
Towards a Formal Model for Agile Service
Discovery and Integration

Hagen Overdick, Frank Puhlmann, and Mathias Weske

Hasso-Plattner-Institute for IT Systems Engineering
at the University of Potsdam
D-14482 Potsdam, Germany

{overdick,puhlmann,weske}@hpi.uni-potsdam.de

Abstract. As the fundamental web services technologies are becoming
mature, web service composition, orchestration and choreography are
gaining increasing attention. The movement from static interactions be-
tween already known partners as in BPEL to dynamically discovered
and agile business partners is irresistible facing ever changing environ-
ments while aiming for specifically optimized collaborations. However,
the techniques and models currently used lack fundamental formal foun-
dations making them inadequate especially for modeling non-functional
aspects. As a step toward the vision of dynamically discovered and ag-
ile processes, this paper proposes a formal approach to unambiguously
define the syntax of service orchestrations and choreographies by repre-
senting key elements of service–oriented computing in a process algebra,
the π-calculus. The results include a formal description of correlations
in the context of service choreography as well as a formal representation
of an orchestration pattern derived from BPMN and BPEL. The results
provide a better understanding of service-based processes in terms of a
formal algebra that will open the door for automated discovery and bind-
ing of potential business partners via service equivalence and mobility.

1 Introduction

As the fundamental web services technologies are becoming mature, web service
composition, orchestration and choreography are gaining increasing attention.
The movement from static interactions between already known partners as in
BPEL [1] to dynamically discovered and agile business partners is irresistible fac-
ing ever changing environments while aiming for specifically optimized collabora-
tions. However, the techniques and models currently used lack fundamental for-
mal foundations making them inadequate especially for modeling non-functional
aspects.

In this paper we try to remedy this situation by proposing a formal approach
to unambiguously define service orchestrations and choreographies. It has re-
cently been shown that the π-calculus, a process algebra, is capable to formally
specify all workflow patterns [2]. Based on that work, this paper introduces for-
malisms to represent key elements of service oriented computing. For instance

2 H. Overdick, F. Puhlmann, and M. Weske

a unique representation of correlations by merging correlation identifiers and
response channels in the context of choreography as well as an orchestration
pattern named Event-based Rerouting. The resulting formal and unambiguous
characterization of processes in service-oriented environments is useful for a pre-
cise understanding of these processes, as well as enabling further research on
automated discovery and binding via service equivalence and mobility [3, 4].

The paper is organized as follows. Section 2 introduces the π-calculus as well
as formal workflow modeling by example, thus representing the state-of-the-art.
Section 3 discusses the representation of services in the π-calculus, including cor-
relations, invocation and data flow. Section 4 describes a formal service orches-
tration by example, using the results from section 3. It furthermore introduces
a behavioral pattern named Event-based Rerouting, which is not contained in
the workflow patterns collection so far [5]. The paper concludes with a short
summary and discussion of related work.

2 The π-calculus

The π-calculus is a process algebra intended to describe mobile systems [6].
Mobile systems are made up of components which communicate and change
their structure as a result of interaction. The core concepts of the algebra are
processes and names. A π-calculus process is an entity which can communicate
with other processes by the use of names. A name is a collective term for existing
concepts like links, pointers, references, identifiers, etc. Names could be unbound
(global) or bound to specific processes, i.e. they have a scope. The scope of a
bound name can be dynamically expanded or reduced during the lifetime of the
system by communicating names between processes. As this paper has a limited
size, we can only introduce the notation of the π-calculus that will be used.
Further details can be found in [6–9].

Syntax. The π-calculus consists of an infinite set of process identifiers denoted
as K and another infinite set of names denoted as N , where names define links.
The processes are defined as:

P ::= M | P |P | vzP | !P .

The composition P |P is the concurrent execution of P and P , vzP is the
restriction of the scope of the name z to P , which is also used to generate a
unique, fresh name z and !P is the replication operator that satisfies the equation
!P = P | !P . M contains the summations of the calculus:

M ::= 0 | π.P | M + M

where 0 is inaction, a process that can do nothing, M +M is the exclusive choice
between M and M , and the prefix π.P is defined by:

π ::= x 〈y〉 | x(z) | τ | [x = y]π .

Towards a Formal Model for Agile Service Discovery and Integration 3

A

B

N1 N2

N3

N4

N5 N6

e1

e2

e3

e4

e5

e6

Fig. 1. A simple BPMN process.

The output prefix x 〈y〉 .P sends the name y over the name x and then con-
tinues as P . The input prefix x(z) receives any name over x and then continues
as P with z replaced by the received name (written as {name/z}). The unob-
servable prefix τ.P expresses an internal action of the process, and the match
prefix [x = y]π.P behaves as π.P , if x is equal to y.

Throughout this paper, upper case letters are used for process identifiers and
lower case letters for names. Two pre–defined, static names > and ⊥ denote
true and false. More additional process identifiers and names that represent
special functions are introduced later on. Furthermore defined processes from
the original paper on the π-calculus are used for parametric recursion, that is
A(y1, ..., yn) [6].

The abbreviation
∑m

1 (M) is used to denote the summation of m choices;
e.g.

∑3
1(Mi) = M1 + M2 + M3.

∏m
1 (P) is used to denote the composition of m

parallel copies of P , e.g.
∏3

1(P) = P | P | P . Also, {π}m
1 denotes m subsequent

executions of π, e.g. {π}3
1 = π.π.π. All abbreviations could be used with an

indexing variable, e.g.
∏3

i=1(di(x)) = d1(x) | d2(x) | d3(x). Round brackets are
used to define the ordering of a process definition. Given τ.P for instance, P
might be expanded to M +M ′ by using the summation rule from the π-calculus
grammar. To avoid ambiguity, round brackets are put around the expanded
symbol, e.g. τ.(M + M ′) instead of τ.M + M ′.

Semantics. The behavior of the π-calculus is defined by a reduction relation,
−→, on processes. The essence is captured in the axiom (xy.P1 +M1)|(x(z).P2 +
M2) −→ P1|P2{y/z }. The axiom states that whenever two processes can com-
municate, they will communicate and all other capabilities are rendered void.
There exists other axioms, such as for structural congruence, which allow the
conversion of π-calculus processes [9].

Representing Workflows in the π-calculus. We introduce the application of the
π-calculus with a rather simple example shown in figure 1. The notation of the
example is BPMN and the process will be mapped to π-calculus expressions.
The process consists of two tasks A and B, which are placed between two XOR-
gateways. As a first mapping task, all flow objects, i.e. events, gateways, tasks,
are assigned an unique π-calculus process identifier. The start event is assigned
to N1, the first XOR-gateway to N2, the task A to N3, the task B to N4, the

4 H. Overdick, F. Puhlmann, and M. Weske

second XOR-gateway to N5, and the end event to N6. All sequence flows are
mapped to a unique π-calculus name from e1 to e6 (see figure 1).

By referring to the generic structure for π-calculus processes that represent
basic workflow activities [2], we can derive the next steps:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (1)

Each basic activity consists of pre- and postconditions for routing the control
flow as well as an unobservable action τ that represents the functional perspective
of the activity. The precondition is split into two part: (1) {xi}m

i=1 denotes that
the activity waits for m incoming names, and (2) {[a = b]}n

1 denotes n additional
guards that have to be true to execute the activity. The postcondition denotes
the triggering of o outgoing names.

By using the definition from equation 1, we can define the π-calculus process
N1 for the start event from the example:

N1 = τN1.e1.0 .

N1 has no preconditions; therefore the responding part from equation 1 is
omitted. The functional part is represent by τN1, where the index N1 denotes
that this τ belongs to the process N1. The postcondition of N1 signals e1, which
will trigger the process N2.

The process N2 represents an XOR-gateway which routes the control flow
depending on some conditions. N2 has the name e1 as a precondition and either
e2 or e3 as postconditions. However, the generic structure for basic workflow
activities from equation 1 only supports serial AND-split triggering by calling
the names y1...yo sequentially. A modified version of the structure that supports
XOR, OR, as well as AND splits is as follows:

{xi}m
i=1.{[a = b]}n

1 .τ.

o∏
i=1

[c = >]yi.0 . (2)

For each possible postcondition, a parallel process part is introduced by∏o
i=1[c = d]yi.0. Each part has a match prefix which either enables (true)

or disables the postcondition (false). If the match prefix is true, the corre-
sponding name is signaled. All other parts are discarded. A π-calculus process
that behaves like an OR/XOR-split as a postcondition is then defined by i.e.
[c = >]y1.0 | [d = >]y2.0 . If no match prefixes overlap, the split behavior is
XOR, otherwise OR. An XOR split could also be realized by using the summation
operation (

∑
) instead of concurrency. That would also allow non-deterministic

choices. An AND-split simply has no match prefixes at all: y1.0 | y2.0 .
By using the definition from equation 2, N2 can be defined:

N2 = e1.τN2.([c1 = >]e2.0 | [c2 = >]e3.0)

As the business process diagram from the example contains no conditions,
we assume two global names c1, and c2 that hold the expressions. Per definition

Towards a Formal Model for Agile Service Discovery and Integration 5

of the exclusive choice pattern, we assume c1 and c2 to be disjoint; i.e. if c1 =
> ⇒ c2 = ⊥ ∧ c1 = ⊥ ⇒ c2 = >.

The π-calculus processes for the tasks A and B from the example are straight-
forward as they simply contain one pre- and postcondition each:

N3 = e2.τN3.e4.0, N4 = e3.τN4.e5.0 .

The XOR-join gateway N5 is rather simple, as we can adapt the pattern
simple merge from [2]. As the simple merge pattern has only one precondition
per definition (i.e. d.τd.D

′), we need an additional π-calculus process, which
triggers N5 if either e4 or e5 are signaled:

N5 = vx(e4.x.0 + e5.x.0 | x.τN5.e6.0) .

The left hand side of the definition contains the additional process. It gener-
ates a fresh name x, which is used to signal the precondition of the XOR-join,
which is contained at the right hand side. As the name x is unique to N5, only
e4 or e5 could trigger the precondition and enable τe6.

The last process, N6, is now trivial:

N6 = e6.τN6.0 .

3 Representing Services in the π-calculus

We have shown that the few concepts of the π-calculus are readily suited to
model workflows, which can also be used to describe complex orchestrations
in the context of service–oriented architectures. Indeed, all workflow patterns
described in [5] can be formalized with basic π-calculus expressions, as shown
recently [2]. However, so far we have only discussed how the routing of activities,
i.e. web service calls, can be realized in the π-calculus in a straightforward way.
This discussion will be continued in the next section. First, the invocation and
providing of services in the π-calculus will be introduced.

3.1 Invoking Services

As with activities, services are also invoked by names in the π-calculus. In the
BPMN notation, message flow is used for this purpose, whereas sequence flow
controls the routing within a process. We define two distinct subsets from the set
of names, NS ⊂ N that contains all names used for service communication, and
NC ⊂ N that contains all names used for control flow routing. The intersection
of NS and NC has to be empty: NS ∩ NC = ∅. To enable different kinds of
service invocations, we furthermore extend the τ prefix of the π-calculus with
a placeholder denoted as �. Each τ inside an activity definition that contains
service invocations is then replaced by the placeholder.

6 H. Overdick, F. Puhlmann, and M. Weske

Correlations. A common problem in the area of service–oriented computing
is the description of correlations between service invokers and service providers.
Usually, some kind of correlation identifier is placed inside each request and reply
[10]. The invoker as well as the provider have to take care to match all requests.
In the π-calculus, the unique identifier of a request is also the channel used for
reply from the service. By merging these two concepts, a clear representation of
the correlations is straightforward. A new unique identifier is a π-calculus name
from the set of NS which is created with the v operator. The application is
described below.

Synchronous Invocation. A synchronous invocation of a service contains an out-
going message to the service as well as an incoming response:

� = vc(w〈c〉.c.τ) .

A service that is bound to w ∈ NS is invoked by w with a fresh name that
acts as a correlation identifier as well as a response channel. The process holds
until the response is signaled over the name c. Thereafter, it continues as τ . The
whole placeholder process part � can then replace a τ in a process definition to
represent a service invocation, e.g. N3 from the previous section is extended to
N3 = e2.((vc)w〈c〉.c.τN3).e4.0.

Asynchronous Invocation. The asynchronous invocation of a service is achieved
by separating the transmission and the receipt of an invocation into different
processes. A placeholder �1 is defined by w〈c〉.τ and a second one as �2 = c.τ .
The two placeholders can be placed in two different processes which must share
the fresh name c.

By reconsidering the service invocation descriptions, it shows that all service
invocation in the π-calculus is indeed asynchronous. This is essential, as the
name of the response channel must be transmitted to the service in order to
work. The notation of synchronous invocation simply means that there is no
additional activity between the invocation and response.

3.2 Providing Services

The π-calculus provides an easy notation for describing state preserving services,
where the correlation is bound to a unique π-calculus name. A π-calculus process
that acts as a service is defined by:

SERV ICE =!w(c). · · · .c.0 .

Each time a request for SERV ICE is received via the global name w, the
service is replicated (comparable to instantiated). The service can be as com-
plex as required (represented by · · ·). After all computation has been done, the
response is sent. As service invocations in the π-calculus are generally asyn-
chronous, there is no differentiation between a synchronous and asynchronous
service. The service always requires a response channel to work.

Towards a Formal Model for Agile Service Discovery and Integration 7

Interestingly, by using a unique name for the correlation as well as response
channel, the service also holds the state between complex operations. As the
name is unique and bound to the invoker, there can be no confusion. An example
is a service that can be invoked again with the unique name, those interacting
in a complex choreography:

SERV ICE =!w(c). · · · .c.c. · · · .c. · · · .

When SERV ICE receives an invocation at the unique name c, it knows
exactly which replication instance is triggered, if that instance exists. As only
the invoker has access to c, no confusion is possible. A concrete, exemplary
client/service choreography can be denoted as follows:

SERV ICE = !w(c).τS1.c.c.c.τS2.c.0

�CLIENT = vc(w〈c〉.c.τC1.c.τC2.c.c.τC3) .

The client signals an initial invocation to SERV ICE with a fresh name c by
w〈c〉. SERV ICE then spawns of a new instance by replication which does some
internal computation represented by τS1 and afterward replies on the channel
c. The client in response computes something denoted by τC1 and sends two
requests over the name c. The service then executes τS2 and responds again on
the channel c. After the client received the last response, it does some internal
computation τC3 and finishes.

3.3 Supporting Data

One important characteristics of service invocations is the transmission and re-
ception of messages. Messages, or arbitrary data-structures, are also represented
by names in the π-calculus. A name thereby holds a reference to a π-calculus
process which represents a data structure. For the ease of representation in this
paper, we simply denote the type of the data structure with a colon and an
XML-type. For instance, mess : string denotes a name mess that references a
process that contains a data structure for text strings. By using the polyadic
extension of the π-calculus, we can group different names and transmit or re-
ceive them with one output or input prefix. An example that invokes a service
at the name s ∈ NS with a parameter of the type string and receives a response
containing a double as well as a date is denoted as:

� = vc(s〈c, request : string〉.c(rate : double, validuntil : date).τ).

4 π-calculus Orchestration Refinements by Example

Now, enough background is given to show the mapping of a more complex ex-
ample. Again, the process is visualized with the BPMN (figure 2). To make the

8 H. Overdick, F. Puhlmann, and M. Weske

example more interesting, the modeled process consists of several workflow pat-
terns, namely sequence, exclusive choice, simple merge, deferred choice as well
as a new pattern called Event-based Rerouting. The example describes a process
orchestration with web service interaction, both synchronous and asynchronous.

A

B

C

D

E

F

N1 N2
N3

N4

N5 N6

N7

N8 N9

N10 N11

N12 N13

N14 N15

e1 e2

e3 e4

e5 e6

e7 e8

e9

e10 e11 e12

e13 e14 e15

e16

Service Environment

Fig. 2. A BPMN process consisting of several patterns.

The process starts with task A making an asynchronous call to a web service.
Thereafter either task B or task C are executed. Task B contains a synchronous
web service invocation and has an attached intermediate timer event, which
interrupts task B after a certain amount of time has passed and B still has not
finished, and continues the execution with task D. After task B, C, or D have
been executed, a deferred choice is made. If an answer from the asynchronous
call of task A is received before another timeout is reached, task E is executed,
otherwise task F.

4.1 Event-based Rerouting

Before the actual mapping of the example process (figure 2), let us first go
back to the tasks, as they are modeled in BPMN. As shown in figure 3(a), all
tasks have an implicit hook for intermediate events, either directly attached as
shown, or logically attached, i.e. via a surrounding sub-process. On occurrence
of such an event, the control flow is immediately rerouted (alternative instead
of done in figure 3(a)). This is currently not captured by any workflow pattern,
as the rerouting may take place, before the completion of the activity modeled
by the task. This is especially true in the SOA context, as web services cannot
be canceled easily. Without this pattern, e.g. a timeout for a synchronous web
service call can not be modeled. As mentioned above, we propose the name
Event-based Rerouting.

Looking at the equations 1 and 2, one quickly realize that this immedi-
ate rerouting is not supported. Consequently, we need to adapt our equation.
Continuing the procedure of expressing each BPMN-node as a π-process, the
intermediate event will be expressed by a π-process as well. This event-process

Towards a Formal Model for Agile Service Discovery and Integration 9

Taskstart done

alternative

(a) BPMN-Task with
event

Taskstart done

alternative

abort<alternative>

(b) Mapping to π-calculus

Fig. 3. Intermediate events in BPMN and their mapping to π-calculus

can send the task an alternative route via the abort name, which is immediately
taken. Figure 3(b) tries to visualize how we propose to model a Task with the
π-calculus as shown in the following. As before, the � denotes a placeholder for
the actual process description. As � can simply be expanded, no new semantics
are introduced by this abbreviation.

TASK(start, done, abort,�) =start.TASKEXECUTE

+ abort(alternative).alternative.0
(3)

Equation 3 defines a task via the process TASK, having the names start,
done, and abort as parameters, plus the actual implementation denoted by �.
TASK waits either for a signal on start to start the execution TASKEXECUTE

or receiving an alternative name on abort, which is immediately signaled.

TASKEXECUTE =(vcontinue)(TASKABORT | TASKIMPL) (4)

TASKEXECUTE (equation 4) defines a private name continue and executes
TASKABORT and TASKIMPL in parallel.

TASKABORT =abort(alternative).alternative.continue〈⊥〉.0
+ continue〈>〉.0

(5)

TASKABORT (equation 5) tries to receive an alternative name over abort to
signal alternative and send ⊥ via continue. Alternatively, TASKABORT sends
> via continue. The reduction semantics of the π-calculus guarantees that the
decision can not be made until either continue is read by TASKIMPL (see
below) or abort is written by a different process, i.e. an event node.

TASKIMPL =�.continue(flag).([flag = >]done).0 (6)

TASKIMPL (equation 6) first executes the activity represented by �. It then
reads continue. If no read on abort occurred by this time, TASKABORT is now

10 H. Overdick, F. Puhlmann, and M. Weske

able to send > over continue, otherwise a ⊥ is transmitted. A > represents nor-
mal execution, so iff > is read, done is written. Here, ⊥ represents the occurrence
of an intermediate event, which is already handled by that time, thus the process
simply ends.

4.2 Mapping to π-calculus

Now, let us start the mapping of the example process (figure 2) to π-calculus.
Again, our approach is to model each BPMN-node as an individual process.

First, the gateways:

N3 =e2.τN3.([ce3 = >]e3 | [ce7 = >]e7)

N8 =vx(e4.x.0 | e6.x.0 | e8.x.0 | x.e9.0)

N14 =vx(e12.x.0 | e15.x.0 | x.e16.0)

All gateways, except for the deferred choice, are expressed with equation 2,
just as before.

Next, the trivial tasks:

N6 =TASK(e5, e6, envABORT , τN6)
N7 =TASK(e7, e8, envABORT , τN7)

N11 =TASK(e13, e14, envABORT , τN11)
N13 =TASK(e14, e15, envABORT , τN13)

The trivial tasks (N6, N7, N11, N13) are represented by our new TASK pro-
cess, abstractly executing a τ . The name envABORT represents a name provided
by the environment to signal a global abort, e.g. the shutdown of the workflow
engine.

As we just introduced the concept of environmental names, let us now look
at the start- and end-event of the process:

N1 =TASK(envSTART , e1, envABORT , τN1)
N15 =TASK(e16, envDONE , envABORT , τN15)

These are trivial tasks as well, but interact with the environment via envSTART

and envDONE . These names provided the integration to a workflow engine to
signal the start of the execution as well as the completion between the process
and the workflow engine.

Next, the asynchronous web service invocation in N2:

N2 =TASK(e1, e2, envABORT , wreq1〈wresp1〉.τN2)

The implementation follows the explanation from section 3.1. The web service
is called via wreq1 and the unique response name wresp1 is passed along. All of
this is encapsulated within a TASK process.

Towards a Formal Model for Agile Service Discovery and Integration 11

N4 is a synchronous web service invocation with an attached intermediate
timeout event N5:

N4 =TASK(e3, e4, abortN5, wreq2〈wresp2〉.wresp2.τN4).0

N5 =envTIMEOUTN5.abortN5〈e5〉

As before, the response name wresp2 is passed along the service call. The only
difference to N2 is the immediate read on the response name. Also, note that
the abort-name is different than before to allow for a communication between
N5 and N4 in case the timeout gets triggered. The actual timeout is once again
triggered by the environment (envTIMEOUTN5). This is an application of the
Event-based Rerouting pattern described before.

Last but not least, the deferred choice N9:

CHOICEN9,N10,N12 =e9.(wresp2.e11.0 + envTIMEOUTN12.e14.0)

Notice, that the nodes N10 and N12 are not modeled explicitly, but as part
of the CHOICEN9,N10,N12 process, hence the name. Again, we model the actual
timeout as a signal by the environment. The simplicity of the equation is yet
another good example of the expressiveness of the π-calculus.

5 Conclusion

In this paper, we have sketched how the π-calculus can be used in the service–
oriented domain. Starting from our work on workflow pattern in π-calculus, the
representation, orchestration, and choreography of services has been discussed.
Interestingly, the π-calculus concept of mobility, which is based on communicat-
ing names that can be used as interaction channels, proved to be very useful
to formally represent unique correlations. Furthermore, we introduced formal
representations for service invocation, both for the client and the provider. In
section 4 the orchestration of services was refined by introducing a formal rep-
resentation of a pattern known from notations like BPMN or BPEL. We named
it Event-based Rerouting pattern and introduced the precise semantics of a task
containing it. Finally, the formalization of an example containing the new pat-
tern as well as another common pattern in service–oriented orchestrations, a
deferred choice modeled with an event–based gateway in the BPMN, has been
discussed.

Related Work. Lucas Bordeaux and Gwen Salaün wrote a survey about us-
ing process algebra for web services [3]. They argued that the formal reasoning
capabilities of process algebras are well suited in the service–oriented domain.
Especially (relaxed) equivalence properties for services participating in a chore-
ography and some kind of soundness for orchestration can be formally proved
by using process algebra. They also concluded that the name passing notation
of the π-calculus is definitely of interest in the context of web services. However,
there exist no XML-based technology that allows for name passing yet.

12 H. Overdick, F. Puhlmann, and M. Weske

Further discussions about behavioral compatibility of web–services can be
found in [11]. L.G. Meredith and Steve Bjorg wrote a journal article about
using mobile process algebra in the context of formal service descriptions where
they emphasized the use of behavioral types as a new kind of service discovery
mechanisms [4]. There have also been investigations on extending the π-calculus
for representing and reasoning about long–running transactions in component–
based distributed applications like web–service platforms [12]. A more practical
approach of using CCS [13] to formalize web service choreography can be found
in [14].

References

1. BEA Systems, IBM, Microsoft, SAP, Siebel Systems: Business Process Execution
Language for Web Services Version 1.1. (2003)

2. Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Pat-
terns. In van der Aalst, W., Benatallah, B., Casati, F., eds.: BPM 2005, volume
3649 of LNCS, Berlin, Springer-Verlag (2005) 153–168

3. Bordeaux, L., Salaün, G.: Using Process Algebra for Web Services: Early Results
and Perspectives. In Shan, M.C., Dayal, U., Hsu, M., eds.: TES 2004, volume 3324
of LNCS, Berlin, Springer-Verlag (2005) 54–68

4. Meredith, L., Bjorg, S.: Contracts and Types. Communications of the ACM 46
(2003) 41–47

5. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.: Work-
flow patterns. Distributed and Parallel Databases 14 (2003) 5–51

6. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part I/II.
Information and Computation 100 (1992) 1–77

7. Milner, R.: The polyadic π–Calculus: A tutorial. In Bauer, F.L., Brauer, W.,
Schwichtenberg, H., eds.: Logic and Algebra of Specification, Berlin, Springer-
Verlag (1993) 203–246

8. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge
University Press, Cambridge (1999)

9. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Paper-
back edn. Cambridge University Press, Cambridge (2003)

10. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley, Boston
(2003)

11. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are Two Web Services
Compatible? In Shan, M.C., Dayal, U., Hsu, M., eds.: TES 2004, volume 3324 of
LNCS, Berlin, Springer-Verlag (2005) 15–28

12. Bocchi, L., Laneve, C., Zavattaro, G.: A Calculus for Long–Running Transactions.
In Najm, E., Nestmann, U., Stevens, P., eds.: FMOODS 2003, volume 2884 of
LNCS, Berlin, Springer-Verlag (2003) 124–138

13. Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)
14. Brogi, A., Canal, C., E.Pimentel, Vallecillo, A.: Formalizing Web Service Chore-

ographies. In: Proceedings of First International Workshop on Web Services
and Formal Methods. Electronic Notes in Theoretical Computer Science, Elsevier
(2004)

