcompNode,dependencies)

7: end if

8: return action

• relative clause modifiers (“rcmod” - e.g. for the case that minor corrective actions

are required)

• prepositional modifers (“prep” - e.g. in case of any errors)

Lines 3-7 describe the extraction of an open clausal complement from the “xcomp” gram-

matical relation. If an open clausal complement belonging to the action is found “create

action” can be applied recursively and all aforementioned Specifiers are also added to it

(line 6).

Using the algorithms which were described in this section each sentence was decom-

posed and analyzed. The different parts of a phrase (Actors, Action, Resources) were

extracted, converted into their structured representation, combined and added to the

World Model. By relying on the Stanford Dependency representation, we added an ab-

straction layer and avoided the direct analysis of the syntax tree. This helped to avoid

problems originating from different word order (Issue 1.2).

3.4. Text Level Analysis

This section describes the second part of our transformation procedure — the text level

analysis. It analyzes the sentences taking their relationships into account. The structural

overview of this phase is shown in figure 12. While we make use of the Stanford Parser

- 66 -

3 TRANSFORMATION APPROACH

Figure 12: Structural overview of the steps of the Text Level Analysis.

and WordNet again, this stage also utilizes an anaphora resolution algorithm. During

each of the five steps, which are described in more detail in the following sections, the

Actions previously added to the World Model are augmented with additional information.

3.4.1. Anaphora Resolution Technique

An important part of the algorithm presented here is the determination heuristic for

resolving relative references within the text (Issue 4.1). As described in section 2.2.2

existing libraries are not seamlessly integrateable into our system and the output pro-

vided by the Stanford Parser. Furthermore, a full resolution of coreference chains as it

is provided by other systems is not necessary. Additionally, we wanted to provide an

opportunity to the users to manually adjust the reference resolution whenever they think

that is necessary. Therefore, we decided to implement a simple anaphora resolution tech-

nique into our prototype for the resolution of determiner and pronouns. This procedure

is described in algorithm 11. The anaphora resolution is triggered whenever an object is

marked with “needsResolve” as it was determined in algorithm 7 (line 2). Afterward, a

globally available object “ManualResolutionMap”, which stores the results of the manual

resolution performed by a user, is checked. If the user manually performed or adjusted

- 67 -

3 TRANSFORMATION APPROACH

the resolution, the reference is set to the object the user picked (line 4). Otherwise, our

determination procedure is triggered. If the object is a determiner, like “the”, “this” or

“that”, a corresponding action is searched (line 7). This technique simply determines the

action which contains the ExtractedObject “object” and searches for its predecessor ei-

ther within the same sentence or the previous sentence. In line 9 the resolution procedure

for pronouns is triggered. First, the type of animacy is determined. We distinguished

three types: “ANIMATE”, “INANIMATE” or “BOTH”. If the ExtractedObject we are

dealing with is of type Resource or if it is an Actor which was marked as “Unreal”, the

AnimateType “INANIMATE” is returned. If the ExtractedObject is a 3rd person pro-

noun (“it”,“they”,“them”) it could either refer to a group of people or to a department,

organization or software system, which we all defined as valid “Real”-Actors. Therefore,

we return the AnimateType “BOTH” which means that no restrictions regarding the

animacy of the target reference can be applied. For all other cases we assume the An-

imateType “ANIMATE”. This information is needed within algorithm 12 to compile a

list of potential candidates for the resolution and to assign a score to them.

Algorithm 12 is the core of the algorithm “findReferenceObject” which we omitted.

Within “findReferenceObject” we determine the ID of the sentence which contains the

object to resolve. Furthermore, we look up the action which contains the object and

determine whether it was created from a copula sentence and save that value as a boolean

variable “copAction”. Based on the animacy of the object to resolve, a list of potential

candidates is collected in lines 4-12. While all Actors and Resources we collected so

far have to be considered if the animacy type BOTH was chosen, “unreal”-Actors and

Resources can be filtered in the case of ANIMATE and “real”-Actors in the case of an

INANIMATE object to resolve (line 6). The following lines 13-29 assign a score to every

candidate. First, if a candidate object itself was resolved we consider the the resolution

result (line 15 and 16). Afterward, the distance between the sentences of the object to

resolve and the candidate is added using a negative value - the sentence distance penalty

- 68 -

3 TRANSFORMATION APPROACH

Algorithm 11 Anaphora Resolution

1: for ∀ ExtractedObject object ∈ {WorldModel.getActors() ∪ WorldModel.getResources()} do

2: if object.needsResolve() = true then

3: if object ∈ ManualResolutionMap then

4: object.getReference() ← manualResolutionMap.get(object)

5: else

6: if object.getName() ∈ Determiners then

7: object.getReference() ← findActionBefore(object)

8: else

9: AnimateType type ← determineAnimateType(object)

10: object.getReference() ← findReferenceObject(object,type)

11: end if

12: end if

13: end if

14: end for

(lines 18 and 19). Therefore, the score of a candidate object will decrease with increasing

distance to its anaphora and closer occurrences will be preferred. The following lines utilize

the “copAction” variable. This is necessary as we distinguish the resolution of copula and

regular sentences. This is motivated by the syntactic patterns which are predominant

within our test data set. There copula sentence were mostly used to describe conditions,

e.g. as in these sentence:

• “Then, an assessment is performed. If it is positive, [...]”.

• “[...] tries to acquire the customer. If he is interested, [...]”

While “an assessment” and “the customer” are both the passive element in the first

sentence, they take a subjective and active role in the following if-clause, which is expressed

using a copula sentence. Therefore, the preference for the same grammatical status is

inverted in case of a copula sentence. For example in line 21 a “role match score” is

added to the overall score when both object share the same role within a sentence (either

- 69 -

3 TRANSFORMATION APPROACH

Algorithm 12 Get Resolution Candidate

Require: int sentenceID, ExtractedObject objectToResolve, AnimateType type,

boolean copAction

1: if sentenceID ¡ 0 then

2: return ε

3: end if

4: Set<ExtractedObject> candidates ← WordlModel.getActors(sentenceID)

5: for ∀ Actor actor ∈ candidates do

6: if (actor.isMetaActor()) ∨

(type = ANIMATE ∧ actor.isUnreal()) ∨ (type = INANIMATE ∧ !actor.isUnreal()) then

7: candidates \ actor

8: end if

9: end for

10: if type 6= ANIMATE then

11: candidates ∪ WorldModel.getResources(sentenceID)

12: end if

13: Map<ExtractedObject.Integer> result ← new Map<ExtractedObject.Integer>()

14: for ∀ ExtractedObject object ∈ candidates do

15: if object.needsResolve() = true then

16: object ← object.getReference()

17: end if

18: Integer score ← objectToResolve.getSentenceID() - sentenceID

19: score ← score * Sentence Distance Penalty

20: if object.isSubjectRole() = (copAction ⊕ objectToResolve.isSubjectRole()) then

21: score ← score + Role Match Score

22: end if

23: if !copAction ∧ object.isSubjectRole() then

24: score ← score + Subject Role Score

25: else if copAction ∧ !object.isSubjectRole() then

26: score ← score + Object Role Score

27: end if

28: result ∪ (object,score)

29: end for

30: return result

- 70 -

3 TRANSFORMATION APPROACH

subject or object), but, in case of a copula sentence, it is only added when both roles

are different. Furthermore a bonus for candidates which hold a subject role is assigned

in line 24. In contrast to that, an object role bonus is assigned if the candidate has the

object role and the object to resolve was found in a copula sentence (line 25 and 26). The

algorithm follows this procedure backwards through the text and processes it sentence by

sentence. It stops when the first sentence is reached, or when the maximum attainable

score within a sentence with respect to the sentence distance penalty is below the the

score of the best candidate. Therefore, in most cases it is not necessary to scan the whole

text. Finally, the element with the highest score is returned as a reference for algorithm

11 (line 10). The score values we used are shown in table 4.

Sentence Distance Penalty -15

Role Match Score 20

Subject Role Score 10

Object Role Score 10

Table 4: Score values used in algorithm 12.

To evaluate the performance of this simple approach we compared it to two refer-

ence resolution toolkits, which were mentioned in section 2.2.2- BART and the Reconcile

framework. We applied all algorithms to all texts from our test data set which contained

at least three references. In total 17 texts containing 111 references of interest were an-

alyzed. All Frameworks were applied using their standard configuration. The results of

this evaluation can be seen in table 5.

The first column in the results table contains the ID of the text which was analyzed.

All referenced texts are listed in the Appendix and can be used for further verification.

The second column indicates the number of relative references which were identified in

the text. The following columns show how many references were resolved correctly by the

three algorithms as absolute and relative figures. The evaluation was performed manually.

- 71 -

3 TRANSFORMATION APPROACH

Text ID # of ref. BART Reconcile our approach

1-1 3 0 0.00% 3 100.00% 3 100.00%

1-3 4 4 100.00% 0 0.00% 4 100.00%

1-4 13 7 53.85% 7 53.85% 11 84.62%

2-1 8 2 25.00% 4 50.00% 5 62.50%

2-2 7 2 28.57% 2 28.57% 5 71.43%

3-3 3 1 33.33% 3 100.00% 2 66.67%

3-6 3 2 66.67% 1 33.33% 1 33.33%

4-1 4 1 25.00% 1 25.00% 1 25.00%

5-4 5 2 40.00% 4 80.00% 5 100.00%

6-1 12 8 66.67% 1 8.33% 2 16.67%

6-3 7 0 0.00% 1 14.29% 4 57.14%

6-4 13 2 15.38% 1 7.69% 12 92.31%

7-1 5 2 40.00% 4 80.00% 4 80.00%

8-2 8 4 50.00% 5 62.50% 3 37.50%

8-3 7 5 71.43% 5 71.43% 0 0.00%

9-1 4 1 25.00% 1 25.00% 3 75.00%

9-6 5 3 60.00% 1 20.00% 5 100.00%

Total 111 46 41.44% 44 39.64% 70 63.06%

Table 5: Comparison of the performance of our anaphora resolution technique to BART

and Reconcile

- 72 -

3 TRANSFORMATION APPROACH

Whenever the co-reference chain identified by BART or Reconcile contained the correct

resolution result, the reference was marked as correct, even if other entities were con-

tained. Although our approach only achieved an accuracy of 63.06% it still outperformed

both co-reference resolution toolkits, which were not able to correctly identify more then

41.44%. However, this does not mean that our approach is superior, as our results are

not generalizable. We have to consider the results as very specialized for the purpose

of process model generation and our evaluation parameters. A fundamental difference

is that both toolkit generate co-reference chains, while our approach only determines a

single reference. Therefore, the output BART and Reconcile create is much more sophis-

ticated and more versatile. Additionally, we only evaluated the resolution accuracy for

the references we require for our transformation approach, which are personal pronouns

and determiners. But, both libraries also resolve, e.g. relative pronouns and similar noun

phrases. Furthermore, we introduced a special handling for the resolution of the deter-

miners “this” and “that” which can link to a whole action instead of a noun phrase. This

is useful for our purposes, but not in the scope of the two toolkits. However, references

of this kind constitute a very minor share in the test data set. Interestingly, even those

tools, which are specifically built for anaphora resolution are not able to handle pleonastic

usage of “it”.

To conclude, we can state that although our resolution algorithm is only applicable

for a very special type of anaphora resolution problem, it is better suited for this kind of

problem then general anaphora resolution frameworks.

3.4.2. Conditional Marking

The second step in our analysis is the detection of conditional markers. These mark-

ers can either be a single word like “if”, “then”, “meanwhile” or “otherwise”, or a short

phrase like “in the meantime” or “in parallel”. All of these markers have specific charac-

teristics and can be mapped to different BPMN constructions. In order to capture this

semantic information we compiled four lists, namely ConditionIndicators (exclusive gate-

- 73 -

3 TRANSFORMATION APPROACH

way), ParallelIndicators (parallel gateway), ExceptionIndicators (for Error Intermediate

Events), and SequenceIndicators (for the continuation of a branch of a gateway). The

lists containing all markers we identified during the analysis of our test data set are fully

listed in Appendix C for further reference. These lists also do not claim completeness

and can be extended by the user, if necessary.

We first check several grammatical relations for single word markers in algorithm

13 and then analyze the Specifiers of an Action in algorithm 14 for special phrases.

Furthermore, as outlined in 3.1.1, some of those markers could be implicit. We will

try tackle that problem by detecting an implicit “then” and propagating markers through

conjunctions in algorithm 15. The detection of a marker, can also influence the desired

position of an action. Thus, to correctly reflect the intended rhetoric structure actions

containing a conditional are reordered in algortihm 16.

The markers we are looking for can be contained in different grammatical relations.

Most importantly, the “mark” relation which references the word introducing an adverbial

clause complement (relation “advcl”). If an action was created from that complement,

the word introducing it will determine the relation between the main and the adverbial

clause. This applies, e.g., for an if-clause like “If the customer is interested, [...]”. The

relation “mark(interested,if)” provides the important piece of information, that the clause

“the customer is interested” was introduced using “if”. Therefore, we start by identifying

these “mark” relations (line 2) and add the introducing word to the Action in line 5 of

algorithm 13.

Some of the indicators as “while”, “then” or “otherwise” are recognized as adverbial

modifiers by the Stanford Parser. Thus, another relation we have to analyze is “advmod”,

which is looked up in line 7. Afterward, we also determine the action to which the governor

of that grammatical relations belongs to (line 9) and add the appropriate marker (line

10).

The third block within algorithm 13 inspects prepositional clause modifiers (“prepc”).

- 74 -

3 TRANSFORMATION APPROACH

Algorithm 13 Marker Detection

Require: List<AnalyzedSentence> sentences

1: for ∀ AnalyzedSentence sentence ∈ sentences do

2: List<TypedDependency> markers ← findDependencies(“mark”,sentence.getDependencies())

3: for ∀ TypedDependency marker ∈ markers do

4: Action a ← findAction(marker.governor(),sentence.getAllActions())

5: a.getMarker() ← marker.dependent().value()

6: end for

7: List<TypedDependency> mods ← findDependencies(“advmod”,sentence.getDependencies())

8: for ∀ TypedDependency mod ∈ mods do

9: Action a ← findAction(mod.governor(),sentence.getAllActions())

10: a.getMarker() ← mod.dependent().value()

11: end for

12: List<TypedDependency> prepcs ← findDependencies(“prepc”,sentence.getDependencies())

13: for ∀ TypedDependency prepc ∈ prepcs do

14: Action a ← findAction(marker.dependent(),sentence.getAllActions())

15: a.getMarker() ← prepc.getRelationName().getSpecific()

16: end for

17: List<TypedDependency> complms ← findDependencies(“complm”,sentence.getDependencies())

18: for ∀ TypedDependency complmentizer ∈ complms do

19: Action a ← findAction(marker.governor(),sentence.getAllActions())

20: a.getMarker() ← complementizer.dependent()

21: a.isMarkerFromComplementizer() ← “true”

22: end for

23: end for

- 75 -

3 TRANSFORMATION APPROACH

A prepositional clause modifier is a clause introduced by a preposition, which changes the

meaning of the associated element. An example is the sentence:

• “If this is not the case, we leave him alone, except if the potential project budget

is huge.”

Here the preposition “except” introduces the if-clause. As except was classified as an

exception marker within the ExceptionIndicator list (see Appendix C) it is important to

capture it as the marker of that action. Contrary to the other relations, the key word

“except” is not the dependent nor the governor of the relation, but instead a specification

of the relation name21. Therefore, it has to be extracted differently as shown in line 15.

The last relation we look into are complementizers (“complm”). A complementizer in-

troduces a clausal complement (ccomp), which means it can be either “that” or “whether”

[106]. As “whether” was classified as a conditional indicator it is also looked up (line 17)

and added as a marker to the corresponding action (line 19 and 20). But, as “whether”

plays a different role during the order correction explained in algortihm 16, we also set

a flag “isMarkerFromComplementizer” to true, in order to reflect these circumstances

appropriately.

Within algorithm 13 we successfully identified markers which consist of a single word.

In contrast to that algorithm 14 is used to detect marking phrases like “in the meantime”

or “in case of”, which can be part of a prepositional phrase or relative clause. To detect

them, we scan each prepositional and relative clause modifier (“pp” and “rcmod”) of

an action (line 3 and 4). If the prepositional phrase or the relative clause starts with an

indicator, the marker which represents the meaning appropriately is set. For a conditional

indicator (line 5) we set the marker “if” (line 6) and we set a flag which tells us that the

marker was found within a specifier and was not directly attached to the action as a single

word (line 7). For a sequence indicator (line 8) and for parallel indicators (line 10) we

21Due to the usage of the collapsed dependency representation.

- 76 -

3 TRANSFORMATION APPROACH

Algorithm 14 Detect Compound Indicators

Require: List<AnalyzedSentence> sentences

1: for ∀ AnalyzedSentence sentence ∈ sentences do

2: for ∀ Action action ∈ sentence.getAllActions() do

3: List<Specifier> specifiers ← action.getSpecifiers(“PP” + “RCMOD”)

4: for ∀ Specifier specifier ∈ specifiers do

5: if startsWithAny(specifier,ConditionalIndicators) then

6: specifier.getMarker() ← “if”

7: specifier.isCompoundMarker() ← “true”

8: else if startsWithAny(specifier,SequenceIndicators then

9: specifier.getMarker() ← “then”

10: else if startsWithAny(specifier,ParallelIndicators then

11: specifier.getMarker() ← “while”

12: end if

13: end for

14: end for

15: end for

place the marker “then” (line 9) or “while” (11), respectively.

Next, we identify some implicit markers in algorithm 15. The implicit markers we are

able to detect is an implicit ”then” following an if-clause (lines 3-10), and all sequence

indicators which are attached to Actions which are part of a conjunction (lines 11-16).

Again, we apply our procedure to all Actions within all analyzed sentences. First, we

define a variable called “nextMarker” (line 3) and then while iterating over all Actions

(line 4) assign the value “then” to it whenever an Action with a conditional indicator,

which was not found in a compound (see algorithm 14), is encountered (line 8 and 9). Once

this variable was set it will be applied to the following Action within that sentence during

the next iteration (line 6). The second part of this method is used to propagate sequence

indicators through conjunctions. If the action under investigation carries a sequence

indicator (line 11), then all Actions which are related to this Action by a conjunction are

determined (line 12) and the same marker is added to them (line 14). Of course, this

- 77 -

3 TRANSFORMATION APPROACH

Algorithm 15 Add Implicit Markers

Require: List<AnalyzedSentence> sentences

1: for ∀ AnalyzedSentence sentence ∈ sentences do

2: List<Action> linkedActions ← ε

3: Marker nextMarker ← ε

4: for Action a: sentence.getAllActions() do

5: if nextMarker 6= ε then

6: a.getMarker() ← nextMarker

7: end if

8: if a.getMarker() ∈ ConditionalIndicators ∧ !a.isCompoundMarker() then

9: nextMarker ← “then”

10: end if

11: if a.getMarker() ∈ SequenceIndicators then

12: linkedActions ← determineConjunctElements(sentence,a)

13: for Action linkedAction ∈ linkedActions do

14: linkedAction.getMarker() ← action.getMarker()

15: end for

16: end if

17: end for

18: end for

covers only a small amount of implicit markers which are needed (Issue 1.3). A deeper

semantic analysis is required to detect implicit conditions as in “For new customers, a

patient file is created”.

The last step during the marking phase is the reordering of actions according to their

semantic structure. This is necessary as we assumed a sequential ordering of the Actions

(see section 3.1.5), but it is possible to add an if-clause after the main clause. Therefore, in

algorithm 16 we walk through all sentences and all Actions identified within them (line 1

and 2). If an action was marked using “if” and that marker is not from a complementizer,

then we determine the action within that sentence that precedes it (line 4) and switch

change order (line 5) within the World Model.

- 78 -

3 TRANSFORMATION APPROACH

Algorithm 16 Correct Order

Require: List<AnalyzedSentence> sentences, List<WorldModel> world

1: for ∀ AnalyzedSentence sentence ∈ sentences do

2: for Action a: sentence.getAllActions() do

3: if a.getMarker() = “if” ∧ a.isMarkerFromComplementizer 6= “true” then

4: Action actionBefore = findActionBefore(a)

5: world.switchPositions(a,actionBefore)

6: break

7: end if

8: end for

9: end for

3.4.3. Action combination

This section describes how we can use the information gathered so far to combine the

information contained in two different Actions. This procedure tackles the problem of

Actions which are split up over several sentences (Issue 2.2) as laid out in section 3.1.2.

To consider two Actions as a candidate for a merger, a reference had to be established

between them during the anaphora resolution phase, which is explained in section 3.4.1.

This reference can either directly point from the Actor or from the Object of this Action

(lines 2 or 5). But, for the case that the Object points to another Actor or Resource we

also consider the Action which contains it as a possible candidate (line 8). Next, it is

checked whether the objects can be merged (line 12). The method “canBeMerged” checks

the following four or five characteristics of both Actions, depending on whether the third

argument is “true” or “false”:

• Negation modifier (in case of “false” as third argument)

• Both Actions have either no or the same marker

• One of the Action is considered “weak” (depending on the stop word list WeakVerbs

as defined in Appendix C)

- 79 -

3 TRANSFORMATION APPROACH

• One of the Actors is ε, needs to be resolved or is meta actor

• One of the Objects is ε or needs to be resolved

If the actions truly complement each other in all categories they can be merged and form

one single action. This procedure is explained in algorithm 18. When both Actions com-

plement each other except for the negation modifier we can still enhance the information

content of one action by copying information (line 15), as the initiating Actor, the Object,

and/or the copula attribute. An example for such a case are these sentences:

• “Of course, asking the customer whether he is generally interested is also important.”

• “If this is not the case, we leave him alone, [...]”

Here the reference is established by the word “this” which was resolved to reference the

Action “the customer in interested”. Here all conditions except for the negation are ful-

filled. Both Actions have the same marker “if”, the verb “is” is considered “weak”, the

Actor of the second sentence “this” needed to be resolved and the first Action does not

contain an Object (“interested” is the copula modifier). But, as the negation modifier dif-

fers those actions cannot be merged completely. This is desired as both describe different

branches of a split. However, one of the branches is incomplete regarding its information

content. We can close this gap by copying information, and obtain two Actions:

• If the customer is interested, [...]

• If the customer is not interested [...]

This enables the generation of clearer models which we expect to be understood more

easily.

When both Actions are equal regarding all their characteristics described before, a

full merge can be conducted. This procedure is described in algorithm 18. Here the first

task is to determine a weak Action, which will be removed in the end of the process

- 80 -

3 TRANSFORMATION APPROACH

Algorithm 17 Combine Actions

Require: WorldModel world

1: for ∀ Action action ∈ world.getActions() do

2: if action.getActor().getReference instanceof Action then

3: referencedAction ← action.getActor().getReference()

4: else if action.getObject().getReference() 6= ε then

5: if action.getObject().getReference() instanceof Action then

6: referencedAction ← action.getObject().getReference()

7: else

8: referencedAction ← findActionContaining(action.getObject().getReference())

9: end if

10: end if

11: if referencedAction 6= ε then

12: if canBeMerged(action,referencedAction,“true” then

13: mergeActions(action,referencedAction)

14: else if canBeMerged(action,referencedAction,“false”) then

15: copyInformation(action,referencedAction)

16: end if

17: end if

18: end for

- 81 -

3 TRANSFORMATION APPROACH

Algorithm 18 Merge Actions

Require: Action referenceAction, Action mainAction,WorldModel world,

1: Action weakAction ← getWeakAction(referenceAction,mainAction)

2: Action strongActions {referenceAction;mainAction}\ weakAction

3: if (strongAction.getActor() = ε ∧ weakAction.getActorFrom() 6= ε) ∨

strongAction.getActor().needsResolve() ∧ !weakAction.getActorFrom().needsResolve() then

4: strongAction.getActor() ← weakAction.getActorFrom()

5: end if

6: if (strongAction.getObject() = ε ∧ weakAction.getObject() 6= ε) ∨

strongAction.getObject().needsResolve() ∧ !weakAction.getObject().needsResolve() then

7: strongAction.getObject() ← weakAction.getObject()

8: end if

9: for Specifier sp ∈ weakAction.getSpecifiers() do

10: strongAction.addSpecifier(sp)

11: end for

12: world.removeAction(weakAction)

and a strong Action, which acquires the new information content. The weak Action is

determined using WordNet in combination with our stop word list “WeakVerbs”. Then,

we determine which information can be merged. In line 3 we check whether the Actor of

Action which we considered as strong can be replaced by the Actor of the weak Action

(line 4). This is the case when the strong Action has no Actor yet or if the Actor of the

strong Action has to be resolved and the other does not. The same procedure is applied

to the Object of the Action in the lines 6-8. Lastly, all Specifiers of the weak Action are

transferred (line 9-11) and the Action which was classified as weak before is removed from

the World Model (line 12).

3.4.4. Inter-Action Link determination

In 3.1.4 (Issue 4.2) we defined three types of textual references: forward, backward,

and jump references. This section will introduce our approach to identifying those links

in the text automatically. In algorithm 19 we start by comparing all actions within our

- 82 -

3 TRANSFORMATION APPROACH

World Model to another. To do that we iterate over all actions in two nested for-loops

(line 2 and 3). In order to reduce complexity the second for-loop in line 3 only visit

Actions, whose index is smaller then the index of the first for loop. Hence, the complexity

of the algorithm is O(1
2
n2). Using the method “isLinkable”, it is then determined whether

the selected actions can be linked or not (line 6). Within this method we compare the

following characteristics of both Actions:

• Copula Specifier

• Negation Status

• The initiating Actor (ActorFrom)

• The Object

• The open clausal complement (xcomp) by calling the method recursively

• Prepositional Specifiers, whose head word is “to” or “about”

The elements are compared using their root form, which is determined by the internal

word stemming of WordNet. If the elements differ or an element is defined for one Action,

but not for the other, the function will return “false”. Otherwise, the action are considered

equal and a link relationship can be established. This link relationship is saved to the

action appearing later in the text (action1) in line 7. This way we can ensure that a link

relation is always directed backwards concerning the position of the Actions in the text.

Additionally, the type of the link relationship is determined and saved along with the link

(line 8). How the type of the link relationship is determined is explained in algorithm 20.

3.4.5. Flow Generation

The last step of the text level analysis is the generation of Flows. As explained in sec-

tion 3.2 a flow describes how activities are interaction with each other. Therefore, during

the process model generation such Flows can be translated to BPMN connecting objects.

- 83 -

3 TRANSFORMATION APPROACH

Algorithm 19 Determine Inter-Action Links

Require: List<WorldModel> world

1: List<Action> actions ← world.getActions()

2: for int i=|actions|-1; i≥0; i++ do

3: for int j=i-1; j¿=0; j– do

4: Action action1 = actions.get(i)

5: Action action2 = actions.get(j)

6: if isLinkable(action1,action2 then

7: action1.setLink(action2)

8: action1.setLinkType(determineLinkType(action1,action2))

9: end if

10: end for

11: end for

Algorithm 20 Determine Link-Type

Require: Action linkSource,Action linkTarget

1: if linkSource.getMarker() ∈ ConditionIndicators then

2: if WordNet.containsForwardLinkSignal(linkSource.getSpecifiers()) then

3: return ActionLinkType.FORWARD

4: end if

5: DCR linkResult = determineConjunctElements(linkTarget)

6: if linkResult.getType() = OR ∨ linkTarget.getMarker ∈ ConditionIndicators then

7: return ActionLinkType.JUMP

8: end if

9: else

10: if WordNet.containsLoopLinkSignal(linkSource then

11: return ActionLinkType.LOOP

12: end if

13: end if

14: return ActionLinkType.NONE

- 84 -

3 TRANSFORMATION APPROACH

When creating the Flows we build upon the assumption that a process is described se-

quentially (see section 3.1.5) and upon the information gathered in the previous steps.

Therefore, we save the current position within the process in 2 lists: “lastActions” and

“openSplit” (line 1 and 2). They determine the position into which the following elements

can be inserted, like a cursor in a word processing program. Likewise, their position can

be changed, e.g., by the textual jumps, which we identified in section 3.4.4. Thus we

start by iterating over all sentences and their extracted Actions sequentially (line 3) and

whenever a jump link is encountered, we clear the two lists and add the Action which was

linked before to the lastActions list. This behavior is embedded in the method clearLists

in line 4. Furthermore, we define the current Action as “transient” which means it is not

necessary to directly represent it with a Task node in our process model and continue with

the next Action. Otherwise, we search the current sentence for conjoined elements. These

are all Actions which are connected to Action “a” with a conjunction. This connection

could have been established by a conjunction of verbs, actors or objects, which in turn is

represented by a status code within the ConjoinedResult created in line 10.

The word, which connected the items, captured in the ConjunctionType attribute,

is important to determine how to proceed and what type of gateway we have to create.

So far we support a distinction between “or”, “and/or” (line 14), and “and” (line 18).

Other conjunctions, e.g., “but” will not be represented graphically in the process model.

If the Action under investigation is not part of a conjunction relationship, the method

“handleSingleAction”, which is explained in further detail in algorithm 22 is called in line

12. When the word used to conjoin the to Actions was “or” or “and/or” a gateway has

to be created (line 14). Therefore, we first create a so called Dummy Node. This is a

node which serves as a placeholder for the source or target of a join. This is necessary as,

according to our definition of a Flow in the WorldModel, the gateway is an attribute of

the flow and is not explicitly represented. Furthermore, as a Flow is only able to create

a one-to-many connection, constructions like the ones shown in figure 13 would not be

- 85 -

3 TRANSFORMATION APPROACH

Figure 13: Excerpt of an example model where two Gateways are directly following each

other.

possible otherwise. The problem is solved by placing a temporary Dummy Node as the

target of a join and from there creating the new split. The Dummy Node is then removed

during the process model generation procedure.

Afterward, the appropriate gateway is constructed. In case of an “OR” conjunction

an exclusive gateway is constructed and in case of an “and/or” an inclusive one. The

next block in the lines 19-26 deals with the “and” connective. From the understanding

of natural language an “and” does not necessarily imply a parallel gateway. Therefore,

it will only be constructed when the “and” is associated with two different actors (line

22), e.g. as in the example sentence following below. Otherwise, the standard procedure

handleSingleAction is called for each item individually (line 25). The previous call to

“buildJoin” (line 24) before, ensures that all Actions contained in “lastActions” are joined

on a appropriate gateway prior to continuing. Of course, this procedure is also used within

“createGateway” (lines 17 and 22).

Additionally, it is possible to have a mixed situation, where several conjunctions be-

tween objects are created, as in this example sentence:

• “The MPON and the MPOO perform the equipment acquisition and/or the device

change.”

In this case the type will be classified as “MIXED” and appropriately handles in line 29.

Within “handleMixedSituation” the different connection types are analyzed and multiple

- 86 -

3 TRANSFORMATION APPROACH

Figure 14: Process model resulting from a “Mixed Situation”.

gateways are created. For the case of our example sentence, the created diagram is

depicted in figure 14.

Algorithm 22 describes one part of the flow creation process on a deeper level. When-

ever the current Action is not marked with a Conditional Indicator or a Sequence Indicator

we close the currently opened split and thereby end a block which consisted of several

paths. This attempts to tackle the problems outlined in section 3.1.4. When closing the

open split, all Actions which are contained in the openSplit list are joined with a appro-

priate gateway (line 5) and the list is cleared (line 2). Afterward, the actual handling of

the action begin (line 7). We check whether the Action is marked with a parallel (line

7) or conditional (line 10) indicator. If so, we retrieve the last last flow which was added

to the WorldModel and add the new Action in a parallel fashion (lines 8 and 9). For

conditional indicators the procedure is similar, but as more than one additional condition

can be added we obtain the last split which was created. If no split was created before, the

- 87 -

3 TRANSFORMATION APPROACH

Algorithm 21 Build Flows

Require: List<AnalyzedSentence> sentences, List<WorldModel> world

1: List<Action> lastActions ← new List<Action>

2: List<Action> openSplit ← new List<Action>

3: for ∀ Action a ∈ ∀ AnalyzedSentence sentence ∈ sentences do

4: if a.getLink() = ActionLinkType.JUMP then

5: clearLists(a.getLink())

6: a.getTransient() ← true

7: continue

8: end if

9: Flow flow ← new Flow(sentence)

10: ConjoinedResult ← determineConjoinedElements(a,sentence.getConjunctions())

11: if ConjoinedResult.size() = 1 then

12: handleSingleAction(flow,a)

13: else

14: if ConjoinedResult.getType() ∈ {ConjunctionType.OR;ConjunctionType.ANDOR} then

15: createDummyNode(lastActions,flow)

16: buildGateway(lastActions,openSplit,ConjoinedResult)

17: else if ConjoinedResult.getType() = ConjunctionType.AND then

18: if ConjoinedResults.getStatusCode() = ACTOR then

19: createDummyNode(lastActions,flow)

20: flow.getType() ← ConjoinedResult.getType()

21: buildGateway(lastActions,openSPlit,ConjoinedResult)

22: else

23: buildJoin(flow,lastActions,a)

24: handleSingleAction(flow,a)

25: end if

26: else

27: createDummyNode(lastActions,flow)

28: handleMixedSituation(flow,ConjoinedResult)

29: end if

30: end if

31: end for

32: world.addFlow(flow)

- 88 -

3 TRANSFORMATION APPROACH

Algorithm 22 Handle Single Action

Require: Flow flow, Action action, List<Action> lastActions, List<Action> openSplit

1: if action.getMaker ∈ SequenceIndicators ∨ action.getMarker ∈ ConditionalIndicators then

2: closeOpenSplit()

3: end if

4: if lastActions.size >1 then

5: buildJoin(new DummyAction())

6: end if

7: if action.getMarker() ∈ ParallelIndicators then

8: getLastFlowAdded().getMultipleObjects() ∪ action

9: getLastFlowAdded().getType ← FlowType.CONCURRENCY

10: else if action.getMarker() ∈ ConditionalIndicators then

11: openSplit.clear()

12: openSplit ∪ getLastSplit().getMultipleObjects()

13: getLastSplit().getMultipleObjects() ∪ action

14: getLastSplit().getType() ← FlowType.CHOICE

15: else

16: standardSequence(flow,action)

17: end if

method “getLastSplit” will simply return the last Flow which was added. Next, we add

the Action to the list of multiple objects and remember that all former elements in the

openSplit list (lines 11-14). For the case that no marker was determined for the action, a

simple sequence is created (line 16).

The concrete details of building splits and joins and the handling of a mixed situation

process the actions and flows in a similar fashion and are, thus, not further detailed. The

Flows which we created in this section are stored in the World Model and will be used to

construct Sequence Flows and Gateways for the process model in the next section

3.5. Process Model Generation

In the last phase of our approach the information contained in the World Model is

transformed into its BPMN representation. We follow a nine step procedure, as depicted

- 89 -

3 TRANSFORMATION APPROACH

Figure 15: Structural overview of the steps of the Process Model Generation phase.

in figure 15. The first 4 steps: creation of nodes, buidling of Sequence Flows, removal

of dummy elements, the finishing of open ends, and the processing of meta activities are

used to create an initial and complete model. Additionally the model can be augmented

by creating Black Box Pools and Data Objects. These two steps are dependent on the

preferences of the user and can be disabled in our prototype. Lastly the model is layouted

to achieve a human-readable representation.

3.5.1. Model Creation

The first step required for the model creation is the construction of all nodes of the

model. The overall procedure is shown in algorithm 23. We iterate over all Actions

contained within the WorldModel (line 1). Whenever we encounter an action which

is marked using a conditions, an event nodes is created (line 3). Otherwise, we can

create a standard BPMN Task node (line 5). When creating an event, we look up the

contained words within WordNet and create an Message or Timer Intermediate event if

applicable. This is, e.g., the case when the event text contains a word which can be

- 90 -

3 TRANSFORMATION APPROACH

related to the concept of a “time period” in WordNet. This behavior can be controlled

by adding/removing concepts in our stop word lists (see Appendix C). When creating a

label for the nodes we respect the concepts of good labeling style which were mentioned in

section 2.1.2. Thus, we try to create correct verb-object labels. The phrases of Specifiers

associated to a Specified Element are added to the label when they were tagged as either

”CORE” or ”GENETIVE” (see section 3.3.3). As it is usually not possible to classify all

phrases we also add Specifiers classified as ”UNKNOWN” when their headword is ”to”,

”in”, or ”about” for Actions and ”into”, ”under”, or ”about” for objects. This behavior

can be controlled by the user again as he can disable to addition of unknown specifiers to

the label of a node. Additionally we included a technique to transform nominalizations.

For example consider the sentence:

• “The last phase is the creation of a quotation.”

Using WordNet we can determine that “creation” was derived from the verb “create”.

Additionally, the current verb “is” will be classified as “weak” according to the principles

explained in section 3.4.3. Therefore, the action text can be transformed to “create a

quotation”.

Afterward the Flow Object was generated, we create a Lane Element representing

the Actor initiating the Action (line 8). If the Action has no assigned Actor or the verb

describing the Action is considered “weak”, ε will be assigned to the Lane. In the following

parts of the code we then utilize two global variables called “lastLane” and a list of nodes

“notAssigned”. If no Lane was determined for an Action, it is added to the last Lane

which was created successfully as we assume that the process is described in a sequential

manner. Therefore, even if not mentioned explicitly again, we expect the Action to be

performed by the same Actor. The list “notAssigned” is employed when no Lane was

determined successfully so far (line 17). We then store all nodes in that list and add them

to the first Lane which is created later (line 14). It is also possible that no Lane is found

within an entire text. In this case no Lane and no surrounding Pool can be created for

- 91 -

3 TRANSFORMATION APPROACH

the Process Model.

The second step required during the model creation is the construction of all edges.

In our case only Sequence Flows have to be created as all objects were placed in a single

Pool). Due to the definition of Flows within our World Model, this transformation is

straight forward. Whenever a Flow which is not of the type “Sequence” is encountered, a

Gateway appropriate for the type of the flow is created. An exception to that is the type

“Exception”. If the World Model contains a flow of this type, an exception intermediate

event is attached to the task which serves as a source and this Intermediate Event is

connected to the target instead of the node itself.

As mentioned in section 3.4.5 we applied the concept of “Dummy Actions”, which

were inserted between gateways directly following each other. As after the construction

of all Sequence Flows such Dummy Actions are not required anymore, they are removed

from the process model, while keeping their predecessor and successor connected.

Step four is concerned with open ends. So far, no Start and End Events were created.

This is accomplished in this step. The procedure is also straight forward. We create a

preceding Start event to all Tasks which do not have any predecessors (in-flow = 0) and

succeeding End Events to all Tasks which do not have any successors (out-flow = 0).

Additionally, Gateways whose in- and out-flow is one receive an additional branch ending

in an End Event.

The last step in the model creation phase tries to deal with Meta-Activities. Therefore,

we try to remove redundant nodes in front directly adjacent to Start or End Events. This

is required as several texts contain sentences like those:

• “[...] the process flow at the customer also ends.”

• “[...] If the request is not finished within 30 days, then the process is stopped.”

• “The process of “winning” a new customer ends here.”

• “The intake workflow starts with [...]”

- 92 -

3 TRANSFORMATION APPROACH

Algorithm 23 Create Nodes

Require: WorldModel world

1: for ∀ Action a ∈ world.getActions() do

2: if a.getMarker() ∈ Conditional Indicators ∧ !a.isCompoundMarker() then

3: FlowObject fow ← createEvent(a)

4: else

5: FlowObject fow ← createTask(a)

6: end if

7: if !WordNet.isWeakAction(a) then

8: Lane lane = getLane(a.getActor())

9: end if

10: if lane 6= ε then

11: lane.addNode(fow)

12: Lane lastLane = lane

13: for ∀ Node n ∈ notAssigned do

14: lastLane.addNode(n)

15: end for

16: else

17: if lastLane 6= ε then

18: lastLane.addNode(fow)

19: else

20: notAssigned.add(fow)

21: end if

22: end if

23: end for

- 93 -

3 TRANSFORMATION APPROACH

If such sentences were not filtered so far we might find Tasks label “process ends” right

in front of an end event or “start workflow” following a start event. This information is

redundant, as the start/end of the process is already expressed through the Start/End

Event. Therefore, we remove nodes whose verb is synonymous or contained in the hyper-

nym tree of “end” or “start” according to WordNet if they are adjacent to a Start or End

Event, respectively.

After the execution of these five steps a full BPMN model was created which can

already be sued by the user. Additionally, the model can be augmented adding further

elements as Black Box Pools and Data Objects, which will be described in the next section.

3.5.2. Model Augmentation

The last three steps of our transformation procedure are the creation of Black Box

Pools and Data Objects and the layouting of the model. Just as the labeling of the

nodes, the creation of Black Box Pools and Data Objects can be influenced by the user.

The procedure we follow is described in algorithm 24 and algorithm 25. First we check

whether an Action can be classified as an verb of interaction. This is accomplished by

checking the WordNet hypernym tree of the main verb of the action for the occurrence

of an “interactionVerb” (see Appendix C) like “inform”, “send”, “ask”, or “report”.

Afterward, we have to determine the corresponding source or target of that communication

activity. This can either be the direct object (line 3), one of the Specifiers of the Action

containing a sender (line 7) or containing a Receiver (line 11). To identify a Sender in

the Specifiers of an Action, we check the Frame Element which was assigned during the

element creation in section 3.3.3. The presence of the Frame Elements “Addressee” or

“Recipient” indicate a receiver of our message while “Donor” or “Source” indicate a the

sender. Additionally, If this sender or receiver object is an Actor it can be represented

as a Pool. These checks are performed for main verb of the Action, but also for its open

clausal complement (xcomp) if it exists.

The actual creation of the Black Box Pool is shown in algorithm 25. If the element

- 94 -

3 TRANSFORMATION APPROACH

Algorithm 24 Create Black Box Pools

Require: WorldModel world

1: for ∀ Action a ∈ world.getActions() do

2: if WordNetWrapper.isInteractionVerb(a) then

3: ExtractedObject object ← a.getObject()

4: if object 6= ε ∧ object instanceof Actor ∧ !isMetaActor(object) then

5: buildBlackBoxPool(a,object)

6: else

7: Specifier ← getContainedSender(a.getSpecifiers())

8: if sender 6= ε ∧ sender instanceof Actor ∧ !isMetaActor(sender) then

9: buildBlackBoxPool(a,sender)

10: end if

11: Specifier receiver ← getContainedReceiver(a.getSpecifiers())

12: if receiver 6= ε ∧ receiver instanceof Actor ∧ !isMetaActor(receiver) then

13: buildBlackBoxPool(a,receiver)

14: end if

15: end if

16: end if

17: end for

- 95 -

3 TRANSFORMATION APPROACH

Algorithm 25 Build Black Box Pool

Require: Action action SpecifiedElement element

1: if model.getPools().containsByName(getName(element)) then

2: communicationLinks.put(a,getName(element))

3: else if Options.getBuildBlackBoxPools() then

4: BlackBoxPool BBPool ← new BlackBoxPool(getName(element))

5: model.getNodes() ∪ BBPool

6: Task taskNode ← getTaskNode(action)

7: taskNode.getSubType() ← WordNet.getVerbType(action)

8: model.getEdes() ∪ new MessageFlow(tasNode,BBPool)

9: end if

which represents the source or target of the communication was already created as a

Pool during the model creation phase, we cannot create a Black Box Pool, as BPMN

does not provide any means to express this communication. Nevertheless, we store the

identified relation in a map called “communicationLinks” (line 2) of which we can make

use in the Lane Split-off Procedure, which is described next. If the element is not already

represented in the model as a Pool, a Black Box Pool can be created. Of course, only if the

user selected the appropriate option (line 3). The Black Box Pool is created with the name

derived from the given Specified Element (line 4). It is then added to the process model

(line 5) and connected to the task corresponding to the action (line 8). Additionally, this

task will be assigned an appropriate BPMN sub-type (Receive or Send), which depends

on the nature of the main verb of the action (line 7).

The creation of Data Objects is only performed when the user selected the option

“Create Data Objects”. The creation itself analyses the existing BPMN model. For

each task within the model a set of data object candidates is determined based on the

underlying Action, as explained in algorithm 26. For each pair of adjacent nodes those

sets are then compared and if both contain the same element a data object which passes

from the first action to the second one is created. If a task does not have any data objects

candidates with its neighbors in common, data objects which are only associated to this

- 96 -

3 TRANSFORMATION APPROACH

Algorithm 26 Get Data Object Candidates

Require: SpecifiedElement object

1: Set<String> result ← new Set<String>

2: if object instanceof Action then

3: Action action ← (Action)object

4: result ∪ getDataObjectCandidates(action.getActor())

5: result ∪ getDataObjectCandidates(action.getObject())

6: result ∪ getDataObjectCandidates(action.getXComp())

7: else if object instanceof Resource ∨ (object instanceof Actor ∧ ((Actor)object).isUnreal()) then

8: if object.needsResolve() then

9: object ← object.getReference()

10: end if

11: if WordNet.canBeDataObject(object) then

12: result ∪ getName(object)

13: end if

14: end if

15: for ∀ Specifier specifier ∈ object.getSpecifiers() do

16: result ∪ getDataObjectCandidates(specifier.getObject())

17: end for

18: return result

node are created. The Determination of data object candidates is explained in algorithm

26. It first created an empty set for storing the result (line 1). The type of the incoming

element is then checked (line 2). If it is an Action the method will be called recursively

by obtaining all data object candidates from the Actor, Extracted Object, and XComp-

Action if they are available. If the incoming element is a resource or an “unreal”-Actor

(line 7) it is checked using WordNet (line 11). This check examines the hypernym tree of

the main noun of that object. If this hypernym tree contains an element of a list called

Data Object Determiners (see Appendix C), the check was successful and the object

will be considered as a possible data object. Furthermore, all Specifiers of the incoming

element are checked as well independently of its type (line 15-17).

- 97 -

3 TRANSFORMATION APPROACH

As the elements of the generated model do not contain any position information yet,

our generation procedure concludes with an automated layout algorithm. The layouting

of BPMN diagrams presents an interesting research problem in itself. We based our algo-

rithm on a simple grid layout approach [56]. To improve the layouting results we enhanced

it with standard layout graph layouting algorithms as Sugiyama’s layout algorithm [114]

or principles of the topology-shape-metric approach [30], which were successfully applied

to UML class diagrams [29]. A detailed description of the implementation is omitted as

it is not the main point of the research presented in this thesis.

3.6. Lane Split-off Procedure

According to the BPMN 2.0 specification [87, page 114] a “Pool represents a Par-

ticipant in a Collaboration or a Choreography” and a “Participant can be a specific

PartnerEntity (e.g., a company) or can be a more general PartnerRole (e.g., a buyer,

seller, or manufacturer)”. Therefore, different companies or general PartnerRoles should

be depicted by seperate Pools. But, so far all actors that we encountered were represented

by a Lane within a single Pool. We did this as it is not easily inferable whether an actor

represents a separate company or PartnerRole or if he/she is just a part of a modeled

company. Furthermore, a modeler can decide to explicitly model different entities with

different pools, although they represent parts of the same company (see for example B.78

or B.80). This discrepancy is known and partial empirical support was provided in [103]

that users might have difficulties to decide which of the two modeling constructs to use.

Therefore, we decide to generate each actor as a Lane initially and provide the user with

a refactoring mechanism which splits off a lane and converts it into a separate Pool. This

post-processing mechanism is explained in detail in this subsection and some examples

will be provided.

3.6.1. SequenceFlow Transformation

The first step of the Lane split-off mechanism is the creation of a new Pool and the

identification of the edges of the model which have to be transformed (algorithm 27). A

- 98 -

3 TRANSFORMATION APPROACH

Algorithm 27 Lane Split-off Mechanism

Require: ProcessModel model, Lane lane, Map<Node,Lane> communicationLinks

1: Set containedNodes ← lane.getContainedNodes()

2: Pool newPool ← new Pool(lane)

3: model.Nodes ∪ newPool

4: for ∀ SequenceFlow sqf ∈ model.getEdges() do

5: if sqf.getSource() ∈ containedNodes ⊕ sqf.getTarget() ∈ containedNodes then

6: transformToMessageFlow(model,sqf)

7: end if

8: end for

9: if Options.getBuildCommunicationLinks() = true then

10: for ∀ Node n ∈ communicationLinks.keySet() do

11: if n ∈ containedNodes then

12: buildExtraCommunicationLink(model,n,communicationLinks.getValue(n))

13: end if

14: end for

15: end if

16: layout(model)

new Pool is created in line 2, which takes all properties, e.g. the name, size, and contained

nodes, from the Lane the user selected. We then check all Sequence Flows. If it connects

an element which is inside of our selected Lane with an element outside of the lane or

vice versa, it has to be transformed into a Message Flow (algorithm 28 called in line 6).

This check can be performed elegantly by logically connecting the containment checks

with an exclusive OR (line 5). Lastly, we call algorithm 29 in line 12, whenever the nodes

of the lane the user selected was marked as containing a message interaction and the

corresponding options were set. The last step is to apply the automated layout algorithm

as explained in section 3.5 to visualize the changes in the process model.

Algorithm 28 is responsible for replacing the former Sequence Flow with an actual

Message Flow. In order to transform the Sequence Flow without creating an invalid

model, two things have to be considered: first, the usage of Start and End Events and,

- 99 -

3 TRANSFORMATION APPROACH

second, keeping all nodes of the process within a Pool connected. To accomplish that

we determine where the flow will return to our pool by following the successors of the

target of the Sequence Flow. A simple breadth-first search is used to find all nodes which

return to the lane of the source of the Sequence Flow again (line 1). Similarly, we can

determine a predecessor within the same lane by following the predecessors of the target

or the Sequence Flow. Afterward, we can decide whether we have to create a Message

Start Event or if it is possible to simply set the type of the Task under investigation to

either “Send” or “Receive” (line 5 and 12). An explicit Message Event has to be created

if:

• the user set the corresponding option to always create events,

• the source of the original Sequence Flow is not a Task (e.g. a Gateway),

• the source of the original Sequence Flow is a Task, but a type was assigned already,

or

• no successor/predecessor within the same lane was found, which means the node

will become the starting/end point for the process within that pool.

Figure 16 demonstrates the result of the transformation of Sequence Flows. When

starting the transformation procedure from the model depicted on the left of figure 16

three Sequence Flows are selected for the transformation (from A to the Gateway, from B

to D, and from C to E). For the first Sequence Flow the successors within the same Lane

are D and E. For the Gateway no predecessor in the same Lane can be found, therefore

predecessor ← ε. As a result A can simply be transformed into a Task of type “Send”,

while a Message Start Event has to be created for the Gateway. Moreover a new Gateway

is created after Task A and is connected to its successors (D and E). If this connection

was not established no relation between A, D, and E would be visible when collapsing the

upper Pool. By building those new connections the validity of the model can be preserved.

For the other to Task the transformation works likewise. For B no successor can be found,

- 100 -

3 TRANSFORMATION APPROACH

Algorithm 28 Transformation To Message Flow
Depending on the outcome of the evaluation a Start/End Event is created or the corresponding type of

the Task is set (lines 6, 9, 13, and 16). To ensure that the all nodes are still connected new Sequence

Flows are then added (lines 21-30) either from the newly created Message Event or the Task node to its

successors within the same lane. If there is more then one successor, a gateway is build to ensure that

all nodes remain connected (lines 23-29).

Require: ProcessModel model, SequenceFlow sqf

1: Set successors ← findSuccessors(model.getClusterForNode(sqf.getSource()),sqf.getTarget())

2: Node predecessor ← findPredecessor(model.getClusterForNode(sqf.getSource()),sqf.getSource())

3: Node start ← ε

4: Node end ← ε

5: if needToCreateEvent(sqf.getSource(),successors) then

6: Node startEvent ← new MessageSendStartEvent(sqf.getSource())

7: start ← startEvent

8: else

9: setSendStereotype(sqf.getSource())

10: start ← sqf.getSource()

11: end if

12: if needToCreateEvent(sqf.getTarget(),predecessor) then

13: Node endEvent ← new MessageReceiveEvent(sqf.getTarget())

14: end ← endEvent

15: else

16: setReceiveStereotype(sqf.getTarget())

17: end ← sqf.getTarget()

18: end if

19: model.getEdges() \ sqf

20: model.getEdges() ∪ new MessageFlow(start,end)

21: if |successors| = 1 then

22: model.getEdges() ∪ new SequenceFlow(start,successors.get(0))

23: else if |successors| ≥ 1 then

24: Node gateway ← new Gateway()

25: model.getNodes() ∪ gateway

26: model.getEdges() ∪ new SequenceFlow(start,gateway)

27: for ∀ Node n ∈ successors do

28: model.getEdges() ∪ new SequenceFlow(gateway,n)

29: end for

30: end if

- 101 -

3 TRANSFORMATION APPROACH

Figure 16: Example model before (left) and after (right) splitting off Lane2 - after the

transformation the communication is realized entirely via Message Flows.

but a predecessor of D, namely Task A, is found within Lane 2. Therefore, Task B has to

be followed by a Message End Event, while for D it is enough to set the correct type. If

the user had selected the option to always create Message Event, the type of the Tasks A,

D, and E would be unchanged, but instead they would be followed/preceded by Message

Start/End Events.

3.6.2. Building Semantic Communication Links

Splitting off a Lane also gives the opportunity to make communication, which was

detected during the semantic analysis (section 3.3.3), explicit. Beforehand, this was not

possible as the BPMN specification provides no means to visualize the exchange of in-

formation between two lanes, without creating a new Task. The technique which was

used to create these extra communications is described in algorithm 29. The input of this

algorithm is the node for which communication was detected and the Lane representing

the target or source of that communication. First a predecessor of the given Node within

the Lane with which it seeks to communicate is searched using the method we already

employed in algorithm 28. If this predecessor Node is an End Event, it is refactored into

an intermediate event, so we can continue the flow from that position (line 3). The next

step assumes that a mapping called NodeCache is globally available. It simply maps all

- 102 -

3 TRANSFORMATION APPROACH

Figure 17: Example model which shows how an extra communication link is created

between a Task and a Lane.

newly created Message Intermediate Events to their respective predecessor so it can be

reused if this predecessor is to be used again in another iteration within algorithm 27.

Otherwise, a new Message Intermediate Event has to be created (lines 8-20) and is placed

in between the node which we called “predecessor” and its successors.

The example shown in figure 17 shows the effect of the application of this algorithm.

Because a semantic communication relationship was detected between the Task “Send

’x’ to Lane2” and the Participant which we named “Lane2”, it is possible to alter the

model and add an Intermediate Message Receive Event in Lane2, right after its Message

End Event. Thereby, we enriched the Process Model by explicitly visualizing the com-

munication relationships between several Pools. Furthermore, the Message Intermediate

Event which was created in “Lane2” can be used as a starting point to further specify

the behavior of that participant. The drawbacks of the application of this mechanism

are that several edges are added to the diagram and readability could suffer. However,

as we provided the user with the option to disable the creation of those extra links (see

algorithm 27), these drawbacks are not severe.

- 103 -

3 TRANSFORMATION APPROACH

Algorithm 29 Build Extra Communication Link

Require: ProcessModel model, Node node, Lane lane

1: Node predecessor ← findPredecessor(lane,node)

2: if predecessor instanceof EndEvent then

3: convertToIntermediateEvent(predecessor)

4: end if

5: if predecessor ∈ NodeCache then

6: Node messageEvent ← NodeCache.getValue(predecessor)

7: else

8: Node messageEvent ← new IntermediateMessageEvent()

9: model.getNodes() ∪ messageEvent

10: model.getEdges() ∪ new SequenceFlow(predecessor,messageEvent)

11: NodeCache ∪ (predecessor,messageEvent)

12: successorEdges ← {a:a ∈ model.getEdges(), a.getSource() = predecessor}

13: for ∀ SequenceFlow sqf ∈ successorEdges do

14: sqf.setSource(messageEvent)

15: end for

16: if |successorEdges| = 0 then

17: Node endEvent ← new EndEvent()

18: model.getNodes() ∪ endEvent

19: model.getEdges() ∪ new SequenceFlow(messageEvent,endEvent)

20: end if

21: end if

22: model.getEdges() ∪ new MessageFlow(node,messageEvent)

- 104 -

4 EVALUATION OF GENERATED PROCESS MODELS

4. Evaluation of Generated Process Models

In order to evaluate the quality of the transformation procedure presented in section

3, a test data set was collected. In the next subsections we will describe the composi-

tion and contents of this test data set in more detail. Afterward, the methodology we

followed in order to compare the models which were generated by our prototype to the

manually modeled ones are explained in section 4.2. The results of the application of this

methodology are then illustrated in section 4.3 and discussed in section 4.4.

4.1. Test Data Set

An element of this test data set consists of a textual process description and a BPMN

process model which was created by a human modeler from the text. In total we collected

47 of those text-model pairs. We did not restrict the collection to a specific domain or

type. Thus, different sources were incorporated into our test data set. We classified each

element into one of the four categories:

• Academic - elements provided by universities or university employees

• Industry - elements provided by corporations or their employees

• Textbook - elements taken from modeling textbooks

• Public Sector - elements taken from national public sector institutions

The distribution of the test data according to these categories is shown in 18. While

academic models account for the largest share, all other categories are also adequately

represented.

The academic elements of the test data set are a courtesy of the Humboldt Universität

zu Berlin, the Technische Universität Berlin, the Queensland University of Technology,

and the Technische Universiteit Eindhoven. The Humboldt Universität and the Queens-

land University of Technology provided us with four and eight exercises and solutions

- 105 -

4 EVALUATION OF GENERATED PROCESS MODELS

Type Amount Frequency

Academic 15 31.91%

Industry 9 19.15%

Textbook 9 19.15%

Public Sector 14 29.79%

Total 47 100.00%

source # of models type

HU Berlin 5 aca

TU Berlin 2 aca

QUT 8 aca

BPM academics 1 aca

vendor tutorials 4 ind

inubit 4 ind

BPM practicioners 1 ind

Book - BPMN practical handbook 3 txb

Book - BPMN modeling and reference guide 6 txb

Bundesnetzagentur - Messwesen 14 pub

SUM 48

number of models by type # of models % of total

Academic 16 33,33%

Industry 9 18,75%

Textbook 9 18,75%

Public Sector 14 29,17%

Academic
Industry
Textbook
Public Sector

Figure 18: Test-data by source type.

which were used in their BPMN modeling tutorials. The models of the other two institu-

tions were used in research projects and are discussed in [53, 52, 104]. This is also reflected

by the complexity of the models as the models which were used within research projects

represent the largest ones in the whole data set regarding the number of sentences and

words. Thus, in total we were able to collect 15 elements for the test data set from these

academic institutions.

The industry models are taken from two main sources. First, we gathered four models

from the websites or online help documentation of three BPM tool vendors, namely Active

VOS, Oracle, and BizAgi. All provide examples of textual descriptions and a modeling

solution implemented in their tool. Another four models, which are usually used for client

and employee training, were provided by the inubit AG. Those models were provided in

German and translated in order to allow an evaluation. Furthermore, Frank Puhlmann

supplied us with an additional model. Thus, a total of 9 models from vendors were

collected.

We also consulted two standard textbooks and BPMN modeling, the BPMN Modeling

and Reference Guide [136] and the Praxishandbuch BPMN [36]. While the first one

provided five modeling exercises and solutions we found three suitable passages within

the later one. These three models were also translated from German to English in order

- 106 -

4 EVALUATION OF GENERATED PROCESS MODELS

to allow an evaluation.

Lastly, we found the definition of switch processes of the Federal Network Agency of

Germany, contained in attachment one of enactment BK6-09-034 / BK7-09-00122, helpful.

Therein the textual descriptions were not free text, but semi-structured in a tabular form

and the corresponding model was provided as a UML sequence diagram. In order to use

this source, both — the text and the sequence diagrams — were transformed as described

in the next section.

Unfortunately, the works mentioned in section 2.3 do not provide test data elements

or the process descriptions are not available in English. Therefore, we were not able to

compare our results to those of other research groups. However, all models including

their textual description, the manually created BPMN diagram, and the one generated

by our transformation approach are fully listed in the Appendix. This will enable other

researchers to create improved transformation algorithms and to compare their results to

ours easily.

The different descriptions and models cover various domains, including e.g. insur-

ance, medical, banking, marketing, sales, and electric power supply. That we are able to

transform texts of all those domains highlights the domain-independence of the proposed

technique.

In table 6 we listed and compared several characteristics of the texts and models,

which comprise our data set. Each line contains the average value taken for all models

within that part of the collection.

• An ID which was assigned uniquely for each part of the test data set.

• The number of contained models (M).

• Number of sentences (n).

22http://www.bundesnetzagentur.de/cae/servlet/contentblob/159722/publicationFile/

8504/WiM_Anlage_1_Wechselprozesse.pdf; last accessed 2010-11-05

- 107 -

http://www.bundesnetzagentur.de/cae/servlet/contentblob/159722/publicationFile/8504/WiM_Anlage_1_Wechselprozesse.pdf
http://www.bundesnetzagentur.de/cae/servlet/contentblob/159722/publicationFile/8504/WiM_Anlage_1_Wechselprozesse.pdf

4 EVALUATION OF GENERATED PROCESS MODELS

ID Source M Type n ∅l |N | |G| |E|

1 HU Berlin 4 academic 10.00 18.14 25.75 6.00 24.50

2 TU Berlin [53, 52] 2 academic 34.00 21.17 71.00 9.50 79.50

3 QUT 8 academic 6.13 18.26 14.88 1.88 16.00

4 TU Eindhoven [104] 1 academic 40.00 18.45 38.00 8.00 37.00

5 Vendor Tutorials 4 industry 9.00 18.20 14.00 2.25 11.50

6 inubit AG 4 industry 11.50 18.38 24.00 4.25 21.25

7 BPM Practicioners 1 industry 7.00 9.71 13.00 1.00 9.00

8 BPMN Prac. Handbook [36] 3 textbook 4.67 17.03 13.00 1.33 14.67

9 BPMN M&R Guide [136] 6 textbook 7.00 20.77 23.83 3.00 23.67

10 FNA - Metrology Processes 14 public sector 6.43 13.95 24.43 3.14 25.93

Total 47 9.19 17.16 23.21 3.38 23.64

Table 6: Characteristics of the test data set by source (average values for all contained

models).

• Average length of the sentences (∅l).

• Size of the models regarding nodes (|N |).

• The number of Gateways within the model (|G|).

• Size of the models regarding edges (|E|).

While most of the models are short with 6 to 11 sentences, the models provided by the

TU Berlin and TU Eindhoven are comparably large with 34 and 40 sentences, respectively.

The average length of the sentences ranges from 9 to 21 words. Therefore, the sentences

within our test data set are a bit shorter compared to the sentence lengths of Wall Street

Journal articles, which can be found, e.g., in[10], or other scientific corpora [131] where

the average sentence length ranges from 22 to 28 words. This shows that our test data is

not overly structured, but conforms to a natural writing style of humans.

- 108 -

4 EVALUATION OF GENERATED PROCESS MODELS

According to [79] the size of a model directly influences the probability of it containing

errors and models which are larger than 50 elements should be divided. Only the models

of set two, of the TU Berlin, violate this recommendation and can be considered large.

The following sections will illustrate how these test data elements were prepared, mod-

els were automatically generated and compared to the given models created by humans.

4.2. Evaluation Methodology

In order to avoid unintended effects while parsing, minor corrections were applied to

the texts. Additionally, some of them still had to be translated as explained in section

4.2.1. Accordingly, some of the models within our test data set had to be converted from

other process modeling languages to BPMN in order to compare them. This is illustrated

in section 4.2.2. The last section describes the metrics which we employed to compare

the generated and manually created models to each other.

4.2.1. Text Preparation

To avoid any form of experimenter bias only minor corrections were performed on

the test data. For example, uncommon punctuation like “–” were replaced with real

parenthesis as otherwise the Stanford Parser failed to correctly classify these elements. We

also observed that commas were replaced by hyphens “[...] to re-prioritize these measures

- otherwise the process continues”. We replaced these hyphens with commas, which also

improved the accuracy of the parser. Additionally, run-on sentences and comma splices

were corrected.

Six of the texts we collected were written in German. In order to evaluate them, we

had to translate them to English. Therefore, an initial machine translation using Google

Translate23 was applied and only grammatical mistakes were corrected.

An exceptional position is taken by the model of the federal network agency of Ger-

many, as the textual description were presented in a semi-structured textual form and

23http://translate.google.com; last accessed 2010-10-28

- 109 -

http://translate.google.com

4 EVALUATION OF GENERATED PROCESS MODELS

the corresponding models were UML sequence diagrams [88]. Nevertheless, we wanted

to include these models as they represent an instance of an economically used process

specification. Furthermore, an extension of the transformation procedure presented in

this thesis to process semi-structured texts is possible. It could then represent another

possibility to enter data into the World Model as mentioned in section 3.1.5. We did not

implement this functionality into our prototype as it is not within the scope of this the-

sis. So, in order to apply our transformation approach, free texts were created. This was

achieved by combining the elements of three columns “sender”, “receiver”, and “message”

given in the original document. The message was always represented as a gerund or nom-

inalization. In order to create a grammatically correct sentence this nominalization was

turned into a verb. For example the values: “GO”, “MPON”, and “Rejection of Appli-

cation” were transformed to “The GO rejects the application of the MPON”. Sometimes

alternative paths were described by labeling a row using lower case characters. In this

case the two sentences were simply joined using “or”. Another complication was that in

an additional remarks column jumps or flow conditions were given, e.g. “Continue with

step 5”. If we encountered such a condition we added the current sentence headed by an

if to the mentioned step. Thus, taking the examples we would add “If the GO rejects the

application of the MPON, [..]” in front of the sentence which is generated out of step 5.

4.2.2. Model Preparation

As most of the models were available as pictures only, we had to remodel them in order

to be able to apply an automatic comparison procedure. Some of the models used implicit

splits and joins. While remodeling these splits and joins were replaced with explicit

gateways. This does not change the semantics of a model, but enables a fair comparison

to the generated models, as we did not consider the possibility of implicit splits and joins

in our transformation procedure. Within our test data set, some models were not available

as BPMN diagrams. Specifically, the model provided by the TU Eindhoven was modeled

as a workflow net and the 14 models of the Federal Network Agency were supplied as

UML sequence diagrams.

- 110 -

4 EVALUATION OF GENERATED PROCESS MODELS

We asked a final year master student to convert the workflow net without adding or

removing any information. A one-to-one transformation was possible with the help of

the accompanying text. To transform the UML sequence diagrams to BPMN diagrams,

we manually applied a simple transformation technique. First, a pool is created for each

lifeline of the sequence diagram. If a lifeline only receives message and never acts as a

sender, a Black Box Pool is created. Otherwise, we specify the behavior of the participant

with an open horizontal Pool. For each message within the diagram, a task is created

with the name of the message as its caption. If the receiver of the message is different

from its sender, the task is turned into a send activity and a message flow between both

participants is created in the BPMN diagram. When the receiver of a message is the

sender of a later message, the appropriate Message- End/Start or Intermediate Events

are created. To ensure the structural validity of the generated model, the same message

event building constraints which were already applied during the lane-split-off technique

described in 3.6 were applied. As not all decisions were explicitly modeled in the sequence

diagrams, the textual information had to be consulted. Whenever, the sequence flow was

not strictly sequential a column containing remarks contained a phrase like “continue with

step x”. Thus, the message or sequence flow was redirected accordingly for each of those

remarks. Additionally, to ensure a lossless transformation of the sequence diagrams, an

Intermediate Message Receive Event is added for each received message even if the reaction

of the receiver of that message was not specified any further. This simple transformation

seemed appropriate given the quality of the provided material.

According to the UML 2.3 superstructure specification, a sequence diagram either

only describes a single trace or has to use a CombinedFragment [88, section 14.3.3,p. 483]

to depict alternative paths. Therefore the provided models are not completely formally

correct. Nevertheless, the results of the transformation are satisfying. All transformations

were performed manually and both the original sequence diagram and the BPMN diagram

are included in Appendix B.10 for verification.

- 111 -

4 EVALUATION OF GENERATED PROCESS MODELS

4.2.3. Evaluation Metrics

Following the text and model metrics mentioned in section 4.1, we measured the size

of the generated model with respect to the number of nodes (N), the number of gateways

(G), the number of edges (E), and the relative in- or decrease compared to the manually

created model. Additionally, we analyzed the text for:

• Number of sentences (n)

• Average length of the sentences (∅l)

• Number of sentences describing the process on a meta level (m)

• Number of identified relative references (r)

• Number of textual links links and jumps (j)

• Size of the models regarding nodes (N)

• Size of the models regarding edges (E)

• Similarity of the models (sim)

To measure the similarity (sim) of the manually and automatically created models

we employ the metric of Graph Edit Distance. To compute the Graph Edit Distance,

the graph representation of the process models is analyzed. The labels, attributes, the

structural context, and behavior (see [128]) are compared [27]. Afterward a greedy graph

matching heuristic ([26]) is employed to create pairs of nodes and edges. We decided to use

the greedy heuristic as it was shown to have the highest performance without considerable

accuracy trade-offs. This procedure has much in common with existing research on graph

similarity [12, 17, 43, 127]. After the mapping is created a Graph Edit Distance value can

be calculated given:

• Ni - set of nodes in model i

- 112 -

4 EVALUATION OF GENERATED PROCESS MODELS

• Ei - set of edges of model i

• Ni - the set of nodes in model i which were not mapped

• Ei - the set of edges in model i which were not mapped

• M - The mapping between the nodes of model 1 and 2 with a similarity (sim)

assigned to each pair

An overall indicator for the remaining difference between the models can be calculated

as:

m∗ =

∑|M |

i=1 1− sim(Mi) if|M | > 0

1.0 otherwise

(1)

As a last step weights for the importance of the differences (wmap), the unmapped Nodes

(wuN), and the unmapped Edges (wuE) have to be defined. For our experiments we gave

the difference a slightly higher importance and assigned wmap = 0.4 and wuN = wuE = 0.3.

The overall graph edit distance then becomes:

sim(m1,m2) = 1− (wmap ∗
m∗

|M |
+ wuN ∗

|N1|+ |N2|
|N1|+ |N2|

+ wuE ∗
|E1|+ |E2|
|E1|+ |E2|

) (2)

This value lies between 0 and 1. For the case that all nodes could be mapped with a

similarity of 1.0 the terms will also become 1.0. If the mapping is not optimal, because

the similarity of the nodes is less then 1.0 or if some nods or edges could not be mapped

the term in parenthesis will grow steadily and the similarity decreases. If no nodes were

mapped at all or we compare something to an empty model the similarity will be 0. For

convenience the overall similarity will be presented as a percentage.

Most of the works dealing with the automatic creation of model from text do not

conduct an evaluation of the quality of their approach at all or have a different focus. In

[117] the standard information retrieval metrics precision and recall are employed in order

evaluate the analysis engine. The experimenters marked an action as correctly identified

themselves, where it is unclear whether the generated models are compared to manually

- 113 -

4 EVALUATION OF GENERATED PROCESS MODELS

ID m r j |Ngen| ∆|Ngen| |Ggen| ∆|Ggen| |Egen| ∆|Egen| sim

1 3 5,25 0 30,25 14,88% 5,50 -9,09% 28,75 14,78% 77,94%

2 7,50 7,50 2,50 91,50 22,40% 13,00 26,92% 94,00 15,43% 70,79%

3 0,50 1,38 0,00 20,25 26,54% 2,63 28,57% 20,13 20,50% 78,78%

4 8,00 4,00 1,00 63,00 39,68% 1,00 -700,00% 52,00 28,85% 41,54%

5 1,25 1,75 1,75 24,75 43,43% 4,25 47,06% 23,00 50,00% 63,63%

6 2,25 8,00 0,50 29,75 19,33% 2,75 -54,55% 25,25 15,84% 60,93%

7 0,00 5,00 0,00 14,00 7,14% 2,00 50,00% 11,00 18,18% 74,35%

8 0,00 5,00 0,33 13,33 2,50% 1,00 -33,33% 10,33 -41,94% 77,49%

9 0,83 1,50 0,33 22,33 -6,72% 3,33 10,00% 20,83 -13,60% 71,77%

10 0,00 0,21 0,36 25,29 3,39% 3,71 15,38% 27,29 4,97% 89,81%

Total 1,23 2,60 0,49 27,43 15,36% 3,72 9,14% 26,77 11,69% 76,98%

Table 7: Result of the application of the evaluation metrics to the test data set.

created ones or if the experimenter judged the importance of an action. This procedure is

highly threatened by internal validity [109] and hard to reproduce, especially as the texts

and models were not provided. Moreover, the focus of the study was different as use-cases

which are very structured were analyzed and the goal was not to create an overarching

process model, but several sub processes which are combined in a def-use graph [118].

In contrast to that, the evaluation of the similarity is based on an automatic mapping,

which is not influenced by the experimenter and uses an independent human judgment

as a benchmark. Furthermore, the similarity of two nodes is factored into the our metric.

Thus even when all nodes were successfully mapped, the similarity is not necessarily 100%

as, e.g., differences in the labels or flows are taken into account. A simple precision/recall

metric would produce 100% in such a case. Therefore, we consider the similarity metric

as more appropriate.

- 114 -

4 EVALUATION OF GENERATED PROCESS MODELS

4.3. Test Results

After having defined the metrics we want to employ they are applied to each element

in the test data set. The options regarding the creation of Black Box Pools or data

objects were set appropriately to the desired outcome, which was given by the manually

created process models. After the models were generated, the lane split-off procedure as

described in section 3.6 was applied to those lanes which are also shown as individual

pools in the manually created models. Finally the similarity metric as defined in section

4.2.3 was used to compare the generated model to the desired output. The results of this

application to the models of each source are shown in table 7. Columns 2-4 show that

the concepts of meta sentences, relative references, and textual jumps are important for

almost all elements within our test data. The following six columns show the average

values of nodes, gateways, and edges within the generated models. We can see that the

transformation procedure tends to produce models which are in average 9-15% larger in

size then what a human would create. On the one hand, this behavior can be explained

by noise and meta sentences within the text which were not filtered appropriately (see

Appendix B). On the other hand, humans tend to abstract during the process of modeling.

Therefore, we can often find details which are included in the text also in the generated

model. The results are highly encouraging as in average our approach is able to recreate

76% of the model. On a model level up to 96% of similarity can be reached, which

means that only minor corrections by a human modeler are required, presuming that the

manually created models are the desired outcome of the modeling process. The interested

reader will find a full list containing all metrics for each individual text and model in

Appendix A.

Additionally, to determine whether there are dependencies between the textual fea-

tures and the similarity of the generated models, a linear regression was conducted [28].

The results are shown in table 8. This table shows that all analyzed features have a neg-

ative impact on the generation quality. Thus an increase of the number of sentences etc.

- 115 -

4 EVALUATION OF GENERATED PROCESS MODELS

Feature β0 β1 R2

Number of meta sentences 0,8821 -0,0318 0,5428

Number of relative references 0,7793 -0,0131 0,0926

Number of textual links 0,8295 -0,0223 0,2664

Number of Sentences 0,8898 -0,0316 0,5350

Number of avg. Sentence length 0,8317 -0,0227 0,2753

Table 8: Results of a linear regression on 5 textual features regarding similarity.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

1 2 3 4 5 6 7 8 9 10

Number of meta
sentences

Similarity

Linear (Similarity)

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

1 2 3 4 5 6 7 8 9 10

Number of relative
references

Similarity

Linear (Similarity)

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,00

0,50

1,00

1,50

2,00

2,50

3,00

1 2 3 4 5 6 7 8 9 10

Number of textual links

Similarity

Linear (Similarity)

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

1 2 3 4 5 6 7 8 9 10

Number of sentences

Similarity

Linear (Similarity)

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,00

5,00

10,00

15,00

20,00

25,00

1 2 3 4 5 6 7 8 9 10

Avg. Sentence length

Similarity

Linear (Similarity)

Figure 19: Graphical representation of the conducted linear regressions.

reduces the similarity. Most interestingly the length of the text and the number of meta

sentences have the strongest impact on the similarity. However, due to the composition

of the test data set, the number of meta sentences is heavily dependent on the length of

the text with a β1 of 0.88. Therefore, we can conclude that the existence of meta sen-

tences and noise in general is the most important factor to consider for the transformation

approach.

- 116 -

4 EVALUATION OF GENERATED PROCESS MODELS

4.4. Discussion

Our evaluation has shown that in average a similarity of 76.98% was achieved. These

results are highly encouraging as it means that a modeler has to revise about 23.02% of

a model to obtain the desired representation. The process of model creation is, there-

fore, simplified to model correction. During the detailed analysis we determined different

sources of failure, resulting in a low similarity for certain models. These are noise, dif-

ferent levels of abstractions, and processing problems within our system. With noise we

mean sentences or phrases which are not part of a process description, but rather detail

the used data objects or add information which lie outside of the process. Some examples

are:

• “This object consists of data elements such as the customers name and address and

the assigned power gauge.”

• “An intaker keeps this registration with him at times when visiting the patient and

in his close proximity when he is at the office.”

• “Service Management deals on a first level with violations of quality in services that

are provided to customers.”

• “Thus, in addition to handling the sale of a company’s issue, the underwriters in

effect give their seal of approval to it.”

While this information can be important for the understanding of a process description

or in the context of a requirements specification, they lead to unwanted Activities within

the generated model, reducing the similarity. To tackle this problem further analyses and

filtering mechanisms, possibly using probabilistic measures are required.

Low similarity sources were also achieved whenever the manually created model de-

scribed the process on a different level of granularity. As our transformation procedure

sticks to the structure and usage of words within the text the generated model will be as

- 117 -

4 EVALUATION OF GENERATED PROCESS MODELS

detailed as the text itself. To solve this problem, we could integrate automated abstraction

procedures [95, 107] into our prototype.

Lastly, the employed natural language processing components failed during the analy-

sis. The Stanford Parser, e.g., failed at correctly classifying verbs. We depict two instances

of these failure in figure 20. In the example to the left the parser classified “the second

Figure 20: Examples of failed syntax parses.

activity checks and configures” as a noun phrase. Due to that the verbs “check” and “con-

figure” cannot be extracted into Actions during our transformation and this information

gets lost. In the second example the actual verb “fix” was classified as a noun and the

“fault” was identified as verb. This leads to the creation of an activity “fail a measuring

device” conducted by the Actor “the MPO fixes”24. While such failures are expected as

the parser is based on a probabilistic model, we could improve the transformation success

either by, e.g., combining the input of several parser or improving the parsing accuracy, or

by training the parser on annotated data specialized on process model descriptions. But

also the other components caused mistakes in the transformation. Some important verb

in the area of business process management were simply not contained in FrameNet, as

“report”. Therefore, no message flow was created between report activities and a Black

Box Pool, as no recipient was identified. We expect this problem to be solved in the future

24MPO - Measuring Point Operator.

- 118 -

4 EVALUATION OF GENERATED PROCESS MODELS

as the annotation process proceeds and the FrameNet database grows. With WordNet,

the opposite problem was observed. WordNet contains many very specialized sentences

which are uncommon in process descriptions. An example is the word “house” in the

sense of an aristocratic family line (“the House of York”), which correctly leads to “social

group”. Therefore, in the sentence “The customer wants to buy a house”, house is iden-

tified as an Actor and not as a Resource, which leads to problems during the anaphora

resolution stage. Similar problems were observed with times like “2:00 pm”, where pm

as an abbreviation for “Prime Minister” is classified as an Actor. To solve this problem

a reliable sense disambiguation has to be conducted. Nevertheless, overall good results

were achieved by using WordNet as a general purpose Ontology.

- 119 -

5 CONCLUSION

5. Conclusion

In this thesis we investigated possibilities to automatically transform textual process

specifications into a formal process model. To achieve this goal we combined research in

the areas of NLP and BPM. Through the automated generation of process models from

textual description, we are able to increase the efficiency of business analysts and leverage

saving potentials. Furthermore, we enable domain experts to create formal process models

without the efforts of learning a modeling language. We believe that our results will

contribute to this stream of research. The contributions of this thesis, therefore, can be

summarized as:

• We collected and analyzed recent literature on the generation of process model from

text.

• Thereof we extracted and categorized the dominant issues.

• We provided a solution strategy and transformation approach for the automated

generation of business process model from unrestricted natural language text.

• We demonstrated the capabilities of our procedure with our research prototype.

• We gathered a test data set containing 47 model-text-pairs, which cover various

domains and styles of writing.

• And, we introduced a novel evaluation metric for the evaluation of such transfor-

mation systems and applied it to our approach.

Throughout our analysis we highlighted the important issues for the construction of a

system capable of processing textual process specifications and identified the main areas

of improvement. Our evaluation shows that on average we are able to automatically

generate models which reach a similarity score of 76% compared to those created by

humans. Thus, we are confident that our approach simplifies the process of model creation

and simultaneously the effort required by a business analyst can be significantly reduced.

- 120 -

5 CONCLUSION

5.1. Limitations

Despite our encouraging results an evaluation solely based on an automatic similarity

metric is insufficient to prove its value. In order to evaluate the usefulness of our procedure,

an empirical user study has to be conducted. This is also the case as the similarity metric

based on the graph edit distance does not necessarily reflect the opinion of a human

modeler. While the structural and label similarity of our generated model is considered

high by our system and user might find little value in it. On the other hand, it is also

possible that, despite a low similarity, the generated model could have a higher utility than

those provided by a human modeler. As shown during our evaluation the transformation

approach tends to create more detailed models with a higher number of nodes and edges.

Exactly, these further details could be valuable for a user in order to understand the

modeled process. Thus, it is not clear in how far the similarity metric compares to the

understanding of a human, emphasizing the need for an empirical user study.

Another issue is that our test data set comprising 47 text-model is relatively small

according to the recommendations given in, e.g., [16]. Therefore, our test results are not

fully generalizable.

So far the system we constructed is able to read process descriptions consisting of full

sentences. Furthermore, we assumed the description to be sequential and to contain no

questions and little process-irrelevant information. Another prerequisite is that the text is

grammatically correct and constituent. Thus, the parsing of structured input, like tables

or texts making use of indentions, or texts which are of low quality is not possible at the

moment and presents opportunities for further research.

5.2. Further Research

While the evaluation conducted in this thesis evinced encouraging results different lines

of research could be pursued in order to enhance the quality or scope of our process model

generation procedure. As shown the occurrence of meta-sentences or noise in general

is one of the severest problems affecting the generation results. Therefore, we could

- 121 -

5 CONCLUSION

improve the quality of our results by adding further rules and heuristics to identify such

noise. Alternatively, the training of a statistical classifier as it was tried in [68] could be

worthwhile. Another major source of failures was the syntax parser we employed. Hence,

assessing the performance of other parser regarding our test data set or the training of a

statistical parser model specific for process descriptions might be valuable. An alternative

to traditional syntax parsers are semantic parser as the one presented in [115] which could

be investigated. Some errors were also attributed to the misclassification of Actors and

Objects using WordNet. The problem thereby is that WordNet covers a broad range of

language and, as we have not applied a disambiguation technique, had to check all senses

of a word. Thus, taking the textual context into account and applying a disambiguation

technique [137, 122], e.g. based on the similarity of concepts within WordNet [113],

presents an opportunity for improvement. Optionally, it is possible to exchange WordNet

as lexical component with a domain ontology. As shown in [71] it is not even necessary

to create this domain specific ontology manually, as, given a sufficiently large text corpus,

the important concepts and relations can be extracted automatically.

Instead of entirely relying on the given textual information, it is also imaginable to

complement the system with a domain expert. Missing information could then be re-

quested from the user in an interactive fashion an further relieve the business analyst

from interviewing tasks. However, this would require substantial semantic analysis and

reasoning capabilities. At the same time adding the possibility to analyze and process

larger amounts of textual information, e.g. from a CMS, and extending the generation

capabilities to include organizational charts and data models as outlined in figure 9, is

important in a practical context. This in turn will require methods from the area of

text mining and information retrieval to identify important passages and to perform a

thematic clustering of the acquired information [64].

Another line of research is creating a textual description out of a text document. As

shown in [117] this can be used to create a round-tripping mechanism. Thus an analyst

- 122 -

5 CONCLUSION

could either modify the textual process description or the BPMN model itself and both

are kept consistent.

Lastly, transferring the system to other languages is an important task. An integration

should be easily possible as little language specific components were utilized. The Stanford

Parser is as of today already trained on different corpora for German [100], Chinese [67],

and Arabic [44]. The SUMO projects which combines and links “WordNets” of different

languages (Chinese, Hindi, Tagalog, Czech, German, Italian, Korean, Romanian, Arabic)

[85] was created and a link to FrameNet has also been established [111]. An example

is the GermanNet Project which recreated the WordNet lexical database for German

[47]. Unfortunately, the Stanford Dependency representation is currently only available

for English and Chinese [13]. As the parsing of Chinese poses different challenges, e.g.

as words are usually not separated using whitespace, it was not within the scope of this

thesis, but presents an interested direction for further research.

- 123 -

REFERENCES

References

[1] Camille Ben Achour. Guiding scenario authoring. In 8th European-Japanese Con-

ference on Information Modelling and Knowledge Bases, pages 152–171. IOS Press,

1998.

[2] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval. Addison-

Wesley Reading, MA, 1999.

[3] C.F. Baker, C.J. Fillmore, and J.B. Lowe. The berkeley framenet project. In Pro-

ceedings of the 17th international conference on Computational linguistics, volume 1,

pages 86–90. Association for Computational Linguistics, 1998.

[4] J. Becker, M. Kugeler, and M. Rosemann. Process management: a guide for the

design of business processes. Springer Verlag, 2003.

[5] J. Becker, M. Rosemann, and C. Von Uthmann. Guidelines of business process

modeling. Business Process Management, 1806:241–262, 2000.

[6] R. Blumberg and S. Atre. The problem with unstructured data. DM Review, 13:42–

49, 2003.

[7] A. Bosca, F. Corno, G. Valetto, and R. Maglione. On-the-fly construction of web

services compositions from natural language requests. Journal of Software, 1(1):40,

2009.

[8] Richard A. Brealey, Stewart C. Myers, and Franklin Allen. Principles of Corporate

Finance. McGraw-Hill, 2007.

[9] E. Brill. A simple rule-based part of speech tagger. In Proceedings of the third

conference on applied natural language processing, pages 152–155. Association for

Computational Linguistics, 1992.

- 124 -

REFERENCES

[10] E. Brill. Automatic grammar induction and parsing free text: A transformation-

based approach. In Proceedings of the workshop on Human Language Technology,

pages 237–242. Association for Computational Linguistics, 1993.

[11] T. Briscoe, J. Carroll, and R. Watson. The second release of the RASP system. In

Proceedings of the COLING/ACL on Interactive presentation sessions, pages 77–80.

Association for Computational Linguistics, 2006.

[12] Horst Bunke and Kim Shearer. A graph distance metric based on the maximal

common subgraph. Pattern Recognition Letters, 19(3-4):255 – 259, 1998.

[13] P.C. Chang, H. Tseng, D. Jurafsky, and C.D. Manning. Discriminative reordering

with Chinese grammatical relations features. In Proceedings of the Third Workshop

on Syntax and Structure in Statistical Translation, pages 51–59. Association for

Computational Linguistics, 2009.

[14] E. Charniak. Statistical techniques for natural language parsing. AI magazine,

18(4):33, 1997.

[15] E. Charniak. A maximum-entropy-inspired parser. In Proceedings of the 1st North

American chapter of the Association for Computational Linguistics conference,

pages 132–139. Morgan Kaufmann Publishers Inc., 2000.

[16] A.L. Comrey and H.B. Lee. A first course in factor analysis. Lawrence Erlbaum,

1992.

[17] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism

algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26:1367–1372, 2004.

[18] M.A. Covington. A fundamental algorithm for dependency parsing. In Proceedings

of the 39th annual ACM southeast conference, pages 95–102. Citeseer, 2001.

- 125 -

REFERENCES

[19] M. Cremene, J.Y. Tigli, S. Lavirotte, F.C. Pop, M. Riveill, and G. Rey. Service

Composition based on Natural Language Requests. In 2009 IEEE International

Conference on Services Computing, pages 486–489. IEEE, 2009.

[20] R. Davis and E. Brab

”ander. ARIS design platform: getting started with BPM. Springer-Verlag New

York Inc, 2007.

[21] de AR Gonçalves, J.C. and Santoro, F.M. and Baião, F.A. Business Process Mining

from Group Stories. In Proceedings of the 2009 13th International Conference on

Computer Supported Cooperative Work in Design, pages 161–166, 2009.

[22] de AR Gonçalves, J.C. and Santoro, F.M. and Baião, F.A. A case study on designing

processes based on collaborative and mining approaches. In International Confer-

ence on Computer Supported Cooperative Work in Design (CSCWD), Shanghai,

China, 2010.

[23] M.C. De Marneffe, B. MacCartney, and C.D. Manning. Generating typed depen-

dency parses from phrase structure parses. In LREC 2006. Citeseer, 2006.

[24] M.C. de Marneffe and C.D. Manning. Stanford typed dependencies manual. Tech-

nical report, Stanford University, 2008.

[25] M.C. de Marneffe and C.D. Manning. The Stanford typed dependencies representa-

tion. In Coling 2008: Proceedings of the workshop on Cross-Framework and Cross-

Domain Parser Evaluation, pages 1–8. Association for Computational Linguistics,

2008.

[26] R. Dijkman, M. Dumas, L. Garcıa-Banuelos, and R. Käärik. Graph Matching

Algorithms for Business Process Model Similarity Search. In Proceedings of the 7th

International Conference on Business Process Management (BPM 2009), page 48.

Springer-Verlag New York Inc, 2009.

- 126 -

REFERENCES

[27] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, and J. Mendling. Similarity of

business process models: Metrics and evaluation. Information Systems, 36:498–516,

2010.

[28] N.R. Draper, H. Smith, and E. Pownell. Applied regression analysis, volume 706.

Wiley New York, 1998.

[29] H. Eichelberger and J.W. von Gudenberg. UML class diagrams - State of the

art in layout techniques. In nternational Workshop on Visualizing Software for

Understanding and Analysis, pages 30–34. Citeseer, 2003.

[30] M. Eiglsperger, M. Kaufmann, and M. Siebenhaller. A topology-shape-metrics ap-

proach for the automatic layout of UML class diagrams. In Proceedings of the 2003

ACM symposium on Software visualization, page 189. ACM, 2003.

[31] C.J. Fillmore. The case for case, 1967.

[32] C.J. Fillmore. Frame semantics. Cognitive linguistics: basic readings, 34:373–400,

2006.

[33] G. Fliedl, C. Kop, and H.C. Mayr. From textual scenarios to a conceptual schema.

Data & Knowledge Engineering, 55(1):20–37, 2005.

[34] G. Fliedl, C. Kop, H.C. Mayr, A. Salbrechter, J. Vöhringer, G. Weber, and C. Win-

kler. Deriving static and dynamic concepts from software requirements using so-

phisticated tagging. Data & Knowledge Engineering, 61(3):433–448, 2007.

[35] PJM Frederiks and T.P. Van der Weide. Information modeling: the process and the

required competencies of its participants. Data & Knowledge Engineering, 58(1):4–

20, 2006.

[36] Jakob Freund, Bernd Rcker, and Thomas Henninger. Praxishandbuch BPMN.

Hanser, 2010.

- 127 -

REFERENCES

[37] F. Friedrich. Measuring Semantic Label Quality Using WordNet. Nüttgens M, Rump

FJ, Mendling J, Gehrke N (Hrsg), 8:7–21, 2009.

[38] N. Ge, J. Hale, and E. Charniak. A statistical approach to anaphora resolution. In

Proceedings of the Sixth Workshop on Very Large Corpora, pages 161–170, 1998.

[39] Aditya Ghose, George Koliadis, and Arthur Chueng. Rapid business process dis-

covery (R-BPD). In ER’07: Proceedings of the 26th international conference on

Conceptual modeling, pages 391–406, Berlin, Heidelberg, 2007. Springer-Verlag.

[40] AK Ghose, G. Koliadis, and A. Chueng. Process Discovery from Model and Text

Artefacts. In 2007 IEEE Congress on Services, pages 167–174. IEEE Computer

Society, 2007.

[41] D. Gildea and D. Jurafsky. Automatic labeling of semantic roles. Computational

Linguistics, 28(3):245–288, 2002.

[42] Ana-Maria Giuglea and Alessandro Moschitti. Semantic role labeling via framenet,

verbnet and propbank. In Proceedings of the 21st International Conference on Com-

putational Linguistics, ACL-44, pages 929–936, Morristown, NJ, USA, 2006. Asso-

ciation for Computational Linguistics.

[43] M. Gori, M. Maggini, and L. Sarti. Exact and approximate graph matching using

random walks. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(7):1100–1111, 2005.

[44] S. Green and C.D. Manning. Better Arabic Parsing: Baselines, Evaluations, and

Analysis.

[45] J.L. Gross and J. Yellen. Handbook of graph theory. CRC, 2004.

[46] T.R. Gruber. Automated knowledge acquisition for strategic knowledge. Machine

Learning, 4(3):293–336, 1989.

- 128 -

REFERENCES

[47] B. Hamp and H. Feldweg. Germanet-a lexical-semantic net for german. In Proceed-

ings of ACL workshop Automatic Information Extraction and Building of Lexical

Semantic Resources for NLP Applications, pages 9–15, 1997.

[48] HM Harmain and R. Gaizauskas. CM-Builder: an automated NL-based CASE tool.

In The Fifteenth IEEE International Conference on Automated Software Engineer-

ing, pages 45–53. IEEE, 2000.

[49] J. Herbst and D. Karagiannis. An inductive approach to the acquisition and adap-

tation of workflow models. In Proceedings of the IJCAI, volume 99, pages 52–57.

Citeseer, 1999.

[50] A.R. Hevner, S.T. March, J. Park, and S. Ram. Design science in information

systems research. Mis Quarterly, 28(1):75–105, 2004.

[51] J.R. Hobbs. Resolving pronoun references. Lingua, 44(4):311–338, 1978.

[52] Oliver Holschke. Granularitt als kognitiver Faktor in der adaptiven Wiederverwen-

dung von Geschftsprozessmodellen. PhD thesis, Technische Universitt Berlin, 2010.

[53] Oliver Holschke. Impact of granularity on adjustment behavior in adaptive reuse of

business process models. In Richard Hull, Jan Mendling, and Stefan Tai, editors,

Business Process Management, volume 6336 of Lecture Notes in Computer Science,

pages 112–127. Springer, 2010.

[54] J.E. Ingvaldsen, J.A. Gulla, X. Su, and H. Rønneberg. A text mining approach

to integrating business process models and governing documents. In On the Move

to Meaningful Internet Systems 2005: OTM Workshops, pages 473–484. Springer,

2005.

- 129 -

REFERENCES

[55] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An In-

troduction to Natural Language Processing, Computational Linguistics and Speech

Recognition. Prentice Hall, second edition, February 2008.

[56] I. Kitzmann, C. Konig, D. Lubke, and L. Singer. A Simple Algorithm for Automatic

Layout of BPMN Processes. In IEEE Conference on Commerce and Enterprise

Computing (CEC09), pages 391–398. IEEE, 2009.

[57] D. Klein and C.D. Manning. Accurate unlexicalized parsing. In Proceedings of the

41st Annual Meeting on Association for Computational Linguistics-Volume 1, pages

423–430. Association for Computational Linguistics, 2003.

[58] Dan Klein and Christopher D. Manning. Fast Exact Inference with a Factored Model

for Natural Language Parsing. In In Advances in Neural Information Processing

Systems 15 (NIPS), pages 3–10. MIT Press, 2003.

[59] C. Kop and H.C. Mayr. Conceptual predesign–bridging the gap between require-

ments and conceptual design. In Third Internation Conference on Requirements

Engineering, page 90, 1998.

[60] C. Kop, J. Vöhringer, M. Hölbling, T. Horn, C. Irrasch, and H.C. Mayr. Tool

Supported Extraction of Behavior Models. In Proc. 4th Int. Conf. on Information

Systems Technology and its Applications ISTA2005, 2005.

[61] J. Krogstie, G. Sindre, and H. Jørgensen. Process models representing knowledge

for action: a revised quality framework. European Journal of Information Systems,

15(1):91–102, 2006.

[62] P. Kumanan, A. Paradkar, A. Sinha, and S.M. Sutton Jr. Automated Inspection of

Industrial Use Case Models Inferred from Textual Descriptions, 2010.

- 130 -

REFERENCES

[63] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In Internatioal Conference on

Machine Learning, pages 282–289. Citeseer, 2001.

[64] S. Lamprier, T. Amghar, B. Levrat, and F. Saubion. Using an Evolving Thematic

Clustering in a Text Segmentation Process. Journal of Universal Computer Science,

14(2):178–192, 2008.

[65] H. Leopold, S. Smirnov, and J. Mendling. On Labeling Quality in Business Process

Models. Nüttgens M et al.(Hrsg), 8:42–57, 2009.

[66] H. Leopold, S. Smirnov, and J. Mendling. Refactoring of Process Model Activity

Labels. In 15th International Conference on Applications of Natural Language to

Information Systems (NLDB), pages 268 – 283, 2010.

[67] R. Levy and C. Manning. Is it harder to parse Chinese, or the Chinese Treebank?

In Proceedings of the 41st Annual Meeting on Association for Computational Lin-

guistics, volume 1, pages 439–446. Association for Computational Linguistics, 2003.

[68] J. Li, H.J. Wang, Z. Zhang, and J.L. Zhao. A policy-based process mining frame-

work: mining business policy texts for discovering process models. Information

Systems and E-Business Management, 8(2):169–188, 2010.

[69] K. Li, RG Dewar, and RJ Pooley. Object-oriented analysis using natural language

processing. In Proceedings of International Conference for Young Computer Scien-

tists (ICYCS2005). Citeseer, 2005.

[70] Y. Li, P. Musilek, M. Reformat, and L. Wyard-Scott. Identification of pleonastic it

using the web. Journal of Artificial Intelligence Research, 34(1):339–389, 2009.

[71] Dekang Lin and Patrick Pantel. Concept discovery from text. In Proceedings of the

- 131 -

REFERENCES

19th international conference on Computational linguistics, pages 1–7, Morristown,

NJ, USA, 2002. Association for Computational Linguistics.

[72] Maya Lincoln, Mati Golani, and Avigdor Gal. Machine-assisted design of business

process models using descriptor space analysis. In Richard Hull, Jan Mendling, and

Stefan Tai, editors, Business Process Management, volume 6336 of Lecture Notes in

Computer Science, pages 128–144. Springer, 2010.

[73] O.I. Lindland, G. Sindre, and A. Sølvberg. Understanding quality in conceptual

modeling. IEEE software, 11:42–49, 1994.

[74] D. Lübke. Transformation of Use Cases to EPC Models. EPK 2006, 5:137, 2006.

[75] D. Lübke, K. Schneider, and M. Weidlich. Visualizing use case sets as bpmn pro-

cesses. In Requirements Engineering Visualization, 2008. REV’08., pages 21–25.

IEEE, 2009.

[76] M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini. Building a large annotated

corpus of English: The Penn Treebank. Computational linguistics, 19(2):330, 1993.

[77] I.A. Melčuk. Dependency syntax: theory and practice. State University of New York

Press, 1988.

[78] J. Mendling, H.A. Reijers, and J. Recker. Activity labeling in process modeling:

empirical insights and recommendations. Information Systems, 35(4):467–482, 2010.

Defines the best labeling style (Verb-Object vs Action-Noun vs. Rest).

[79] J. Mendling, HA Reijers, and WMP van der Aalst. Seven process modeling guide-

lines (7pmg). Information and Software Technology, 52(2):127–136, 2010.

[80] J. Mendling, BF Van Dongen, and WMP van der Aalst. Getting rid of the or-join in

business process models. In Enterprise Distributed Object Computing Conference,

2007. EDOC 2007. 11th IEEE International, page 3. IEEE, 2007.

- 132 -

REFERENCES

[81] Jan Mendling. Metrics for Process Models: Empirical Foundations of Verification,

Error Prediction, and Guidelines for Correctness. Springer Publishing Company,

2008.

[82] G.A. Miller and F. Hristea. WordNet nouns: Classes and instances. Computational

Linguistics, 32(1):1–3, 2006.

[83] George A. Miller. Wordnet: A lexical database for english. Communications of the

ACM, 38(11):39–41, 1995.

[84] M. Muehlen and J. Recker. How much language is enough? Theoretical and practical

use of the business process modeling notation. In Advanced Information Systems

Engineering, pages 465–479. Springer, 2008.

[85] I. Niles and A. Pease. Towards a standard upper ontology. In Proceedings of the

international conference on Formal Ontology in Information Systems-Volume 2001,

pages 2–9. ACM, 2001.

[86] A.G. Nysetvold and J. Krogstie. Assessing business process modeling languages

using a generic quality framework. Advanced topics in database research, 5:79–93,

2006.

[87] Object Management Group. Business process model and notation (bpmn) version

2.0, June 2010.

[88] Object Management Group. OMG Unified Modeling Language Superstructure Spec-

ification, Version 2.3, 05 2010.

[89] S.P. Overmyer, B. Lavoie, and O. Rambow. Conceptual modeling through linguistic

analysis using LIDA. In icse, page 0401. Published by the IEEE Computer Society,

2001.

- 133 -

REFERENCES

[90] B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and

Trends in Information Retrieval, 2(1-2):1–135, 2008.

[91] H.G. Perez-Gonzalez and J.K. Kalita. GOOAL: a Graphic Object Oriented Anal-

ysis Laboratory. In Companion of the 17th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, pages 38–39.

ACM, 2002.

[92] J.L. Peterson. Petri net theory and the modeling of systems. Prentice Hall PTR

Upper Saddle River, NJ, USA, 1981.

[93] E. Pitler, M. Raghupathy, H. Mehta, A. Nenkova, A. Lee, and A. Joshi. Easily

identifiable discourse relations. In Proceedings of the 22nd International Conference

on Computational Linguistics (COLING 2008), Manchester, UK, August. Citeseer,

2008.

[94] M. Poesio and M.A. Kabadjov. A general-purpose, off-the-shelf anaphora resolution

module: Implementation and preliminary evaluation. In Proc. LREC. Citeseer,

2004.

[95] A. Polyvyanyy, S. Smirnov, and M. Weske. On application of structural decom-

position for process model abstraction. In Proceedings of the 2nd International

Conference on Business Process and Services Computing, Leipzig, March 2009.

[96] M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[97] R. Prasad, N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo, A. Joshi, and B. Webber.

The Penn Discourse Treebank 2.0. In Proceedings of the 6th International Con-

ference on Language Resources and Evaluation (LREC 2008), pages 2961–2968.

Citeseer, 2008.

- 134 -

REFERENCES

[98] R. Prasad, E. Miltsakaki, N. Dinesh, A. Lee, A. Joshi, L. Robaldo, and B. Webber.

The penn discourse treebank 2.0 annotation manual. December, 17:2007, 2007.

[99] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in-

speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[100] A.N. Rafferty and C.D. Manning. Parsing three German treebanks: Lexicalized and

unlexicalized baselines. In Proceedings of the Workshop on Parsing German, pages

40–46. Association for Computational Linguistics, 2008.

[101] A. Ratnaparkhi et al. A maximum entropy model for part-of-speech tagging. In

Proceedings of the conference on empirical methods in natural language processing,

volume 1, pages 133–142, 1996.

[102] J. Recker and M. Rosemann. Business Process Modeling-A Comparative Analysis.

Journal of the Association for Information Systems, 10(4):333–363, 2009.

[103] J.C. Recker, M. Indulska, M. Rosemann, and P. Green. How good is BPMN really?

Insights from theory and practice. In Proceedings 14th European Conference on

Information Systems, 2006.

[104] H.A. Reijers. Design and control of workflow processes: business process manage-

ment for the service industry. Eindhoven University Press, 2003.

[105] H.A. Reijers, S. Limam, and W.M.P. Van Der Aalst. Product-based workflow design.

Journal of Management Information Systems, 20(1):229–262, 2003.

[106] J. Ruppenhofer, M. Ellsworth, M.R.L. Petruck, C.R. Johnson, and J. Scheffczyk.

Framenet ii: Extended theory and practice. Technical report, International Com-

puter Science Institute, University of California at Berkeley, 2006.

[107] W. Sadiq and M.E. Orlowska. Analyzing process models using graph reduction

techniques. Information systems, 25(2):117–134, 2000.

- 135 -

REFERENCES

[108] A. Salbrechter, HC Mayr, and C. Kop. Mapping Pre-designed Business Process

Models to UML. In Proceedings of the Eighth IASTED International Conference.

Acta Press, 2004.

[109] M. Sandelowski. The problem of rigor in qualitative research. Advances in Nursing

Science, 8(3):27, 1986.

[110] A.W. Scheer. ARIS-business process modeling. Springer Verlag, 2000.

[111] J. Scheffczyk, A. Pease, and M. Ellsworth. Linking FrameNet to the suggested

upper merged ontology. In Proceeding of the 2006 Conference on Formal Ontology

in Information Systems (FOIS 2006), pages 289–300. IOS Press, 2006.

[112] S. Schiffer, A. Ferrein, and G. Lakemeyer. Qualitative world models for soccer

robots. In Workshop at KI 2006, page 3. Citeseer, 2006.

[113] Aaron D. Scriver. Semantic distance in wordnet: A simplified and improved measure

of semantic relatedness. Master’s thesis, University of Waterloo, Waterloo, Ontario,

Canada, 2006.

[114] J. Seemann. Extending the sugiyama algorithm for drawing UML class diagrams:

Towards automatic layout of object-oriented software diagrams. In Graph Drawing,

pages 415–424. Springer, 1997.

[115] L. Shi and R. Mihalcea. Putting Pieces Together: Combining FrameNet, VerbNet

and WordNet for Robust Semantic Parsing. In proceedings of the 6th international

conference on computational linguistics and intelligent text processing, page 100.

Springer Verlag, 2005.

[116] H.A. Simon. The sciences of the artificial. MIT Press, 1996.

- 136 -

REFERENCES

[117] A. Sinha and A. Paradkar. Use Cases to Process Specifications in Business Process

Modeling Notation. In 2010 IEEE International Conference on Web Services, pages

473–480. IEEE, 2010.

[118] A. Sinha, A. Paradkar, P. Kumanan, and B. Boguraev. An Analysis Engine for De-

pendable Elicitation on Natural Language Use Case Description and its Application

to Industrial Use Cases. Technical report, IBM, 2008.

[119] H. Smith and P. Fingar. Business process management: The Third wave. Meghan-

Kiffer Press, 2003.

[120] A.L. Souter, L.L. Pollock, and D. Hisley. Inter-class def-use analysis with partial

class representations. In Proceedings of the 1999 ACM SIGPLAN-SIGSOFT work-

shop on Program analysis for software tools and engineering, pages 47–56. ACM,

1999.

[121] V. Stoyanov, C. Cardie, N. Gilbert, E. Riloff, D. Buttler, and D Hysom. Coreference

Resolution with Reconcile. In Proceedings of the Conference of the 48th Annual

Meeting of the Association for Computational Linguistics (ACL 2010), 2010.

[122] Michael Sussna. Word sense disambiguation for free-text indexing using a massive

semantic network. In proceedings of the second international conference on Informa-

tion and knowledge management (CIKM ’93), pages 67–74, New York, NY, USA,

1993. ACM.

[123] M. Swan. Practical english usage. Oxford University Press, 2005. list of adverbs

taken from here.

[124] W.M.P. Van Der Aalst, A.H.M. Hofstede, and M. Weske. Business process man-

agement: a survey. In Proceedings of the 2003 international conference on Business

process management, pages 1–12. Springer-Verlag, 2003.

- 137 -

REFERENCES

[125] W.M.P. Van Der Aalst and A.H.M. Ter Hofstede. YAWL: yet another workflow

language. Information Systems, 30(4):245–275, 2005.

[126] BF Van Dongen, A.K.A. de Medeiros, HMW Verbeek, A. Weijters, and WMP

Van der Aalst. The ProM framework: A new era in process mining tool support.

In Applications and Theory of Petri Nets 2005, pages 444–454. Springer, 2005.

[127] BF van Dongen, RM Dijkman, and J. Mendling. Measuring similarity between

business process models. In CAiSE, pages 450–464. Springer, 2008.

[128] BF Van Dongen, J. Mendling, and WMP van der Aalst. Structural patterns for

soundness of business process models. In 10th IEEE International Conference on

Enterprise Distributed Object Computing Conference (EDOC’06), pages 116–128.

IEEE, 2006.

[129] CJ Van Rijsbergen. Information Retrieval. Butterworths, 1979.

[130] Y. Versley, S.P. Ponzetto, M. Poesio, V. Eidelman, A. Jern, J. Smith, X. Yang, and

A. Moschitti. BART: A modular toolkit for coreference resolution. In Proceedings

of the 46th Annual Meeting of the Association for Computational Linguistics on

Human Language Technologies: Demo Session, pages 9–12. Association for Com-

putational Linguistics, 2008.

[131] K. Verspoor, K.B. Cohen, and L. Hunter. The textual characteristics of traditional

and Open Access scientific journals are similar. BMC bioinformatics, 10(1):183,

2009.

[132] T. Wahl and G. Sindre. An analytical evaluation of BPMN using a semiotic quality

framework. Advanced topics in database research, 5:94 – 105, 2006.

[133] Harry Jiannan Wang, J. Leon Zhao, and Liang-Jie Zhang. Policy-Driven Process

- 138 -

REFERENCES

Mapping (PDPM): Discovering process models from business policies. Decision

Support Systems, 48(1):267 – 281, 2009. Information product markets.

[134] M. Weske. Business process management: concepts, languages, architectures.

Springer-Verlag New York Inc, 2007.

[135] M White. Information overlook. EContent(26:7), 2003.

[136] S.A. White and D. Miers. BPMN Modeling and Reference Guide: Understanding

and Using BPMN. Future Strategies Inc., 2008.

[137] David Yarowsky. Word-sense disambiguation using statistical models of roget’s

categories trained on large corpora. In Proceedings of the 14th Conference on Com-

putational linguistics, pages 454–460, Morristown, NJ, USA, 1992. Association for

Computational Linguistics.

[138] T. Yue, L. Briand, and Y. Labiche. A Use Case Modeling Approach to Facili-

tate the Transition towards Analysis Models: Concepts and Empirical Evaluation.

In Proceedings of the 12th International Conference on Model Driven Engineering

Languages and Systems, pages 484–498. Springer-Verlag, 2009.

[139] T. Yue, L. Briand, and Y. Labiche. Automatically Deriving a UML Analysis Model

from a Use Case Model. Technical report, Carleton University, 2009.

[140] T. Yue, L. Briand, and Y. Labiche. An Automated Approach to Transform Use

Cases into Activity Diagrams. In Modelling Foundations and Applications, pages

337–353. Springer, 2010.

- 139 -

APPENDIX A DETAILED EVALUATION RESULTS

Appendix A. Detailed Evaluation Results

In this section the results of our evaluation will be presented in more detail then in

section 4.3. First, table A.9 will show the and ID, the source, the name, and the type of

each of the 47 models. Using these IDs table A.10 will display the characteristics of the

textual description, the process model generated by our approach, and the process model

as created by a human. The measured characteristics are the same as in section 4.3:

• Number of sentences (n)

• Average length of the sentences (∅l)

• Number of sentences describing the process on a meta level (m)

• Number of identified relative references (r)

• Number of textual links links and jumps (j)

• Size of the models regarding nodes (N)

• Size of the models regarding edges (E)

• Similarity (sim)

Table A.9: Model ID, Source and Name Overview

ID Source and Model Type

1-1 Bicycle manufacturing academic

1-2 Computer repair academic

1-3 Hotel Service academic

1-4 Underwriters academic

1 HU Berlin - Total - 4 models academic

2-1 SLA Violation academic

Continued on next page

- 140 -

APPENDIX A DETAILED EVALUATION RESULTS

Table A.9 – continued from previous page

ID Source and Model Type

2-2 Supplier Switch academic

2 TU Berlin - Total - 2 models academic

3-1 2009-1 MC Finalise SCT Warrant Possession academic

3-2 2009-2 Conduct Directiosn Hearings academic

3-3 2009-3 Repetition/Cylces academic

3-4 2009-4 event-based gateways academic

3-5 2009-5 P&E Lodge Originating Document by Post academic

3-6 2010-1 Claims Notification academic

3-7 2010-2 Claims Creation academic

3-8 2010-3 Claims Handling academic

3 QUT - Total - 8 models academic

4-1 Intaker Workflow academic

4 TU Eindhoven - Total - 1 model academic

5-1 Active VOS industry

5-2 BizAgi 1 industry

5-3 BizAgi 2 industry

5-4 Oracle industry

5 Vendor Tutorials - Total - 4 models industry

6-1 ACME industry

6-2 Help - Tutorial industry

6-3 Powerlicht industry

6-4 Turbopixel industry

6 inubit AG - Total - 4 models industry

7-1 Frank Puhlmann - Calling Leads industry

7 BPM Practicioners - Total - 1 model industry

8-1 HR Process - Simple textbook

8-2 HR Process - HR textbook

8-3 HR Process - Functional Department textbook

8 BPMN Practical Handbook - Total - 3 Models textbook

Continued on next page

- 141 -

APPENDIX A DETAILED EVALUATION RESULTS

Table A.9 – continued from previous page

ID Source and Model Type

9-1 Exercise 1 textbook

9-2 Exercise 2 textbook

9-3 Exercise 3a textbook

9-4 Exercise 3b textbook

9-5 Exercise 4 textbook

9-6 Exercise 5 textbook

9 BPMN Modeling and Reference guide - Total - 6 models textbook

10-1 B2 public sector

10-2 B3 public sector

10-3 B4 public sector

10-4 B5.1 public sector

10-5 B5.2 public sector

10-6 B6 public sector

10-7 B7 public sector

10-8 B8 public sector

10-9 C1 public sector

10-10 C2 public sector

10-11 C3 public sector

10-12 D1 public sector

10-13 D2 public sector

10-14 D3 public sector

10 FNA - Metrology Processes - Total - 14 models public sector

- 142 -

APPENDIX A DETAILED EVALUATION RESULTS
T

ab
le

A
.1

0:
D

et
ai

le
d

ch
ar

ac
te

ri
st

ic
s

of
th

e
an

al
y
ze

d
te

x
t

an
d

m
o
d
el

s

ID
n

∅
l

m
r

j
|N

g
e
n
|
|N

h
u
m
|

∆
|N
|

|G
g
e
n
|
|G

h
u
m
|

∆
|G
|

|E
g
e
n
|
|E

h
u
m
|

∆
|E
|

si
m

1
-1

1
2

1
4
.9

2
4

3
0

3
4

2
2

3
5
.2

9
%

8
6

2
5
.0

0
%

3
1

2
0

3
5
.4

8
%

7
6
.0

3
%

1
-2

6
1
8
.8

3
3

1
0

2
4

2
6

-8
.3

3
%

3
4

-3
3
.3

3
%

2
3

2
6

-1
3
.0

4
%

8
5
.4

6
%

1
-3

1
1

1
6
.9

1
2

4
0

3
5

2
9

1
7
.1

4
%

7
9

-2
8
.5

7
%

3
4

2
9

1
4
.7

1
%

7
7
.1

7
%

1
-4

1
1

2
1
.9

1
3

1
3

0
2
8

2
6

7
.1

4
%

4
5

-2
5
.0

0
%

2
7

2
3

1
4
.8

1
%

7
3
.1

0
%

1
1
0
.0

0
1
8
.1

4
3
.0

0
5
.2

5
0
.0

0
3
0
.2

5
2
5
.7

5
1
4
.8

8
%

5
.5

0
6
.0

0
-9

.0
9
%

2
8
.7

5
2
4
.5

0
1
4
.7

8
%

7
7
.9

4
%

2
-1

3
8

2
0
.2

6
6

8
4

9
8

8
3

1
5
.3

1
%

1
7

9
4
7
.0

6
%

1
0
4

8
7

1
6
.3

5
%

6
9
.3

2
%

2
-2

3
0

2
2
.0

8
9

7
1

8
5

5
9

3
0
.5

9
%

9
1
0

-1
1
.1

1
%

8
4

7
2

1
4
.2

9
%

7
2
.2

5
%

2
3
4
.0

0
2
1
.1

7
7
.5

0
7
.5

0
2
.5

0
9
1
.5

0
7
1
.0

0
2
2
.4

0
%

1
3
.0

0
9
.5

0
2
6
.9

2
%

9
4
.0

0
7
9
.5

0
1
5
.4

3
%

7
0
.7

9
%

3
-1

7
1
6
.8

5
0

1
0

2
7

1
7

3
7
.0

4
%

0
0

0
.0

0
%

2
3

1
8

2
1
.7

4
%

7
1
.8

5
%

3
-2

4
2
2
.0

0
0

1
0

1
3

1
2

7
.6

9
%

3
4

-3
3
.3

3
%

1
3

1
3

0
.0

0
%

8
2
.4

6
%

3
-3

5
1
7
.4

0
1

3
0

1
4

8
4
2
.8

6
%

3
2

3
3
.3

3
%

1
4

8
4
2
.8

6
%

7
5
.5

7
%

3
-4

4
1
9
.7

5
0

1
0

1
1

8
2
7
.2

7
%

2
2

0
.0

0
%

1
1

8
2
7
.2

7
%

7
8
.8

5
%

3
-5

9
1
9
.3

3
0

2
0

4
0

3
3

1
7
.5

0
%

4
2

5
0
.0

0
%

4
3

3
9

9
.3

0
%

8
0
.5

4
%

3
-6

8
1
5
.2

5
0

3
0

2
0

1
2

4
0
.0

0
%

7
3

5
7
.1

4
%

2
2

1
2

4
5
.4

5
%

7
4
.9

4
%

3
-7

5
1
9
.2

0
1

0
0

1
4

1
2

1
4
.2

9
%

0
0

0
.0

0
%

1
5

1
4

6
.6

7
%

8
5
.5

2
%

3
-8

7
1
6
.2

9
2

0
0

2
3

1
7

2
6
.0

9
%

2
2

0
.0

0
%

2
0

1
6

2
0
.0

0
%

8
0
.5

1
%

3
6
.1

3
1
8
.2

6
0
.5

0
1
.3

8
0
.0

0
2
0
.2

5
1
4
.8

8
2
6
.5

4
%

2
.6

3
1
.8

8
2
8
.5

7
%

2
0
.1

3
1
6
.0

0
2
0
.5

0
%

7
8
.7

8
%

4
-1

4
0

1
8
.4

5
8

4
1

6
3

3
8

3
9
.6

8
%

1
8

-7
0
0
.0

0
%

5
2

3
7

2
8
.8

5
%

4
1
.5

4
%

4
4
0
.0

0
1
8
.4

5
8
.0

0
4
.0

0
1
.0

0
6
3
.0

0
3
8
.0

0
3
9
.6

8
%

1
.0

0
8
.0

0
-7

0
0
.0

0
%

5
2
.0

0
3
7
.0

0
2
8
.8

5
%

4
1
.5

4
%

5
-1

6
1
5
.5

0
1

0
0

1
5

7
5
3
.3

3
%

3
1

6
6
.6

7
%

1
5

6
6
0
.0

0
%

3
7
.6

5
%

5
-2

5
1
8
.0

0
1

0
2

1
4

1
2

1
4
.2

9
%

1
1

0
.0

0
%

1
0

8
2
0
.0

0
%

8
0
.2

5
%

5
-3

1
0

2
1
.3

0
1

2
2

3
4

1
7

5
0
.0

0
%

5
1

8
0
.0

0
%

3
1

1
3

5
8
.0

6
%

6
4
.2

7
%

5
-4

1
5

1
8
.0

0
2

5
3

3
6

2
0

4
4
.4

4
%

8
6

2
5
.0

0
%

3
6

1
9

4
7
.2

2
%

7
2
.3

3
%

5
9
.0

0
1
8
.2

0
1
.2

5
1
.7

5
1
.7

5
2
4
.7

5
1
4
.0

0
4
3
.4

3
%

4
.2

5
2
.2

5
4
7
.0

6
%

2
3
.0

0
1
1
.5

0
5
0
.0

0
%

6
3
.6

3
%

6
-1

1
8

2
6
.1

6
2

1
2

1
4
8

3
6

2
5
.0

0
%

2
6

-2
0
0
.0

0
%

4
0

3
7

7
.5

0
%

4
2
.5

1
%

6
-2

5
1
3
.2

0
1

0
0

1
0

1
0

0
.0

0
%

0
0

0
.0

0
%

8
6

2
5
.0

0
%

7
8
.7

8
%

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

- 143 -

APPENDIX A DETAILED EVALUATION RESULTS
T
a
b
le

A
.1

0
–

c
o
n
ti

n
u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

ID
n

∅
l

m
r

j
|N

g
e
n
|
|N

h
u
m
|

∆
|N
|

|G
g
e
n
|
|G

h
u
m
|

∆
|G
|

|E
g
e
n
|
|E

h
u
m
|

∆
|E
|

si
m

6
-3

9
1
9
.8

8
3

7
0

2
5

1
4

4
4
.0

0
%

1
2

-1
0
0
.0

0
%

2
1

1
0

5
2
.3

8
%

3
5
.7

4
%

6
-4

1
4

1
4
.2

8
3

1
3

1
3
6

3
6

0
.0

0
%

8
9

-1
2
.5

0
%

3
2

3
2

0
.0

0
%

8
6
.7

0
%

6
1
1
.5

0
1
8
.3

8
2
.2

5
8
.0

0
0
.5

0
2
9
.7

5
2
4
.0

0
1
9
.3

3
%

2
.7

5
4
.2

5
-5

4
.5

5
%

2
5
.2

5
2
1
.2

5
1
5
.8

4
%

6
0
.9

3
%

7
-1

7
9
.7

1
0

5
0

1
4

1
3

7
.1

4
%

2
1

5
0
.0

0
%

1
1

9
1
8
.1

8
%

7
4
.3

5
%

7
7
.0

0
9
.7

1
0
.0

0
5
.0

0
0
.0

0
1
4
.0

0
1
3
.0

0
7
.1

4
%

2
.0

0
1
.0

0
5
0
.0

0
%

1
1
.0

0
9
.0

0
1
8
.1

8
%

7
4
.3

5
%

8
-1

3
1
7
.6

7
0

0
1

1
0

1
3

-3
0
.0

0
%

0
0

0
.0

0
%

6
7

-1
6
.6

7
%

8
5
.2

1
%

8
-2

6
1
5
.8

3
0

8
0

1
7
.0

0
1
3
.0

0
2
3
.5

3
%

1
.0

0
2
.0

0
-1

0
0
.0

0
%

1
4
.0

0
1
9
.0

0
-3

5
.7

1
%

6
8
.4

2
%

8
-3

5
1
7
.6

0
0

7
0

1
3

1
3

0
.0

0
%

2
2

0
.0

0
%

1
1

1
8

-6
3
.6

4
%

7
8
.8

4
%

8
4
.6

7
1
7
.0

3
0
.0

0
5
.0

0
0
.3

3
1
3
.3

3
1
3
.0

0
2
.5

0
%

1
.0

0
1
.3

3
-3

3
.3

3
%

1
0
.3

3
1
4
.6

7
-4

1
.9

4
%

7
7
.4

9
%

9
-1

8
2
0
.7

5
1

4
1

2
4

2
9

-2
0
.8

3
%

5
3

4
0
.0

0
%

2
5

2
5

0
.0

0
%

7
0
.0

3
%

9
-2

5
2
1
.0

0
0

0
1

2
1

2
1

0
.0

0
%

3
2

3
3
.3

3
%

1
8

1
7

5
.5

6
%

8
0
.8

8
%

9
-3

4
2
1
.7

5
0

0
0

1
3

2
0

-5
3
.8

5
%

0
0

0
.0

0
%

9
1
6

-7
7
.7

8
%

7
0
.7

5
%

9
-4

5
2
1
.8

0
0

0
0

1
8

2
2

-2
2
.2

2
%

0
0

0
.0

0
%

1
3

1
7

-3
0
.7

7
%

7
5
.1

8
%

9
-5

7
1
9
.2

9
0

0
0

2
4

1
5

3
7
.5

0
%

4
3

2
5
.0

0
%

2
4

1
8

2
5
.0

0
%

6
9
.9

0
%

9
-6

1
3

2
0
.0

0
4

5
0

3
4

3
6

-5
.8

8
%

8
1
0

-2
5
.0

0
%

3
6

4
9

-3
6
.1

1
%

6
3
.9

0
%

9
7
.0

0
2
0
.7

7
0
.8

3
1
.5

0
0
.3

3
2
2
.3

3
2
3
.8

3
-6

.7
2
%

3
.3

3
3
.0

0
1
0
.0

0
%

2
0
.8

3
2
3
.6

7
-1

3
.6

0
%

7
1
.7

7
%

1
0
-1

3
1
0
.6

6
0

0
0

1
4

1
4

0
.0

0
%

1
1

0
.0

0
%

1
2

1
3

-8
.3

3
%

9
6
.0

1
%

1
0
-2

1
4

1
8
.2

9
0

0
1

6
1

5
5

9
.8

4
%

1
7

1
0

4
1
.1

8
%

7
0

6
4

8
.5

7
%

8
5
.6

1
%

1
0
-3

1
1

1
2
.8

2
0

0
0

3
3

3
1

6
.0

6
%

5
5

0
.0

0
%

3
9

3
3

1
5
.3

8
%

9
1
.1

3
%

1
0
-4

9
1
4
.4

4
0

0
0

3
6

3
7

-2
.7

8
%

6
6

0
.0

0
%

4
2

4
4

-4
.7

6
%

9
2
.8

8
%

1
0
-5

4
1
1
.7

5
0

0
0

1
1

1
0

9
.0

9
%

0
0

0
.0

0
%

1
0

9
1
0
.0

0
%

8
9
.8

0
%

1
0
-6

3
1
1
.0

0
0

0
0

1
4

1
4

0
.0

0
%

1
1

0
.0

0
%

1
3

1
3

0
.0

0
%

9
6
.5

4
%

1
0
-7

7
1
0
.8

6
0

0
0

2
1

2
1

0
.0

0
%

2
1

5
0
.0

0
%

2
2

2
0

9
.0

9
%

9
1
.1

7
%

1
0
-8

7
1
2
.0

0
0

1
0

2
0

1
9

5
.0

0
%

2
1

5
0
.0

0
%

2
1

1
9

9
.5

2
%

9
0
.1

1
%

1
0
-9

5
1
4
.2

0
0

1
0

2
0

2
3

-1
5
.0

0
%

3
4

-3
3
.3

3
%

2
0

2
5

-2
5
.0

0
%

8
7
.4

8
%

1
0
-1

0
8

1
4
.5

0
0

1
1

2
1

2
6

-2
3
.8

1
%

1
3

-2
0
0
.0

0
%

2
0

2
7

-3
5
.0

0
%

8
4
.1

4
%

1
0
-1

1
7

1
1
.2

9
0

0
0

1
9

2
4

-2
6
.3

2
%

4
4

0
.0

0
%

1
8

2
5

-3
8
.8

9
%

8
5
.2

9
%

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

- 144 -

APPENDIX A DETAILED EVALUATION RESULTS
T
a
b
le

A
.1

0
–

c
o
n
ti

n
u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

ID
n

∅
l

m
r

j
|N

g
e
n
|
|N

h
u
m
|

∆
|N
|

|G
g
e
n
|
|G

h
u
m
|

∆
|G
|

|E
g
e
n
|
|E

h
u
m
|

∆
|E
|

si
m

1
0
-1

2
4

1
3
.7

5
0

0
0

2
1

1
8

1
4
.2

9
%

2
1

5
0
.0

0
%

1
9

1
6

1
5
.7

9
%

8
9
.7

2
%

1
0
-1

3
3

1
4
.3

3
0

0
0

1
1

1
1

0
.0

0
%

0
0

0
.0

0
%

1
0

9
1
0
.0

0
%

9
5
.0

4
%

1
0
-1

4
5

2
5
.4

0
0

0
3

5
2

3
9

2
5
.0

0
%

8
7

1
2
.5

0
%

6
6

4
6

3
0
.3

0
%

8
2
.4

2
%

1
0

6
.4

3
1
3
.9

5
0
.0

0
0
.2

1
0
.3

6
2
5
.2

9
2
4
.4

3
3
.3

9
%

3
.7

1
3
.1

4
1
5
.3

8
%

2
7
.2

9
2
5
.9

3
4
.9

7
%

8
9
.8

1
%

A
ll

9
.1

9
1
7
.1

6
1
.2

3
2
.6

0
0
.4

9
2
7
.4

3
2
3
.2

1
1
5
.3

6
%

3
.7

2
3
.3

8
9
.1

4
%

2
6
.7

7
2
3
.6

4
1
1
.6

9
%

7
6
.9

8
%

- 145 -

APPENDIX B DETAILED TEST DATA SETS

Appendix B. Detailed Test Data Sets

Appendix B.1. Models provided by the Humboldt-Universität zu Berlin

A small company manufactures customized bicycles. Whenever the sales department
receives an order, a new process instance is created. A member of the sales department
can then reject or accept the order for a customized bike. In the former case, the process
instance is finished. In the latter case, the storehouse and the engineering department
are informed. The storehouse immediately processes the part list of the order and checks
the required quantity of each part. If the part is available in-house, it is reserved. If it
is not available, it is back-ordered. This procedure is repeated for each item on the part
list. In the meantime, the engineering department prepares everything for the assembling
of the ordered bicycle. If the storehouse has successfully reserved or back-ordered every
item of the part list and the preparation activity has finished, the engineering department
assembles the bicycle. Afterwards, the sales department ships the bicycle to the customer
and finishes the process instance.

Text 1: Process Description 1-1: Bicycle manufacturing.

A customer brings in a defective computer and the CRS checks the defect and hands out
a repair cost calculation back. If the customer decides that the costs are acceptable, the
process continues, otherwise she takes her computer home unrepaired. The ongoing repair
consists of two activities, which are executed, in an arbitrary order. The first activity is
to check and repair the hardware, whereas the second activity checks and configures the
software. After each of these activities, the proper system functionality is tested. If
an error is detected another arbitrary repair activity is executed, otherwise the repair is
finished.

Text 2: Process Description 1-2: Computer repair.

- 146 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.21: Model 1-1 as generated by our system.

- 147 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.22: Model 1-1 as created by a human modeler.

- 148 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.23: Model 1-2 as generated by our system.

- 149 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.24: Model 1-2 as created by a human modeler.

- 150 -

APPENDIX B DETAILED TEST DATA SETS

The Evanstonian is an upscale independent hotel. When a guest calls room service at
The Evanstonian, the room-service manager takes down the order. She then submits an
order ticket to the kitchen to begin preparing the food. She also gives an order to the
sommelier (i.e., the wine waiter) to fetch wine from the cellar and to prepare any other
alcoholic beverages. Eighty percent of room-service orders include wine or some other
alcoholic beverage. Finally, she assigns the order to the waiter. While the kitchen and
the sommelier are doing their tasks, the waiter readies a cart (i.e., puts a tablecloth on
the cart and gathers silverware). The waiter is also responsible for nonalcoholic drinks.
Once the food, wine, and cart are ready, the waiter delivers it to the guests room. After
returning to the room-service station, the waiter debits the guests account. The waiter
may wait to do the billing if he has another order to prepare or deliver.

Text 3: Process Description 1-3: Hotel Service.

Whenever a company makes the decision to go public, its first task is to select the un-
derwriters. Underwriters act as financial midwives to a new issue. Usually they play a
triple role: First they provide the company with procedural and financial advice, then
they buy the issue, and finally they resell it to the public. Established underwriters are
careful of their reputation and will not handle a new issue unless they believe the facts
have been presented fairly. Thus, in addition to handling the sale of a companys issue,
the underwriters in effect give their seal of approval to it. They prepare a registration
statement for the approval of the Securities and Exchange Commission (SEC). In addition
to registering the issue with the SEC, they need to check that the issue complies with
the so-called blue-sky laws of each state that regulate sales of securities within the state.
While the registration statement is awaiting approval, underwriters begin to firm up the
issue price. They arrange a road show to talk to potential investors. Immediately after
they receive clearance from the SEC, underwriters fix the issue price. After that they
enter into a firm commitment to buy the stock and then offer it to the public, when they
havent still found any reason not to do it.

Text 4: Process Description 1-4: Underwriters (original source [8]).

- 151 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.25: Model 1-3 as generated by our system.

- 152 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.26: Model 1-3 as created by a human modeler.

- 153 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.27: Model 1-4 as generated by our system.

- 154 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.28: Model 1-4 as created by a human modeler.

- 155 -

APPENDIX B DETAILED TEST DATA SETS

Appendix B.2. Models provided by the Technische Universität Berlin

At the beginning the customer perceives that her subscribed service has degraded. A list with all the
problem parameters is then sent to the Customer Service department of TELECO. At the customer service
an employee enters (based on the received data) a problem report into system T.. Then the problem report
is compared to the customer SLA to identify what the extent and the details of the service degradation
are. Based on this, the necessary counter measures are determined including their respective priorities.
An electronic service then determines the significance of the customer based on information that has
been collected during the history of the contractual relationship. In case the customer is premium, the
process will link to an extra problem fix process (this process will not be detailed here). In case the
customer is of certain significance which would affect the counter measures previously decided upon,
the process goes back to re-prioritize these measures otherwise the process continues. Taking together
the information (i.e. contract commitment data + prioritized actions) a detailed problem report is
created. The detailed problem report is then sent to Service Management. Service Management deals
on a first level with violations of quality in services that are provided to customers. After receiving the
detailed problem report, Service management investigates whether the problem is analyzable at the level
of their department or whether the problem may be located at Resource Provisioning. In case Service
Management assesses the problem to be not analyzable by themselves, the detailed problem report is
sent out to Resource Provisioning. If Service Management is sure they can analyze it, they perform the
analysis and based on the outcome they create a trouble report that indicates the type of problem. After
Resource Provisioning receives the detailed problem report, it is checked whether there are any possible
problems. If no problems are detected, a notification about the normal service execution is created. If a
problem is detected this will be analyzed by Resource Provisioning and a trouble report is created. Either
trouble report or the normal execution notification will be included in a status report and sent back to
Service Management. Service Management then prepares the final status report based on the received
information. Subsequently it has to be determined what counter measures should be taken depending
on the information in the final status report. Three alternative process paths may be taken. For the
case that no problem was detected at all, the actual service performance is sent back to the Customer
Service. For the case that minor corrective actions are required, Service Management will undertake
corrective actions by themselves. Subsequently, the problem resolution report is created and then sent
out to Customer Service. After sending, this process path of Service Management ends. For the case that
automatic resource restoration from Resource Provisioning is required, Service Management must create a
request for automatic resource restoration. This message is then sent to Resource Provisioning. Resource
Provisioning has been on-hold and waiting for a restoration request but this must happen within 2 days
after the status report was sent out, otherwise Resource Provisioning terminates the process. After the
restoration request is received, all possible errors are tracked. Based on the tracked errors, all necessary
corrective actions are undertaken by Resource Provisioning. Then a trouble-shooting report is created.
This report is sent out to Service Management; then the process ends. The trouble-shooting report is
received by Service Management and this information goes then into the creation of the problem resolution
report just as described for ii). Customer Service either receives the actual service performance (if there
was no problem) or the problem resolution report. Then, two concurrent activities are triggered, i.e. i) a
report is created for the customer which details the current service performance and the resolution of the
problem, and ii) an SLA violation rebate is reported to Billing & Collections who will adjust the billing.
The report for the customer is sent out to her. After all three activities are completed the process ends
within Customer Service. After the customer then receives the report about service performance and
problem resolution from Customer Service, the process flow at the customer also ends.

Text 5: Process Description 2-1: SLA Violation.

- 156 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.29: Model 2-1 as generated by our system (part 1).

- 157 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.30: Model 2-1 as generated by our system (part 2).

- 158 -

APPENDIX B DETAILED TEST DATA SETS

sl
av

_i
de

al

Customer

Se
rv

ic
e

d
eg

ra
d

at
io

n
p

er
ce

iv
ed

Se
n

d
 l

is
t

o
f

p
ro

b
le

m

p
ar

am
et

er
s

C
u

st
o

m
er

p

ro
b

le
m

re

so
lu

ti
o

n

re
p

o
rt

Li
st

 o
f

p
ro

b
le

m
p

ar
am

et
er

s

A
ct

u
al

 s
er

vi
ce

p

er
fo

rm
an

ce
Pr

o
b

le
m

re

so
lu

ti
o

n

re
p

o
rt

D
et

ai
le

d
p

ro
b

le
m

re

p
o

rt

Customer service (TELECO)

En
te

r
p

ro
b

le
m

re

p
o

rt

D
et

er
m

in
e

si
g

n
if

ic
an

ce
 o

f
th

e
cu

st
o

m
er

 (
b

as
ed

 o
n

cu

st
o

m
er

 d
at

a
in

th

e
p

ro
b

le
m

 r
ep

o
rt

)

C
o

m
p

ar
e

cu
st

o
m

er
 S

LA

an
d

 p
ro

b
le

m

re
p

o
rt

C
re

at
e

d
et

ai
le

d

p
ro

b
le

m
 r

ep
o

rt
 i

n
cl

.
co

n
tr

ac
t

co
m

m
it

m
en

t
d

at
a

+
 p

ri
o

ri
ti

ze
d

ac

ti
o

n
s

D
et

er
m

in
e

co
u

n
te

r
m

ea
su

re
s

in
cl

u
.

p
ri

o
ri

ti
es

Pr
o

b
le

m

re
p

o
rt

Pr
o

b
le

m

re
p

o
rt

Pr
em

iu
m

cu
st

o
m

er
?

G
o

 t
o

 p
ro

b
le

m
 f

ix
 p

ro
ce

ss
fo

r
p

re
m

iu
m

 c
u

st
o

m
er

s

C
re

at
e

re
p

o
rt

 f
o

r
cu

st
o

m
er

 a
b

o
u

t
p

er
fo

rm
an

ce
 a

n
d

 p
ro

b
le

m

re
so

lu
ti

o
n

R
ep

o
rt

 S
LA

 v
io

la
ti

o
n

re

b
at

e
to

 B
ill

lin
g

 &

C
o

le
ct

io
n

s
fo

r
b

ill
in

g

ad
ju

st
m

en
t

Pe
rf

o
rm

p

la
u

si
b

ili
ty

ch

ec
k

Pr
o

b
le

m
re

p
o

rt
 O

K
?

Pr
o

b
le

m

re
p

o
rt

Service management (TELECO)

In
ve

st
ig

at
e

w
h

et
h

er

p
ro

b
le

m
 i

s
an

al
yz

ab
le

at

 t
h

is
 l

ev
el

A
n

al
yz

ab
le

h
er

e?

C
re

at
e

tr
o

u
b

le

re
p

o
rt

 i
n

d
ic

at
in

g

th
e

ty
p

e
o

f
p

ro
b

le
m

Pe
rf

o
rm

p

ro
b

le
m

an

al
ys

is

Pr
ep

ar
e

fi
n

al

st
at

u
s

re
p

o
rt

D
et

er
m

in
e

co
u

n
te

r
m

ea
su

re
s

b
as

ed

o
n

 t
h

e
fi

n
al

 s
ta

tu
s

re
p

o
rt

T
ro

u
b

le

re
p

o
rt

W
h

at
 p

ro
b

le
m

w
as

 d
et

ec
te

d
?

Fi
n

al
 s

ta
tu

s
re

p
o

rt

Se
n

d
 o

u
t

ac
tu

al
 s

er
vi

ce

p
er

fo
rm

an
ce

U
n

d
er

ta
k

e
co

rr
ec

ti
ve

ac

ti
o

n
s

C
re

at
e

re
q

u
es

t
fo

r
au

to
m

at
ic

re

so
u

rc
e

re
st

o
ra

ti
o

n

C
re

at
e

p
ro

b
le

m
 r

es
o

l
u

ti
o

n
 r

ep
o

rt

Resource provisioning (TELECO)

C
h

ec
k

 f
o

r
p

o
ss

ib
le

p

ro
b

le
m

s
Pr

o
b

le
m

d
et

ec
te

d
?

C
re

at
e

n
o

ti
fi

ca
ti

o
n

 o
f

n
o

rm
al

 s
er

vi
ce

ex

ec
u

ti
o

n

A
n

al
yz

e
in

d

et
ai

l
p

ro
b

le
m

ca

u
se

s

C
re

at
e

st
at

u
s

re
p

o
rt

C
re

at
e

tr
o

u
b

le

re
p

o
rt

W
ai

t
2

 d
ay

s

T
ra

ck
 e

rr
o

rs
U

n
d

er
ta

k
e

co
rr

ec
ti

ve

ac
ti

o
n

s

C
re

at
e

tr
o

u
b

le
sh

o
o

ti
n

g
 r

ep
o

rt

St
at

u
s

re
p

o
rt

R
eq

u
es

t
D

et
ai

le
d

p

ro
b

le
m

re

p
o

rt

T
ro

u
b

le

sh
o

o
ti

n
g

re

p
o

rt

N
O

YES

Y
ES

N
O

YES

NO

NONE

M
in

o
r

co
rr

ec
ti

ve
ac

ti
o

n
s

re
q

u
ir

ed

Resource
restoration

 required

Y
ES

NO

O
liv

er
 H

ol
sc

hk
e

1
of

 1
21

.0
7.

20
10

Figure B.31: Model 2-1 as created by a human modeler (part1).

- 159 -

APPENDIX B DETAILED TEST DATA SETS

sl
av

_i
de

al

Customer

Se
rv

ic
e

d
eg

ra
d

at
io

n
p

er
ce

iv
ed

Se
n

d
 l

is
t

o
f

p
ro

b
le

m

p
ar

am
et

er
s

C
u

st
o

m
er

p

ro
b

le
m

re

so
lu

ti
o

n

re
p

o
rt

Li
st

 o
f

p
ro

b
le

m
p

ar
am

et
er

s

A
ct

u
al

 s
er

vi
ce

p

er
fo

rm
an

ce
Pr

o
b

le
m

re

so
lu

ti
o

n

re
p

o
rt

D
et

ai
le

d
p

ro
b

le
m

re

p
o

rt

Customer service (TELECO)

En
te

r
p

ro
b

le
m

re

p
o

rt

D
et

er
m

in
e

si
g

n
if

ic
an

ce
 o

f
th

e
cu

st
o

m
er

 (
b

as
ed

 o
n

cu

st
o

m
er

 d
at

a
in

th

e
p

ro
b

le
m

 r
ep

o
rt

)

C
o

m
p

ar
e

cu
st

o
m

er
 S

LA

an
d

 p
ro

b
le

m

re
p

o
rt

C
re

at
e

d
et

ai
le

d

p
ro

b
le

m
 r

ep
o

rt
 i

n
cl

.
co

n
tr

ac
t

co
m

m
it

m
en

t
d

at
a

+
 p

ri
o

ri
ti

ze
d

ac

ti
o

n
s

D
et

er
m

in
e

co
u

n
te

r
m

ea
su

re
s

in
cl

u
.

p
ri

o
ri

ti
es

Pr
o

b
le

m

re
p

o
rt

Pr
o

b
le

m

re
p

o
rt

Pr
em

iu
m

cu
st

o
m

er
?

G
o

 t
o

 p
ro

b
le

m
 f

ix
 p

ro
ce

ss
fo

r
p

re
m

iu
m

 c
u

st
o

m
er

s

C
re

at
e

re
p

o
rt

 f
o

r
cu

st
o

m
er

 a
b

o
u

t
p

er
fo

rm
an

ce
 a

n
d

 p
ro

b
le

m

re
so

lu
ti

o
n

R
ep

o
rt

 S
LA

 v
io

la
ti

o
n

re

b
at

e
to

 B
ill

lin
g

 &

C
o

le
ct

io
n

s
fo

r
b

ill
in

g

ad
ju

st
m

en
t

Pe
rf

o
rm

p

la
u

si
b

ili
ty

ch

ec
k

Pr
o

b
le

m
re

p
o

rt
 O

K
?

Pr
o

b
le

m

re
p

o
rt

Service management (TELECO)

In
ve

st
ig

at
e

w
h

et
h

er

p
ro

b
le

m
 i

s
an

al
yz

ab
le

at

 t
h

is
 l

ev
el

A
n

al
yz

ab
le

h
er

e?

C
re

at
e

tr
o

u
b

le

re
p

o
rt

 i
n

d
ic

at
in

g

th
e

ty
p

e
o

f
p

ro
b

le
m

Pe
rf

o
rm

p

ro
b

le
m

an

al
ys

is

Pr
ep

ar
e

fi
n

al

st
at

u
s

re
p

o
rt

D
et

er
m

in
e

co
u

n
te

r
m

ea
su

re
s

b
as

ed

o
n

 t
h

e
fi

n
al

 s
ta

tu
s

re
p

o
rt

T
ro

u
b

le

re
p

o
rt

W
h

at
 p

ro
b

le
m

w
as

 d
et

ec
te

d
?

Fi
n

al
 s

ta
tu

s
re

p
o

rt

Se
n

d
 o

u
t

ac
tu

al
 s

er
vi

ce

p
er

fo
rm

an
ce

U
n

d
er

ta
k

e
co

rr
ec

ti
ve

ac

ti
o

n
s

C
re

at
e

re
q

u
es

t
fo

r
au

to
m

at
ic

re

so
u

rc
e

re
st

o
ra

ti
o

n

C
re

at
e

p
ro

b
le

m
 r

es
o

l
u

ti
o

n
 r

ep
o

rt

Resource provisioning (TELECO)

C
h

ec
k

 f
o

r
p

o
ss

ib
le

p

ro
b

le
m

s
Pr

o
b

le
m

d
et

ec
te

d
?

C
re

at
e

n
o

ti
fi

ca
ti

o
n

 o
f

n
o

rm
al

 s
er

vi
ce

ex

ec
u

ti
o

n

A
n

al
yz

e
in

d

et
ai

l
p

ro
b

le
m

ca

u
se

s

C
re

at
e

st
at

u
s

re
p

o
rt

C
re

at
e

tr
o

u
b

le

re
p

o
rt

W
ai

t
2

 d
ay

s

T
ra

ck
 e

rr
o

rs
U

n
d

er
ta

k
e

co
rr

ec
ti

ve

ac
ti

o
n

s

C
re

at
e

tr
o

u
b

le
sh

o
o

ti
n

g
 r

ep
o

rt

St
at

u
s

re
p

o
rt

R
eq

u
es

t
D

et
ai

le
d

p

ro
b

le
m

re

p
o

rt

T
ro

u
b

le

sh
o

o
ti

n
g

re

p
o

rt

N
O

YES

Y
ES

N
O

YES

NO

NONE

M
in

o
r

co
rr

ec
ti

ve
ac

ti
o

n
s

re
q

u
ir

ed

Resource
restoration

 required

Y
ES

NO

O
liv

er
 H

ol
sc

hk
e

1
of

 1
21

.0
7.

20
10

Figure B.32: Model 2-1 as created by a human modeler (part 2).

- 160 -

APPENDIX B DETAILED TEST DATA SETS

The process is initiated by a switch-over request. In doing so, the customer transmits his data to the
customer service department of the company. Customer service is a shared service center between the
departments Sales and Distribution. The customer data is received by customer service and based on
this data a customer data object is entered into the CRM system. After customer data has been entered
it should then be compared with the internal customer data base and checked for completeness and
plausibility. In case of any errors these should be corrected on the basis of a simple error list. The
comparison of data is done to prevent individual customer data being stored multiple times. In case the
customer does not exist in the customer data base, a new customer object is being created which will
remain the data object of interest during the rest of the process flow. This object consists of data elements
such as the customers name and address and the assigned power gauge. The generated customer object
is then used, in combination with other customer data to prepare the contract documents for the power
supplier switch (including data such as bank connection, information on the selected rate, requested date
of switch-over). In the following an automated check of the contract documents is carried out within
the CIS (customer information system) in order to confirm their successful generation. In case of a
negative response, i.e. the contract documents are not (or incorrectly) generated, the causing issues are
being analyzed and resolved. Subsequently the contract documents are generated once again. In case
of a positive response a confirmation document is sent out to the customer stating that the switch-over
to the new supplier can be executed. A request to the grid operator is automatically sent out by the
CIS. It puts the question whether the customer may be supplied by the selected supplier in the future.
The switch-over request is checked by the grid operator for supplier concurrence, and the grid operator
transmits a response comment. In the case of supplier concurrence the grid operator would inform all
involved suppliers and demand the resolution of the conflict. The grid operator communicates with the old
supplier and carries out the termination of the sales agreement between the customer and the old supplier
(i.e. the customer service (of the new supplier) does not have to interact with the old supplier regarding
termination). If there are not any objections by the grid operator (i.e. no supplier concurrence), customer
service creates a CIS contract. The customer then has the chance to check the contract details and based
on this check may decide to either withdraw from the switch contract or confirm it. Depending on the
customers acceptance/rejection the process flow at customer service either ends (in case of withdrawal)
or continues (in case of a confirmation). An additional constraint is that the customer can only withdraw
from the offered contract within 7 days after the 7th day the contract will be regarded as accepted and the
process continues. The confirmation message by the customer is therefore not absolutely necessary (as it
will count as accepted after 7 days in any way) but it can speed up the switch process. On the switch-date,
but no later than 10 days after power supply has begun, the grid operator transmits the power meter
data to the customer service and the old supplier via messages containing a services consumption report.
At the same time, the grid operator computes the final billing based on the meter data and sends it to
the old supplier. Likewise the old supplier creates and sends the final billing to the customer. For the
customer as well as the grid operator the process ends then. After receiving the meter data customer
service imports the meter data to systems that require the information. The process of winning a new
customer ends here.

Text 6: Process Description 2-2: Supplier Switch.

- 161 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.33: Model 2-2 as generated by our system (part 1).

- 162 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.34: Model 2-2 as generated by our system (part 2).

- 163 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.35: Model 2-2 as created by a human modeler (part1).

- 164 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.36: Model 2-2 as created by a human modeler (part 2).

- 165 -

APPENDIX B DETAILED TEST DATA SETS

Appendix B.3. Models provided by the Queensland University of Technology

The party sends a warrant possession request asking a warrant to be released. The Client
Service Back Office as part of the Small Claims Registry Operations receives the request
and retrieves the SCT file. Then, the SCT Warrant Possession is forwarded to Queensland
Police. The SCT physical file is stored by the Back Office awaiting a report to be sent by
the Police. When the report is received, the respective SCT file is retrieved. Then, Back
Office attaches the new SCT document, and stores the expanded SCT physical file. After
that, some other MC internal staff receives the physical SCT file (out of scope).

Text 7: Process Description 3-1: 2009-1 MC Finalise SCT Warrant Posession.

Each morning, the files which have yet to be processed need to be checked, to make sure
they are in order for the court hearing that day. If some files are missing, a search is
initiated, otherwise the files can be physically tracked to the intended location. Once all
the files are ready, these are handed to the Associate, and meantime the Judges Lawlist
is distributed to the relevant people. Afterwards, the directions hearings are conducted.

Text 8: Process Description 3-2: 2009-2 Conduct Directions Hearing.

After a claim is registered, it is examined by a claims officer. The claims officer then
writes a ”settlement recommendation”. This recommendation is then checked by a senior
claims officer who may mark the claim as ”OK” or ”Not OK”. If the claim is marked as
”Not OK”, it is sent back to the claims officer and the recommendation is repeated. If
the claim is OK, the claim handling process proceeds.

Text 9: Process Description 3-3: 2009-3 Repetition - Cycles.

- 166 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.37: Model 3-1 as generated by our system.

- 167 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.38: Model 3-1 as created by a human modeler.

- 168 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.39: Model 3-2 as generated by our system.

Figure B.40: Model 3-2 as created by a human modeler.

Figure B.41: Model 3-3 as generated by our system.

Figure B.42: Model 3-3 as created by a human modeler.

- 169 -

APPENDIX B DETAILED TEST DATA SETS

In the context of a claim handling process, it is sometimes necessary to send a question-
naire to the claimant to gather additional information. The claimant is expected to return
the questionnaire within five days. If no response is received after five days, a reminder is
sent to the claimant. If after another five days there is still no response, another reminder
is sent and so on until the completed questionnaire is received.

Text 10: Process Description 3-4: 2009-4 Event-based Gateways.

Figure B.43: Model 3-4 as generated by our system.

Figure B.44: Model 3-4 as created by a human modeler.

- 170 -

APPENDIX B DETAILED TEST DATA SETS

Mail from the party is collected on a daily basis by the Mail Processing Unit. Within this
unit, the Mail Clerk sorts the unopened mail into the various business areas. The mail
is then distributed. When the mail is received by the Registry, it is opened and sorted
into groups for distribution, and thus registered in a manual incoming Mail Register.
Afterwards, the Assistant Registry Manager within the Registry performs a quality check.
If the mail is not compliant, a list of requisition explaining the reason for rejection is
compiled and sent back to the party. Otherwise, the matter details (types of action) are
captured and provided to the Cashier, who takes the applicable fees attached to the mail.
At this point, the Assistant Registry Manager puts the receipt and copied documents into
an envelope and posts it to the party. Meantime, the Cashier captures the Party Details
and prints the Physical Court File.

Text 11: Process Description 3-5: 2009-5 P&E - Lodge Originating Document by Post.

When a claim is received, it is first checked whether the claimant is insured by the or-
ganization. If not, the claimant is informed that the claim must be rejected. Otherwise,
the severity of the claim is evaluated. Based on the outcome (simple or complex claims),
relevant forms are sent to the claimant. Once the forms are returned, they are checked
for completeness. If the forms provide all relevant details, the claim is registered in the
Claims Management system, which ends the Claims Notification process. Otherwise, the
claimant is informed to update the forms. Upon reception of the updated forms, they are
checked again.

Text 12: Process Description 3-6: 2010-1 Claims Notification.

- 171 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.45: Model 3-5 as generated by our system.

- 172 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.46: Model 3-5 as created by a human modeler.

- 173 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.47: Model 3-6 as generated by our system.

Figure B.48: Model 3-6 as created by a human modeler.

The Police Report related to the car accident is searched within the Police Report database
and put in a file together with the Claim Documentation. This file serves as input to a
claims handler who calculates an initial claim estimate. Then, the claims handler creates
an Action Plan based on an Action Plan Checklist available in the Document Management
system. Based on the Action Plan, a claims manager tries to negotiate a settlement on
the claim estimate. The claimant is informed of the outcome, which ends the process.

Text 13: Process Description 3-7: 2010-2 Claims Creation.

The Police Report related to the car accident is searched within the Police Report database
and put in a file together with the Claim Documentation. This file serves as input to a
claims handler who calculates an initial claim estimate. Then, the claims handler creates
an Action Plan based on an Action Plan Checklist available in the Document Management
system. Based on the Action Plan, a claims manager tries to negotiate a settlement on
the claim estimate. The claimant is informed of the outcome, which ends the process.

Text 14: Process Description 3-8: 2010-3 Claims Handling Process.

- 174 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.49: Model 3-7 as generated by our system.

Figure B.50: Model 3-7 as created by a human modeler.

- 175 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.51: Model 3-8 as generated by our system.

- 176 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.52: Model 3-8 as created by a human modeler.

- 177 -

APPENDIX B DETAILED TEST DATA SETS

Appendix B.4. Models provided by the Technische Universiteit Eindhoven

The intake workflow starts with a notice by telephone at the secretarial office of the mental health care
institute. This notice is done by the family doctor of somebody who is in need of mental treatment. The
secretarial worker inquires after the name and residence of the patient. On the basis of this information,
the doctor is put through to the nursing officer responsible for the part of the region that the patient
lives in. The nursing officer makes a full inquiry into the mental, health, and social state of the patient in
question. This information is recorded on a registration form. At the end of the conversation, this form
is handed in at the secretarial office of the institute. Here, the information on the form is stored in the
information system and subsequently printed. For new patients, a patient file is created. The registration
form as well as the print from the information system are stored in the patient file. Patient files are kept
at the secretarial office and may not leave the building. At the secretarial office, two registration cards
are produced for respectively the future first and second intaker of the patient. The registration card
contains a set of basic patient data. The new patient is added on the list of new notices. Halfway the
week, at Wednesday, a staff meeting of the entire medical team takes place. The medical team consists
of social-medical workers, physicians, and a psychiatrist. At this meeting, the team-leader assigns all
new patients on the list of new notices to members of the team. Each patient will be assigned to a
social-medical worker, who will act as the first intaker of the patient. One of the physicians will act as
the second intaker. In assigning intakers, the teamleader takes into account their expertise, the region
they are responsible for, earlier contacts they might have had with the patient, and their case load. The
assignments are recorded on an assignment list which is handed to the secretarial office. For each new
assignment, it is also determined whether the medical file of the patient is required. This information is
added to the assignment list. The secretarial office stores the assignment of each patient of the assignment
list in the information system. It passes the produced registration cards to the first and second intaker
of each newly assigned patient. An intaker keeps this registration with him at times when visiting the
patient and in his close proximity when he is at the office. For each patient for which the medical file is
required, the secretarial office prepares and sends a letter to the family doctor of the patient, requesting
for a copy of the medical file. As soon as this copy is received, the secretarial office will inform the second
intaker and add the copy to the patient file. The first intaker plans a meeting with the patient as soon
as this is possible. During the first meeting, the patient is examined using a standard checklist which is
filled out. Additional observations are registered in a personal notebook. After a visit, the first intaker
puts a copy of these notes in the file of a patient. The standard checklist is also added to the patient’s
file. The second intaker plans the first meeting only after the medical information of the physician if
required has been received. Physicians use dictaphones to record their observations made during meetings
with patients. The secretarial office types out these tapes, after which the information is added to the
patient file. As soon as the meetings of the first and second intaker with the patient have taken place, the
secretarial office puts the patient on the list of patients that reach this status. For the staff meeting on
Wednesday, they provide the team-leader with a list of these patients. For each of these patients, the first
and second intaker together with the team-leader and the attending psychiatrist formulate a treatment
plan. This treatment plan formally ends the intake procedure.

Text 15: Process Description 4-1: Intaker Workflow.

- 178 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.53: Model 4-1 as generated by our system (part 1).

- 179 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.54: Model 4-1 as generated by our system (part 2).

- 180 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.55: Model 4-1 as created by a human modeler.

- 181 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.56: Model 5-1 as generated by our system.

Appendix B.5. Models taken from BPM Vendor Tutorials

The loan approval process starts by receiving a customer request for a loan amount. The
risk assessment Web service is invoked to assess the request. If the loan is small and
the customer is low risk, the loan is approved. If the customer is high risk, the loan is
denied. If the customer needs further review or the loan amount is for $10,000 or more,
the request is sent to the approver Web service. The customer receives feedback from the
assessor or approver.

Text 16: Process Description 5-1: Active VOS Tutorial.

The process of Vacations Request starts when any employee of the organization submits
a vacation request. Once the requirement is registered, the request is received by the
immediate supervisor of the employee requesting the vacation. The supervisor must ap-
prove or reject the request. If the request is rejected, the application is returned to the
applicant/employee who can review the rejection reasons. If the request is approved a
notification is generated to the Human Resources Representative, who must complete the
respective management procedures.

Text 17: Process Description 5-2: BizAgi Tutorial 1.

- 182 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.57: Model 5-1 as created by a human modeler.

Figure B.58: Model 5-2 as generated by our system.

- 183 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.59: Model 5-2 as created by a human modeler.

The process of an Office Supply Request starts when any employee of the organization
submits an office supply request. Once the requirement is registered, the request is re-
ceived by the immediate supervisor of the employee requesting the office supplies. The
supervisor must approve or ask for a change, or reject the request. If the request is re-
jected the process will end. If the request is asked to make a change then it is returned
to the petitioner/employee who can review the comments for the change request. If the
request is approved it will go to the purchase department that will be in charge of making
quotations (using a subprocess) and select a vendor. If the vendor is not valid in the
system the purchase department will have to choose a different vendor. After a vendor
is selected and confirmed, the system will generate and send a purchase order and wait
for the product to be delivered and the invoice received. In any case the system will send
a notification to let the user know what the result was. In any of the cases, approval,
rejection or change required the system will send the user a notification.

Text 18: Process Description 5-3: BizAgi Tutorial 2.

- 184 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.60: Model 5-3 as generated by our system.

- 185 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.61: Model 5-3 as created by a human modeler.

- 186 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.62: Model 5-4 as generated by our system.

- 187 -

APPENDIX B DETAILED TEST DATA SETS

An employee purchases a product or service he requires. For instance, a sales person on
a trip rents a car. The employee submits an expense report with a list of items, along
with the receipts for each item. A supervisor reviews the expense report and approves or
rejects the report. Since the company has expense rules, there are circumstances where
the supervisor can accept or reject the report upon first inspection. These rules could be
automated, to reduce the workload on the supervisor. If the supervisor rejects the report,
the employee, who submitted it, is given a chance to edit it, for example to correct errors or
better describe an expense. If the supervisor approves the report, it goes to the treasurer.
The treasurer checks that all the receipts have been submitted and match the items on
the list. If all is in order, the treasurer accepts the expenses for processing (including, e.g.
, payment or refund, and accounting). If receipts are missing or do not match the report,
he sends it back to the employee. If a report returns to the employee for corrections,
it must again go to a supervisor, even if the supervisor previously approved the report.
If the treasurer accepts the expenses for processing, the report moves to an automatic
activity that links to a payment system. The process waits for the payment confirmation.
After the payment is confirmed, the process ends.

Text 19: Process Description 5-4: Oracle Tutorial.

Figure B.63: Model 5-4 as created by a human modeler.

- 188 -

APPENDIX B DETAILED TEST DATA SETS

Appendix B.6. Models provided by the inubit AG

As a basic principle, ACME AG receives invoices on paper or fax. These are received
by the Secretariat in the central inbox and forwarded after a short visual inspection to
an accounting employee. In ”ACME Financial Accounting”, a software specially devel-
oped for the ACME AG, she identifies the charging suppliers and creates a new instance
(invoice). She then checks the invoice items and notes the corresponding cost center at
the ACME AG and the related cost center managers for each position on a separate form
(”docket”).The docket and the copy of the invoice go to the internal mail together and are
sent to the first cost center manager to the list. He reviews the content for accuracy after
receiving the copy of the invoice. Should everything be in order, he notes his code one on
the docket (”accurate position - AP”) and returns the copy of the invoice to the internal
mail. From it, the copy of the invoice is passed on to the next cost center manager, based
on the docket, or if all items are marked correct, sent back to accounting. Therefore, the
copy of invoice and the docket gradually move through the hands of all cost center man-
agers until all positions are marked as completely accurate. However, if inconsistencies
exist, e.g. because the ordered product is not of the expected quantity or quality, the cost
center manager rejects the AP with a note and explanatory statement on the docket, and
the copy of the invoice is sent back to accounting directly. Based on the statements of
the cost center managers, she will proceede with the clarification with the vendor, but, if
necessary, she consults the cost center managers by telephone or e-mail again. When all
inconsistencies are resolved, the copy of the invoice is sent to the cost center managers
again, and the process continues. After all invoice items are AP, the accounting employee
forwards the copy of the invoice to the commercial manager. He makes the commercial
audit and issues the approval for payment. If the bill amount exceeds EUR 20,000, the
Board wants to check it again (4-eyes-principle). The copy of the invoice including the
docket moves back to the accounting employee in the appropriate signature file. Should
there be a complaint during the commercial audit, it will be resolved by the accounting
employee with the supplier. After the commercial audit is successfully completed, the ac-
counting employee gives payment instructions and closes the instance in ”ACME financial
accounting”.

Text 20: Process Description 6-1: ACME.

- 189 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.64: Model 6-1 as generated by our system (part 1).

- 190 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.65: Model 6-1 as generated by our system (part 2).

- 191 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.66: Model 6-1 as created by a human modeler.

- 192 -

APPENDIX B DETAILED TEST DATA SETS

The process starts periodically on the first of each month, when Assembler AG places an
order with the supplier in order to request more product parts. a) Assembler AG sends
the order to the supplier. b) The supplier processes the order. c) The supplier sends an
invoice to Assembler AG. d) Assembler AG receives the invoice.

Text 21: Process Description 6-2: inubit AG Tutorial.

Figure B.67: Model 6-2 as generated by our system.

Figure B.68: Model 6-2 as created by a human modeler.

- 193 -

APPENDIX B DETAILED TEST DATA SETS

Every time we get a new order from the sales department, first, one of my masters
determines the necessary parts and quantities as well as the delivery date. Once that
information is present, it has to be entered into our production planning system (PPS).
It optimizes our production processes and creates possibly uniform work packages so
that the setup times are minimized. Besides, it creates a list of parts to be procured.
Unfortunately it is not coupled correctly to our Enterprise Resource Planning system
(ERP), so the data must be transferred manually. By the way, that is the second step.
Once all the data is present, we need to decide whether any parts are missing and must
be procured or if this is not necessary. Once production is scheduled to start, we receive
a notice from the system and an employee takes care of the implementation.Finally, the
order will be checked again for its quality.

The first step is to determine contact details of potential customers. This can be achieved
in several ways. Sometimes, we buy details for cold calls, sometimes, our marketing staff
participates in exhibitions and sometimes, you just happen to know somebody, who is
interested in the product. Then we start calling the customer. That is done by the call
center staff. They are determining the contact person and the budget which would be
available for the project. Of course, asking the customer whether he is generally interested
is also important. If this is not the case, we leave him alone, except if the potential project
budget is huge. Then the head of development personally tries to acquire the customer.
If the customer is interested in the end, the next step is a detailed online presentation.
It is given either by a sales representative or by a pre-sales employee in case of a more
technical presentation. Afterwards we are waiting for the customer to come back to us. If
we are not contacted within 2 weeks, a sales representative is calling the customer. The
last phase is the creation of a quotation.

Text 22: Process Description 6-4: Turbopixel.

- 194 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.69: Model 6-3 as generated by our system.

- 195 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.70: Model 6-3 as created by a human modeler.

- 196 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.71: Model 6-4 as generated by our system.

- 197 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.72: Model 6-4 as created by a human modeler.

- 198 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.73: Model 7-1 as generated by our system.

Figure B.74: Model 7-1 as created by a human modeler.

Appendix B.7. Models provided by BPM Practitioners

First, the Manager checks the open leads. Afterwards, he selects the top five ones. He
then tells his Sales Assistant to call the contact person of the leads. The Sales Assistant
calls each customer. If someone is interested, he sends a note to the Manager. The
Manager then processes the lead. Otherwise, he calls the next customer.

Text 23: Process Description 7-1: Calling Leads.

- 199 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.75: Model 8-1 as generated by our system.

Figure B.76: Model 8-1 as created by a human modeler.

Appendix B.8. Models taken from the BPMN practical handbook

The process is triggered by the demand of a functional department to fill a post. The post
is advertised, applicants apply, the applications are checked and the post is filled. The
process finishes when the post was filled, precisely through the conclusion of a contract
of employment.

Text 24: Process Description 8-1: HR Process - Simple.

- 200 -

APPENDIX B DETAILED TEST DATA SETS

When a vacancy is reported to me, I create a job description from the information.
Sometimes there is still confusion in the message, then I must ask the Department again.
I am submitting the job description for consideration and waiting for the approval. But,
it can also happen that the department does not approve it, but rejects it, and requests
a correction. Then I correct the description and submit it again for consideration. If the
description is finally approved, I post the job.

Text 25: Process Description 8-2: HR Process - HR Department.

Figure B.77: Model 8-2 as generated by our system.

Figure B.78: Model 8-2 as created by a human modeler.

When I have detected a number of personnel requirements, I report the vacancy to the
Personnel Department. Then I wait to get the job description for review before it is
advertized. Under certain circumstances, I must ask for corrections again, otherwise I
approve the job description. Sometimes it also happens that the colleague from the HR
department still has questions about the tasks and requirements before he can describe
the job. Then I am available for clarifications, of course.

Text 26: Process Description 8-3: HR Process - Functional Department.

- 201 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.79: Model 8-3 as generated by our system.

Figure B.80: Model 8-3 as created by a human modeler.

- 202 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.81: Model 9-1 as generated by our system.

Appendix B.9. Models taken from the BPMN Modeling an Reference Guide

When I have detected a number of personnel requirements, I report the vacancy to the
Personnel Department. Then I wait to get the job description for review before it is
advertized. Under certain circumstances, I must ask for corrections again, otherwise I
approve the job description. Sometimes it also happens that the colleague from the HR
department still has questions about the tasks and requirements before he can describe
the job. Then I am available for clarifications, of course.

Text 27: Process Description 9-1: Exercise 1.

- 203 -

APPENDIX B DETAILED TEST DATA SETS

© BPM Focus 2008

Exercise 1

Every weekday morning, the database is backed up and then it is checked to see whether
the “Account Defaulter” table has new records. If no new records are found, then the
process should check the CRM system to see whether new returns have been filed. If new
returns exist, then register all defaulting accounts and customers. If the defaulting client
codes have not been previously advised, produce another table of defaulting accounts and
send to account management. All of this must be completed by 2:30 pm, if it is not, then an
alert should be sent to the supervisor. Once the new defaulting account report has been
completed, check the CRM system to see whether new returns have been filed. If new
returns have been filed, reconcile with the existing account defaulters table. This must be
completed by 4:00 pm otherwise a supervisor should be sent a message.

Backup
Database

New
Records On

Account
Defaulter Check CRM

System
Yes

No

Register
Defaulting

Customers &
Accounts

Previous
Defaulting
Clients?

Alert
Supervisor

Reconcile
With Account

Defaulters
Table

Alert
Supervisor

Weekday
Morning

Previous Defaulting Clients?

Add To
Previous

Defaulting
Client Table

Send To
Account

Management

4:00 pm

2:30 pm

Previous
Defaulter?

Yes

No

Deal With Each Instance First
New

Previous
Defaulter
Table?

Yes

No

This answer recognizes that there is a difference between dealing with the batch
activity (backing up the database) and dealing with the each instance asking
whether they have been previous defaulters. It also uses a series of parallel Timer
Intermediate Events to send the alert, in combination with the Terminate End Events.

Figure B.82: Model 9-1 as created by a human modeler.

The Customer Service Representative sends a Mortgage offer to the customer and waits
for a reply. If the customer calls or writes back declining the mortgage, the case details are
updated and the work is then archived prior to cancellation. If the customer sends back
the completed offer documents and attaches all prerequisite documents then the case is
moved to administration for completion. If all pre-requisite documents are not provided
a message is generated to the customer requesting outstanding documents. If no answer
is received after 2 weeks, the case details are updated prior to archive and cancellation.

Text 28: Process Description 9-2: Exercise 2.

In November of each year, the Coordination Unit at the Town Planning Authority drafts a
schedule of meetings for the next calendar year and adds draft dates to all calendars. The
Support Officer then checks the dates and suggests modifications. The Coordination Unit
then rechecks all dates and looks for potential conflicts. The final schedule of meeting
dates is sent to all the independent Committee Members by email, who then check their
diaries and advise the Coordination Unit of any conflicts.

Text 29: Process Description 9-3: Exercise 3a.

- 204 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.83: Model 9-2 as generated by our system.

Exercise 2

The Customer Service Representative sends a Mortgage offer to the customer and waits for
a reply. If the customer calls or writes back declining the mortgage, the case details are
updated and the work is then archived prior to cancellation. If the customer sends back the
completed offer documents and attaches all prerequisite documents then the case is moved
to administration for completion. If all pre‐requisite documents are not provided a message
is generated to the customer requesting outstanding documents. If no answer is received
after 2 weeks, the case details are updated prior to archive and cancellation.

Send Out
Mortgage

Offer
2 Weeks

Not
Interested

Completed
Offer Docs
Received

Update Case
File and
Archive

C
u

st
om

e
r

S
e

rv
ic

e
 R

e
pr

es
en

ta
tiv

e

A
d

m
in

is
tr

at
io

n

All Docs
Available?

Yes

No

Assess
Mortgage

Details Request
Outstanding
Documents

Update Case
Details and

Archive

Finalize
Mortgage

Appllication

Documents
Received

2 Weeks

Mortgage In
System

A straightforward Event‐Based Gateway is at the core of this solution. Figure B.84: Model 9-2 as created by a human modeler.

- 205 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.85: Model 9-3 as generated by our system.

Exercise 3

In November of each year, the Coordination Unit at the Town Planning Authority drafts a
schedule of meetings for the next calendar year and adds draft dates to all calendars. The
Support Officer then checks the dates and suggests modifications. The Coordination Unit
then rechecks all dates and looks for potential conflicts. The final schedule of meeting dates
is sent to all the independent Committee Members by email, who then check their diaries
and advise the Coordination Unit of any conflicts. Once the dates are finalized (by the
Coordination Unit), the Support Officer updates all group calendars and creates meeting
folders for each meeting and ensures all appropriate documents are uploaded to system.
Committee Members are advised a week before each meeting to read all related
documents. The Committee Members hold their meeting, and the Support Office then
produces minutes including any Action Points for each Committee Member. Within 5
working days, the Coordination Unit must conduct a QA check on the minutes, which are
then sent to all Committee Members. The Support Officer then updates all departmental
records.

If the modeler tries to build this as one process it is inordinately difficult, yet if two
processes are used, the answer is obvious and relatively simple. Notice the use of
Message Flow to communicate between Pools (as the Committee Members work
outside of the Town Planning Authority).

C
o

m
m

itt
e

e
M

e
m

b
e

rs
T

ow
n

 P
la

n
n

in
g

A
u

th
o

ri
ty

C
o

o
rd

in
a

tio
n

U
n

it
S

u
p

p
o

rt
O

ff
ic

e
r

Part I – Exercise 3

Notice that the Meeting is indicated with a Group across the two Pools. We have also
used a None Intermediate Event to represent the Committee Members waiting for
the Meeting Minutes. Note that this Intermediate Event will not actually wait. It will
immediately trigger (pass through) and go to the Message Event, which will do the
actual waiting.

Figure B.86: Model 9-3 as created by a human modeler.

Once the dates are finalized (by the Coordination Unit), the Support Officer updates all
group calendars and creates meeting folders for each meeting and ensures all appropriate
documents are uploaded to system. Committee Members are advised a week before each
meeting to read all related documents. The Committee Members hold their meeting, and
the Support Office then produces minutes including any Action Points for each Committee
Member. Within 5 working days, the Coordination Unit must conduct a QA check on
the minutes, which are then sent to all Committee Members. The Support Officer then
updates all departmental records.

Text 30: Process Description 9-4: Exercise 3b.

- 206 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.87: Model 9-4 as generated by our system.

Create
Meeting
Folder

Upload All
Relevant

DocumentsS
up

po
rt

O
ffi

ce
r

C
om

m
itt

ee
M

e
m

b
er

s

Meeting Due 1 Week
Before Meeting

Remind Members
To Read

Documentation

Meeting
Reminder

Meeting
Takes Place

Attends
Meeting

Prepare
Meeting
Minutes

Meeting

C
oo

rd
in

at
io

n
U

ni
t

QA Check

5 Days

Remind
Coordination

Unit Send Minutes
To Members

Waiting On
Meeting Minutes

Send Minutes
To Members

Part II (Exercise 3)
Figure B.88: Model 9-4 as created by a human modeler.

- 207 -

APPENDIX B DETAILED TEST DATA SETS

Once the dates are finalized (by the Coordination Unit), the Support Officer updates all
group calendars and creates meeting folders for each meeting and ensures all appropriate
documents are uploaded to system. Committee Members are advised a week before each
meeting to read all related documents. The Committee Members hold their meeting, and
the Support Office then produces minutes including any Action Points for each Committee
Member. Within 5 working days, the Coordination Unit must conduct a QA check on
the minutes, which are then sent to all Committee Members. The Support Officer then
updates all departmental records.

Text 31: Process Description 9-5: Exercise 4.

Figure B.89: Model 9-5 as generated by our system.

Exercise 4

After the Expense Report is received, a new account must be created if the employee does
not already have one. The report is then reviewed for automatic approval. Amounts under
$200 are automatically approved, whereas amounts equal to or over $200 require approval
of the supervisor.

In case of rejection, the employee must receive a rejection notice by email. The
reimbursement goes to the employee’s direct deposit bank account. If the request is not
completed in 7 days, then the employee must receive an “approval in progress” email

If the request is not finished within 30 days, then the process is stopped and the employee
receives an email cancellation notice and must re‐submit the expense report.

While it is possible to show the Lanes and create an automated system support
environment, this answer sticks to the core process model. It uses the parallel Timer
Intermediate Event to create a race condition with the main process, which ends with
a Terminate End Event to win the race.

Figure B.90: Model 9-5 as created by a human modeler.

- 208 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.91: Model 9-6 as generated by our system.

- 209 -

APPENDIX B DETAILED TEST DATA SETS

After the Process starts, a Task is performed to locate and distribute any relevant existing
designs, both electrical and physical. Next, the design of the electrical and physical
systems starts in parallel. Any existing or previous Electrical and Physical Designs are
inputs to both Activities. Development of either design is interrupted by a successful
update of the other design. If interrupted, then all current work is stopped and that
design must restart. In each department (Electrical Design and Physical Design), any
existing designs are reviewed, resulting in an Update Plan for their respective designs
(i.e. one in Electrical and another in Physical). Using the Update Plan and the existing
Draft of the Electrical/Physical Design, a revised design is created. Once completed the
revised design is tested. If the design fails the test, then it is sent back to the first Activity
(in the department) to review and create a new Update Plan. If the design passes the
test, then it tells the other department that they need to restart their work. When both
of the designs have been revised, they are combined and tested. If the combined design
fails the test, then they are both sent back to the beginning to initiate another design
cycle. If the designs pass the test, then they are deemed complete and are then sent to
the manufacturing Process [a separate Process].

Text 32: Process Description 9-5: Exercise 4.

Create Electrical Design

Design
OK?

Locate and
Re-use
Designs

Review
Previous
Designs

Test Electrical
Design

Yes

No

Create Physical Design

Physical
Design [Draft]

New Physical
Design

New
Electrical
Design

Electrical
Design [Draft]

Update
Electrical
Design

Design
OK?Review

Previous
Designs

Test Physical
Design

Yes

No

New
Physicall
Design

Update
Physical
Design

New Electrical
Design

Restart Electrical Design

Restart Physical Design

Test
Complete

Design

Design
OK?

No

Update Plan
(Electrical)

Update Plan
(Physical)

Electrical Design
[Revised]

Physcial Design
[Revised]

Electrical Design
[Tested]

Physcial Design
[Tested]

Physical
Design [Draft]

Electrical
Design [Draft]

Figure B.92: Model 9-6 as created by a human modeler.

- 210 -

APPENDIX B DETAILED TEST DATA SETS

Abbr. Ger. Amplification Ger. Amplification Eng. Abbr. Eng.

L Letztverbraucher End consumer EC
LF Lieferant Supplier SP
MSB Messstellenbetreiber Metering point operator MPO
MSBA Messstellenbetreiber alt Metering point operator old MPOO
MSBN Messstellenbetreiber neu Metering point operator new MPO
MDL Messdienstleister Metering service provider MSP
MDLA Messdienstleister alt Metering service provider old MSPO
MDLN Messdienstleister neu Metering service provider new MSPN
NB Netzbetreiber Grid operator GO
AN Anschlussnutzer Power supply user PU
AG Angefragter Inquired person IP
AF Anfragender Inquirer INQ

Table B.11: List of abbreviations and translations used in the FNA Test Data Set.

Appendix B.10. Models taken from a Federal Network Agency Enactment

The texts contained in this test data set were translated from German using Google

translate and correcting grammatical errors. Additionally, the original texts made of

several abbreviations specific to the domain of electric power supply. In order to be con-

sistent, these were also translated. The translation and the meaning of the abbreviations

in English and German are given in table B.11.

The MPON sents the dismissal to the MPOO. The MPOO reviews the dismissal. The
MPOO opposes the dismissal of MPON or the MPOO confirmes the dismissal of the
MPON.

Text 33: Process Description 10-1: Process B2.

- 211 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.93: Model 10-1 as generated by our system.

Figure B.94: Model 10-1 Sequence Diagram transformed to BPMN.

B. 2. Kündigung Messstellenbetrieb (ggf. einschl. Messung) 14

2. Prozess Kündigung Messstellenbetr ieb (ggf. einschl. Messung)

2.1. Kurzbeschreibung

Anwendungsfall Kündigung Messste llenbetrieb (ggf. einschl. Messung)

Kurzbeschreibung Der Prozess beschreibt die Interaktionen zwischen MSBN und MSBA zur Kündigung des Messstellenbetriebs und ggf. der Messung im Auftrag

und in Vertretung des AN. Soweit ausschließlich die Messung gekündigt werden soll, so ist hierfür der Prozess Kündigung Messung zu verwen-
den.

Dieser Prozess behandelt nicht den Fall, dass der AN selbst gegenüber einem MSBA bzw. MDLA die Kündigung ausspricht.

Ist die Messstelle im Hinblick auf Messstellenbetrieb und/oder Messung derzeit dem NB im Rahmen von dessen Grundzuständigkeit nach § 21b
Abs. 1 EnWG zugeordnet, so ist eine Kündigung dieser Grundzuständigkeit des NB durch den MSBN nicht erforderlich, jedoch grundsätzlich
möglich. In diesem Fall findet durch den NB in seiner Rolle als MSBA naturgemäß keine Prüfung auf Mindestvertragslaufzeiten bzw. Kündi-
gungsfristen statt.

2.2. Sequenzdiagramm

3a. Ablehnung der Kündigung

3b. Bestätigung der Kündigung

1. Kündigung

MSBA MSBN

2. Prüfung

Figure B.95: Model 10-1 originally provided Sequence Diagram.

- 212 -

APPENDIX B DETAILED TEST DATA SETS

The MPON reports the meter operation to the GO. The GO examines the application
of the MPON. The GO rejects the application of the MPON or the GO confirmes the
application of the MPON. The GO informs the MPOO about the registration confirmation
of the MPON. The GO informs the MSPO about the registration confirmation of the
MPON. The MPON and the MPOO perform the equipment acquisition and/or equipment
changes. The MPON informs the GO about the failure of the entire process or the MPON
informs the GO about the successful completion of the entire process. The GO informs
the MPON about the failure of the overall transaction by deadline if after a maximum
time limit no message of the MPON is present at the GO. If the MPON informs the GO
about the failure of the entire process, the GO confirms the failure of the assignment to
the MPON. If the MPON informs the GO about the successful completion of the overall
process, the GO assigns the MPON. The GO confirms the assignment to the MPON.
The GO informs the MPOO about the failure of the assignment of the MPON or the
GO informs the MPOO about the assignment of the MPON. The GO informs the MSPO
about the failure of the assignment of the MPON or the GO informs the MSPO about the
assignment of the MPON. The GO informs the SP about the assignment of the MPON.

Text 34: Process Description 10-2: Process B3.

The MPOO deregisters at the GO. The GO verifies the deregistration. The GO rejects
the deregistration of the MPOO or the GO preliminarily confirms the deregistration of
the MPOO. The GO prepares the readmission of the measuring point. Optionally, the
GO may oblige the MPOO to continue the operations. If the GO binds the MPOO to
continue the operation, the MPOO confirms the continuation to the MPOO. The GO
performs the equipment acquisition and/or equipment changes. The GO assigns the GO
as MPO. The GO informs the MPOO about the end of the assignment of the MPOO
and the beginning of the assignment of the GO. The GO informs the MSPO about the
assignment of the GO. The GO informs the SP about the assignment of the GO.

Text 35: Process Description 10-3: Process B4.

- 213 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.96: Model 10-2 as generated by our system.

- 214 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.97: Model 10-2 Sequence Diagram transformed to BPMN.

- 215 -

APPENDIX B DETAILED TEST DATA SETS
B. 3. Beginn Messstellenbetrieb (ggf. einschl. Messung) 18

3.2. Sequenzdiagramm

8. Mitteilung über Scheitern des Gesamtvorgangs d. Fristablauf

7b. Mitteilung über erfolgr. Abschluss des Gesamtvorgangs

6. Gerätewechsel und/oder
 Geräteübernahme
 gem. Prozess 5.1 bzw. 5.2

11. Bestätigung über Zuordnung

13b. Information über Zuordnung

4. Information über

 Anmeldebestätigung

3a. Ablehnung der Anmeldung

3b. Bestätigung der Anmeldung

1. Anmeldung

2. Prüfung

MSBA NB LF MSBN MDLA

10. Zuordnung MSBN

12a. Information über Scheitern
 der Zuordnung

14. Information über Zuordnung

5. ggf. Information über

 Anmeldebestätigung

9. Bestätigung des Scheiterns der Zuordnung

12b. Information über Zuordnung

13a. ggf. Information über
 Scheitern der Zuordnung

7a. Mitteilung über Scheitern des Gesamtvorgangs

Übergang zu einem anderen Prozess Figure B.98: Model 10-2 originally provided Sequence Diagram.

Figure B.99: Model 10-3 as generated by our system.

- 216 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.100: Model 10-3 Sequence Diagram transformed to BPMN.
B. 4. Ende Messstellenbetrieb (ggf. einschl. Messung) 28

4.2. Sequenzdiagramm

9. Information über
 Zuordnung NB

10. Information über
 Zuordnung NB

5a. optional: Weiterverpflichtung
 des MSBA

1. Abmeldung

3a. Ablehnung der Abmeldung
3b. Vorläufige Abmeldebestätigung

2. Prüfung

MSBA NB LF MDL

4. Vorbereitung der Rück
 übernahme der Messstelle

6. Übernahme durch NB mittels
 Gerätewechsel und/oder

 Geräteübernahme
 gem. Prozess 5.1 bzw. 5.2

7. Zuordnung NB
 als MSB

8. Information über
 Neuzuordnung

5b. im Fall von 5a: Fortführungs
 bestätigung des MSBA

Übergang zu einem anderen Prozess

Figure B.101: Model 10-3 originally provided Sequence Diagram.

- 217 -

APPENDIX B DETAILED TEST DATA SETS

The MPON notifies the MPOO about equipment change intentions. The MPOO an-
nounces self dismounting to the MPON or the MPOO shall notify the MPON about no
self-dismounting of the MPOO. The MPON or the MPOO perform the final reading. The
MPON or the MPOO dismount the old equipment. The MPON mounts the new device.
The MPON reads the meter count from the installed meter. The MPON sents the values
of the final reading to the GO. The MPON tells the GO about the device changes, the
master data and the meter count at installation. The GO shall notify the MSP about the
device changes, the master data, the meter count at dismounting, and the meter count at
installation.

Text 36: Process Description 10-4: Process B5.1.

The MPON requests a device takeover bid of the MPOO. The MPOO sends a tender for
the equipment takeover to the MPON. The MPON places an order at the MPOO. The
MPOO confirms the order of the MPON and sends the master data.

Text 37: Process Description 10-5: Process B5.2.

The MSPN sents a dismissal to the MSPO. The MSPO reviews the dismissal. The MSPO
rejects the dismissal of the MSPN or The MSPO confirms the dismissal of the MSPN.

Text 38: Process Description 10-6: Process B6.

- 218 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.102: Model 10-4 as generated by our system.

Figure B.103: Model 10-4 Sequence Diagram transformed to BPMN.

- 219 -

APPENDIX B DETAILED TEST DATA SETS
B. 5.1. Gerätewechsel 35

5.1.2. Sequenzdiagramm

8. Mitteilung Gerätewechsel, Stammdaten und Einbauzählerstand

2a. Ankündigung Eigenausbau

2b. Mitteilung kein Eigenausbau

1. Anzeige Gerätewechselabsicht

MSBA MSBN NB

3. Endablesung durch MSBN oder MSBA

4. Ausbau durch MSBN oder MSBA

5. Einbau der neuen Geräte

6. Auslesung Einbauzählerstand

7. Übermittlung Endablesewerte durch MSBN oder MSBA

MDL

9. Mitteilung Gerätewechsel, Stamm-
 daten, Aus- und Einbauzählerstand

Figure B.104: Model 10-4 originally provided Sequence Diagram.

Figure B.105: Model 10-5 as generated by our system.

Figure B.106: Model 10-5 Sequence Diagram transformed to BPMN.

- 220 -

APPENDIX B DETAILED TEST DATA SETS

B. 5.2. Geräteübernahme 40

5.2. Ergänzungsprozess Geräteübernahme

5.2.1. Kurzbeschreibung

Anwendungsfall Geräteübernahme

Kurzbeschreibung Der Prozess beschreibt die Interaktionen zwischen den Marktbeteiligten, wenn im Fall des Übergangs des Messstellentriebs die vorhandenen

Messeinrichtungen zum Kauf oder zur Nutzung angeboten werden (§ 4 Abs 2 Nr. 2a MessZV). Die Bestandteile der Messeinrichtungen können
einzeln oder vollständig angeboten werden.

5.2.2 Sequenzdiagramm

1. Anforderung Geräteübernahmeangebot

2. Geräteübernahmeangebot

3. Bestellung

4. Bestellbestätigung und
 Übermittlung Stammdaten

MSBN MSBA

Figure B.107: Model 10-5 originally provided Sequence Diagram.

Figure B.108: Model 10-6 as generated by our system.

Figure B.109: Model 10-6 Sequence Diagram transformed to BPMN.

- 221 -

APPENDIX B DETAILED TEST DATA SETS

B. 6. Kündigung Messung 43

6. Prozess Kündigung Messung

6.1. Kurzbeschreibung

Anwendungsfall Kündigung Messung

Kurzbeschreibung Der Prozess beschreibt die Interaktionen zwischen MDLN und MDLA zur Kündigung der Messung im Auftrag und in Vertretung des AN. Soweit

der Messstellenbetrieb und die Messung für eine Messstelle gemeinsam gekündigt werden sollen, ist hierfür der Prozess Kündigung Messstel-
lenbetrieb (ggf. einschl. Messung) zu verwenden.

Dieser Prozess behandelt nicht den Fall, dass der AN selbst gegenüber einem MDLA die Kündigung ausspricht.

Ist die Messstelle im Hinblick auf die Messung derzeit dem NB im Rahmen von dessen Grundzuständigkeit nach § 21b Abs. 1 EnWG zugeord-
net, so ist eine Kündigung dieser Grundzuständigkeit des NB durch den MDLN nicht erforderlich, jedoch grundsätzlich möglich. In diesem Fall
findet durch den NB in seiner Rolle als MDLA naturgemäß keine Prüfung auf Mindestvertragslaufzeiten oder Kündigungsfristen statt.

6.2. Sequenzdiagramm

3a. Ablehnung der Kündigung

3b. Bestätigung der Kündigung

1. Kündigung

MDLA MDLN

2. Prüfung

Figure B.110: Model 10-6 originally provided Sequence Diagram.

The MSPN registers the measurement at the GO. The GO examines the application
of the MSPN. The GO rejects the application of the MSPN or the GO confirmes the
application of the MSPN. The GO assigns the MSPN. The GO informs the MSPO about
the assignment of MSPN. The GO informs the MPO about the assignment of the MSPN.
The GO informs the SP about the assignment of MSPN.

Text 39: Process Description 10-7: Process B7.

The MSPO deregisters at the GO. The GO verifies the deregistration. The GO rejects
the deregistration of the MSPO or the GO preliminarily confirms the deregistration of
the MSPO. The GO assigns himself as MSP. The GO informs the MSPO about the end
of the assignment and the beginning of the assignment of the GO. The GO informs the
MPO about the assignment of the GO. The GO informs the SP about the assignment of
the GO.

Text 40: Process Description 10-8: Process B8.

- 222 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.111: Model 10-7 as generated by our system.

- 223 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.112: Model 10-7 Sequence Diagram transformed to BPMN.

B. 7. Beginn Messung 46

7. Prozess Beginn Messung

7.1. Kurzbeschreibung

Anwendungsfall Beginn Messung

Kurzbeschreibung Der Prozess beschreibt die Interaktionen zwischen den Marktbeteiligten, für den Fall, dass eine Messstelle dem anmeldenden Marktpartner für

die Durchführung der Messung zugeordnet werden soll.

Der Prozess gilt nicht für den Fall, dass ein Marktbeteiligter zeitgleich für eine Messstelle sowohl den Messstellenbetrieb als auch die Messung
anmeldet. In diesem Fall richtet sich sowohl die Anmeldung der Messung als auch die Anmeldung des Messstellenbetriebs nach dem Prozess
„Beginn Messstellenbetrieb (ggf. einschl. Messung)“.

7.2. Sequenzdiagramm

7. Information über
 Zuordnung MDLN

5. Information über
 Zuordnung MDLN

3a. Ablehnung der Anmeldung

3b. Bestätigung der Abmeldung

1. Anmeldung

2. Prüfung

MDLN MDLA NB

4. Zuordnung MDLN

6. Information über
 Zuordnung MDLN

LF MSB

Figure B.113: Model 10-7 originally provided Sequence Diagram.

- 224 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.114: Model 10-8 as generated by our system.

The SP/PU/GO request changes of the MPO or the MPO himself causes a change. The
MPO reviews the change request. The MPO rejects the change of the measuring point by
the SP/PU/GO or the MPO confirmes the request of the SP/PU/GO. The MPO performs
the measuring point change. The MPO reports the implementation to the SP/PU/GO
or notifies the SP/PU/GO about the failure of the changes.

Text 41: Process Description 10-9: Process C1.

- 225 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.115: Model 10-8 Sequence Diagram transformed to BPMN.

B. 8. Ende Messung 49

8. Prozess Ende Messung

8.1. Kurzbeschreibung

Anwendungsfall Ende Messung

Kurzbeschreibung Der Prozess beschreibt die Interaktionen zwischen den Marktbeteiligten anlässlich einer vom MDL zu meldenden Beendigung der Messung. Der

Prozess gilt nicht für den Fall, dass ein Marktbeteiligter zeitgleich für eine Messstelle sowohl den Messstellenbetrieb als auch die Messung ab-
meldet. In diesem Fall richtet sich sowohl die Abmeldung der Messung als auch die Abmeldung des Messstellenbetriebs nach dem Prozess
Ende des Messstellenbetriebs.

8.2. Sequenzdiagramm

1. Abmeldung

3a. Ablehnung der Abmeldung

3b. Vorläufige Abmeldebestätigung

2. Prüfung

MDLA NB LF MSB

4. Zuordnung NB
 als MDL

5. Information über
 Neuzuordnung

6. Information über

 Zuordnung NB

7. Information über

 Zuordnung NB

Figure B.116: Model 10-8 originally provided Sequence Diagram.

- 226 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.117: Model 10-9 as generated by our system.

Figure B.118: Model 10-9 Sequence Diagram transformed to BPMN.

- 227 -

APPENDIX B DETAILED TEST DATA SETSC. 1. Messstellenänderung 54

1.2. Sequenzdiagramm

1a/b/c. Beauftragung Änderung

MSB NB LF AN

1d. MSB veranlasst selbst eine Änderung
2. Prüfung

3a/b/c. Ablehnung der Änderung

5. Durchführung der
 Änderung

6 a/b/c. Vollzugsmeldung

4a/b/c. Auftragsbestätigung

7 a/b/c. Scheitern der Änderung

Figure B.119: Model 10-9 originally provided Sequence Diagram.

The fault detector reports a failure to the MPO or MPO has a suspicion of their own fault.
The MPO shall examine the failure. The MPO rejects the failure of the fault detector
or the MPO confirms the failure of the fault detector. If the MPO confirms the failure
of the fault detector, he informes the GO and the MSP. The MPO fixes the fault at the
measuring device. The MPO shares the results of the repairs carried out with the fault
detector. The MPO will inform the GO about the resolution of the interference. The
MPO will inform the MSP about the resolution of the interference.

Text 42: Process Description 10-10: Process C2.

The GO requests the measurements of the MSP. The MSP checks the received request.
The MSP denies the request of the GO or the MSP performs the measurement. The
MSP informs the GO about the failure of the reading or the MSP transmits the measured
values to the GO. The GO processes the measured values. The GO sents the changed
values to the MSP. The GO transmit the readings to the SP.

Text 43: Process Description 10-11: Process C3.

- 228 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.120: Model 10-10 as generated by our system.

Figure B.121: Model 10-10 Sequence Diagram transformed to BPMN.

- 229 -

APPENDIX B DETAILED TEST DATA SETS

C. 2. Störungsbehebung in der Messstelle 59

2. Prozess Störungsbehebung in der Messstelle

2.1. Kurzbeschreibung

Anwendungsfall Störungsbehebung in der Messstelle

Kurzbeschreibung Der Prozess beschreibt die Interaktionen zwischen den Marktbeteiligten im Falle einer festgestellten oder vermuteten Störung an den techni-

schen Einrichtungen der Messstelle. Der MSB ist verpflichtet, die Störung an der Messstelle unverzüglich zu beseitigen und so einen den Re-
geln der Technik entsprechenden Betrieb derselben zu gewährleisten.

2.2. Sequenzdiagramm

MSB NB MDL Störungsmelder

2. Eigener Verdacht einer Störung

3. Prüfung der Störungsmeldung

4a. Ablehnung der Störungsmeldung

4b. Bestätigung der Störungsmeldung

5. Informationsmeldung üb. Störung

6. Informationsmeldung üb. Störung

7. Störungsbehebung

1. Meldung einer Störung

 oder

8. Mitteilung Ergebnis Störungsbehebung 9. Informationsmeldung üb. Behebung

10. Informationsmeldung üb. Behebung

Figure B.122: Model 10-10 originally provided Sequence Diagram.

Figure B.123: Model 10-11 as generated by our system.

- 230 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.124: Model 10-11 Sequence Diagram transformed to BPMN.

C. 3. Anforderung und Bereitstellung von Messwerten 67

3.2. Kurzbeschreibung

Anwendungsfall Anforderung und Bereitstellung von Messwerten

Kurzbeschreibung Der Prozess beschreibt die Interaktion zwischen den Marktbeteiligten bei der Anforderung einer Messung durch den NB beim MDL und der Be-

reitstellung der Messwerte durch den MDL an den NB.

Soweit Messwerte netzentgelt- oder bilanzierungsrelevant sind, sind diese nach Erhebung an den Netzbetreiber zu übermitteln, damit dieser
bezüglich dieser Daten seinen Aufbereitungs- und Archivierungspflichten aus § 4 Abs. 4 MessZV nachkommen kann. Der NB gibt diese entspre-
chend den Prozessen der Festlegungen GPKE bzw. GeLi Gas dann an den LF weiter. Um netzentgelt- bzw. bilanzierungsrelevante Messwerte
handelt es sich jedenfalls dann, wenn diese von den GPKE / GeLi-Prozessen erfasst werden.

Die bilaterale Vereinbarung zwischen MDL und Dritten (etwa LF, AN) bezüglich der direkten Übermittlung von Messwerten unterliegt nicht den
Anforderungen dieses Prozesses.

3.3. Sequenzdiagramm

4a. Mitteilung über gescheiterte Auslesung
4b. Übermittlung der Messwerte

1. Anforderung Messwerte

3a. Ablehnung
2. Prüfung

MDL NB

3b. Durchführung der Messung

5. Aufbereitung Messwerte

6. ggf. Übermittlung veränderte Messwerte

7. Übermittlung Messwerte an LF gem. der Festlegung GPKE bzw. GeLi Gas

Figure B.125: Model 10-11 originally provided Sequence Diagram.

- 231 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.126: Model 10-12 as generated by our system.

The EC tells the INQ about the change of his master data. The INQ notifies the IP of
the change. The IP checks whether the master data can be changed at the desired time.
The IP confirmes the changes of the INQ or the IP rejectes the changes of the INQ.

Text 44: Process Description 10-12: Process D1.

- 232 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.127: Model 10-12 Sequence Diagram transformed to BPMN.

D. 1. Stammdatenänderung (Messstelle) 73

D. Annexprozesse

1. Prozess Stammdatenänderung (Messstelle)

Das Bestehen eines Anspruchs auf Änderung von Stammdaten richtet sich nach den allgemeinen Gesetzen und vertraglichen Vereinbarungen.

1.1. Kurzbeschreibung

Anwendungsfall Stammdatenänderung (Messstelle)

Kurzbeschreibung Geänderte Stammdaten eines Letztverbrauchers oder einer Messstelle werden ausgetauscht (z.B. bei Änderungen des Vertragsverhältnisses).

1.2. Sequenzdiagramm

1. ggf. Mitteilung

2. Änderungsmitteilung

AG L AF

4. Bestätigung oder Ablehnung
3. Prüfung

Figure B.128: Model 10-12 originally provided Sequence Diagram.

- 233 -

APPENDIX B DETAILED TEST DATA SETS

The INQ transmits the transaction data request to the IP. The IP checks the request
of the INQ. The IP answers the question of the INQ depending on the outcome of the
examination, i.e. Transmission of data or rejection.

Text 45: Process Description 10-13: Process D2.

Figure B.129: Model 10-13 as generated by our system.

Figure B.130: Model 10-13 Sequence Diagram transformed to BPMN.

D. 2. Geschäftsdatenanfrage 75

2. Prozess Geschäftsdatenanfrage

2.1. Kurzbeschreibung

Anwendungsfall Geschäftsdatenanfrage

Kurzbeschreibung

Geschäftsdaten eines Letztverbrauchers (etwa die Identität eines derzeit der Messstelle zugeordneten Dienstleisters) werden angefragt und
ggf. übermittelt.

Geschäftsdaten können nur dann übermittelt werden, wenn die Übermittlung nach Maßgabe der allgemeinen Gesetze oder aufgrund vertragli-
cher Vereinbarungen, insbesondere unter Beachtung der Anforderungen des Datenschutzes, zulässig ist.

2.2. Sequenzdiagramm

1. Anfrage

3. Übermittlung oder Ablehnung

AF AG

2. Prüfung

Figure B.131: Model 10-13 originally provided Sequence Diagram.

- 234 -

APPENDIX B DETAILED TEST DATA SETS

If the MPOO sends the bill for the temporary continuation of the metering point opera-
tions to the GO, the GO examines the bill. If the MSPO sends the bill for the temporary
continuation of the measurement to the GO, the GO examines the bill. If the MSPO
sends the bill for additional readings to the GO, the GO examines the bill. If the MPOO
sends the bill for the equipment acquisition to the MPON or the GO, the MPON or the
GO examines the bill. The GO or the MPON confirms the invoice with payment advice
to the MPOO or the MSPO, or the GO or the MPON rejects the invoice of the MPOO
or the MSPO.

Text 46: Process Description 10-14: Process D3.D. 3. Abrechnung von Dienstleistungen im Messwesen 78

3.2. Sequenzdiagramm

1a. Übermittlung der Rechnung (Messtellenbetrieb)

2. Prüfung

3a/b. Bestätigung oder Ablehnung der Rechnung

MDL(A) MSBA NB

1b. Übermittlung der Rechnung (Messung)

3a/b. Bestätigung oder Ablehnung der Rechnung

MSBN

1c. Übermittlung der Rechnung (Geräteübernahme)

2. Prüfung

1c. Übermittlung der Rechnung
 (Geräteübernahme)

3a/b. Bestätigung oder Ab-
lehnung der Rechnung

1d. Übermittlung der Rechnung (Zusatz- /
 Kontrollablesung)

Figure B.132: Model 10-14 originally provided Sequence Diagram.

- 235 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.133: Model 10-14 as generated by our system.

- 236 -

APPENDIX B DETAILED TEST DATA SETS

Figure B.134: Model 10-14 Sequence Diagram transformed to BPMN.

- 237 -

APPENDIX C EMPLOYED STOP WORD LISTS

Appendix C. Employed Stop Word Lists

This section lists all stop word lists which were used during the transformation as

described in section 3. The words were obtain driven by the exploratory analysis of the

process models and by consulting the book “Practical English Usage” [123]. All lists can

be accessed and modified by the user in our research prototype.

Person Corrector List:

1. resource provisioning
2. customer service
3. support
4. support office
5. support officer
6. client service back office
7. master
8. masters
9. assembler ag

10. acme ag
11. acme financial accounting
12. secretarial office
13. office
14. registry
15. head
16. storehouse
17. atm
18. crs
19. company
20. garage
21. kitchen
22. department
23. ec
24. sp
25. mpo
26. mpoo
27. mpon
28. msp
29. mspo
30. mspn
31. go
32. pu
33. ip
34. inq
35. sp/pu/go
36. fault detector

Conditional Indicator:

1. if
2. whether
3. in case of
4. in the case of
5. in case
6. for the case
7. whereas
8. otherwise
9. optionally

Parallel Indicator:

1. while
2. meanwhile
3. in parallel
4. concurrently
5. meantime
6. in the meantime

Sequence Indicator:

1. then
2. after
3. afterward
4. afterwards
5. subsequently
6. based on this
7. thus

- 238 -

APPENDIX D DESCRIPTION OF THE IMPLEMENTED PROTOTYPE

Weak Verbs:

1. be
2. have
3. do
4. achieve
5. start
6. exist
7. base

Forward Link Indicator:

1. finally

Loop Indicator:

1. next
2. back
3. again

Frequency Words:

1. usually
2. normally
3. often
4. frequently
5. sometimes
6. occasionally
7. rarely
8. seldom

Data Object Determiner:

1. written material
2. record
3. message
4. design

Appendix D. Description of the implemented Prototype

As mentioned in section 3, our transformation approach was implemented in a research

prototype. A screenshot of the graphical user interface is displayed in figure D.135. It

consists of three parts, as marked in the illustration.

Part 1 shows the processed text and highlights the extracted elements within each sen-

tence. Furthermore, the result of the anaphora resolution and textual link determi-

nation are shown as arcs connecting the different words. Using the buttons above

the model those arcs can be hidden, a new text can be loaded, or the comparison

procedure can be triggered. If the result of the anaphora resolution is not satisfying

for the user, he is able to alter the target of those arcs and thus the resolution

results. Furthermore, it is possible to save the annotated text to an XML format.

By clicking on a sentence it can be inspected in more detail.

Part 2 in the upper right area shows the syntax tree of the currently selected sentence

as determined by the Stanford Parser. Below, all typed dependency relations are

listed to enable an easy analysis of the current sentence.

- 239 -

APPENDIX D DESCRIPTION OF THE IMPLEMENTED PROTOTYPE

Figure D.135: Graphical user interface of the implemented research prototype.

Part 3 is the inubit workbench an industrial research prototype, where the generated

model is displayed. Furthermore, the Lane split-off procedure is implemented here.

Therefore, the user is able to quickly adapt the model to his needs, add or deleted

nodes and edges, and export it in different formats to use it in other tools. All

generated models depicted in this thesis were created using this research prototype.

Additionally, the tool is able to automatically compare two models and to calculate

their graph edit distance and similarity. Traceability is also ensured. Whenever the

user clicks on a Task node in the model, the corresponding element in the text will be

highlighted and vice versa. Currently, the Task ”buy details” is highlighted as the user

has clicked on the word ”buy” in the text.

- 240 -

DECLARATION OF AUTHORSHIP

Declaration of Authorship

I hereby confirm that I have authored this Master Thesis independently and without

use of others than the indicated sources. All passages which are literally or in general

matter taken out of publications or other sources are marked as such. I am aware of the

examination regulations. Until now, I neither submitted nor finally failed a Master Thesis

within my course of studies.

Berlin, 29th November 2010

Fabian Friedrich

- 241 -

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Research Contribution
	Research Methodology
	Structure of this Thesis

	Background
	Business Process Management
	Business Process Model and Notation 2.0
	Process Model Labeling and Quality Aspects

	Natural Language Processing
	Syntax Parsing
	Anaphora Resolution
	Semantic Analysis

	Application of NLP for Process Model Creation
	Other Related Work

	Transformation Approach
	Categorization of Issues
	Semantics not equal Syntax
	Atomicity
	Relevance
	Referencing
	Solution Strategy

	Intermediate Data Structure (World Model)
	Sentence Level Analysis
	Text and Sentence Decomposition
	Element Extraction
	Element Creation and Semantic Analysis

	Text Level Analysis
	Anaphora Resolution Technique
	Conditional Marking
	Action combination
	Inter-Action Link determination
	Flow Generation

	Process Model Generation
	Model Creation
	Model Augmentation

	Lane Split-off Procedure
	SequenceFlow Transformation
	Building Semantic Communication Links

	Evaluation of Generated Process Models
	Test Data Set
	Evaluation Methodology
	Text Preparation
	Model Preparation
	Evaluation Metrics

	Test Results
	Discussion

	Conclusion
	Limitations
	Further Research

	References
	Detailed Evaluation Results
	Detailed Test Data Sets
	Models provided by the Humboldt-Universität zu Berlin
	Models provided by the Technische Universität Berlin
	Models provided by the Queensland University of Technology
	Models provided by the Technische Universiteit Eindhoven
	Models taken from BPM Vendor Tutorials
	Models provided by the inubit AG
	Models provided by BPM Practitioners
	Models taken from the BPMN practical handbook
	Models taken from the BPMN Modeling an Reference Guide
	Models taken from a Federal Network Agency Enactment

	Employed Stop Word Lists
	Description of the implemented Prototype

