
Notes About: Concepts for Variability in Processes

Frank Puhlmann

frank.puhlmann@hpi.uni-potsdam.de

December 29, 2005

Contents

1 Classifications 1

1.1 Control Flow oriented approaches 1

1.2 Classical programming approaches 2

1.3 Other approaches 2

2 Procedural languages 2

2.1 Formal languages 2

2.2 Language design 3

3 Rule based Processes 4

3.1 Foundations 4

3.2 ECA approach 5

3.3 Workflow Planner 6

4 Set theoretic Graph Grammars 7

4.1 Foundations 7

4.2 Context–free Graph Grammars 8

4.3 Context–sensitive Graph Grammars 9

5 Intelligent Agents 10

5.1 Foundations 10

5.2 Workflow Agents 12

6 Process Algebra 12

6.1 Foundations 12

6.2 π-Calculus 14

7 Business Process Model Transformations 16

8 Pockets of Flexibility 17

9 Inheritance of Workflows 18

10 Further ideas 19

1 Classifications

Process modeling can be classified using different ap-
proaches. This section currently contains classification
schemes based on control flow and on classical program-
ming approaches.

1.1 Control Flow oriented approaches

A control flow oriented classification can be divided into
four types. Sometimes, combinations of those types can
be useful.

Procedural Approach. The procedural or block ori-
ented modeling approach resembles high–level program-
ming languages. The process is modeled using process
statements like action, branch, sequence, etc. The
Business Process Execution Language for Web–Services
is some kind of procedural modeling language [BEA03].
The procedural approach is intuitive applicable for pro-
grammers, but difficult to understand by business people.

Rule based Approach. The rule based control flow
modeling is oriented on rule based programming languages
like Prolog. The model uses logical statements to deter-
mine which actions can be executed at any given time.
The rule based approach is very powerful, but difficult
to use, because the sequence of activities is not explicitly
represented.

Graph based Approach. The graph based modeling
approach uses graphs to represent the relationships among
activities and other resources. Examples for graph based
approaches are Petri nets [Pet62], UML activity diagrams
[Gro03] or BPMN [BPM04]. Graph based models are easy
to create and understand. Furthermore they are close to
procedural models so that in most cases a mapping is pos-
sible. However, the theoretical foundations are rather hard
to handle.

Agent based Approach. The agent based process
modeling uses agents (programs) that are designed to
make an intelligent decision of what to do next based on
their current state. Agents can be distributed and act in-
dependently of each other. Agents are given a goal that
matches to a particular process or a part of it. The inter-
nal processes of an agent can be ever changing. The agent
should use the current process state and environment to
intelligently determine the next state. Intelligent agents
are a part of the artificial intelligence (AI) research.

Combinations Different approaches can be combined.
The procedural and the graph based approach are very

1

2 Frank Puhlmann

close, often a a procedural model can be visualized using
graphs. Other combinations are possible, like combining
procedural and agent based approaches. Thereby a raw
high level process schema is defined using a procedural
language and the parts of the process are than executed
by autonomous agents.

1.2 Classical programming approaches

Because every computer program describes a process, we
should take a look at the existing literature and classifica-
tion of programming languages. Naturally, intersections
with other classification schemes can be found. Never-
theless, maybe we could reuse the concepts and ideas for
modeling our kinds of processes.

Imperative programming. The imperative program-
ming approach is action oriented. Every computation is
viewed as a sequence of actions (statements). Actions are
also used to affect the sequence flow (conditions, jumps,
loops). Classical imperative programming languages are
Fortran, Pascal and C.

Object–Oriented programming. The object–
oriented programming approach uses classes and objects
as key–concepts. The approach introduced inheritance
and messaging between classes and objects. Languages
supporting only objects and no classes are sometimes
called object languages. Instead of inheritance, those lan-
guages use delegation and cloning. Common examples of
object–oriented languages are C++, Java and Smalltalk.

Functional programming. The functional program-
ming approach is based on an expression interpreter. Ex-
pressions consist of function applied to sub–expression.
Functional programming is based on recursion and uses
implicit storage allocation. Examples for functional pro-
gramming languages are ML, Haskell and Opal.

Logical programming. Logic programming uses rela-
tions rather than functions. Programs consist of facts and
rules. The language uses the facts and rules to deduce
responses to queries. The classical language is Prolog.

Concurrent programming. Concurrent programming
centers on processes or tasks. It deals with the communi-
cation and synchronization between them. A language for
concurrent programming is Ada.

1.3 Other approaches

This subsection covers other approaches which do not fit
into earlier classifications or consist of combinations of
them.

Process Algebra oriented Approach. One can use
process algebra like ACP [Bas98], CCS (Milner) or CSP
(Hoare) to formally describe and analyze processes. A
more recent approach centering on communication and
mobile systems is the π-calculus [Mil99]. The basic tech-
niques are easy to handle, however advanced topics are
rather hard if one is not a mathematician or theoretical
computer scientist.

Further considerations

Further Readings

• An approach combining procedural and agent tech-
niques to model control flow can be found in [NB02].

• The concepts of programming languages can be found
in [Set96, Seb99].

2 Procedural languages

This section covers the procedural modeling approach.
Procedural modeling is based on imperative programming,
but can be combined with object–oriented and concurrent
programming.

Processes are modeled using statements like action,
branch, sequence or (parallel) flow. Those example
statements are taken from BPEL4WS [BEA03].

The definition and execution of computer languages
based on statements is a well studied field: compiler writ-
ing. We could use the first part of it, the generation of a
syntax–tree and symbol–table. But therefor, the syntax of
the process definition must be explicit and formal to allow
a computerized processing.

2.1 Formal languages

The syntax of process definitions can be constructed using
grammars. The syntax of a language describes its written
representation, including lexical details such as keywords
and punctuation marks.

Grammar. A grammar γ over a labeling alphabet L is
defined as follows:

γ = (T,N, S,R) (1)

where T ∈ L is a set of terminal symbols (tokens), N ∈
L is a set of non–terminal symbols with N ∩T = ∅, S ∈ N
is a start–symbol and R is a set of production rules of the
form α→ ω, where α, ω ∈ (N ∪ T)∗ with ∃x ∈ α : x ∈ N .

A sample grammar for generating real num-
bers could be written as follows, where L =
{0..9, ., realnumber, integerpart, fraction, digit}:

Notes About: Concepts for Variability in Processes 3

γ1 =({0..9, .},
{realnumber, integerpart, fraction, digit},
{realnumber},
{realnumber→ integerpart.fraction,

integerpart→ digit,

integerpart→ integerpart digit,

fraction→ digit,

fraction→ digit fraction,

digit→ 0,

digit→ 1, ...}
)

(2)

0..9 is a placeholder for every monadic number. Also,
digit→ 0..9 has to be written ten times.

Language. A language λ(γ) that is defined through γ =
(T,N, S,R) is a set of all sequences of terminal symbols
that can be derived from S using R.

Because of the leading zeros that γ1 can produce, we
can write λ(γ1) ⊃ R. If we somehow omit leading zeros in
γ1, we could write λ(γ′1) = R.

BNF. A grammar γ can be hardly read by humans, es-
pecially if the complexity increases. Therefore, J. Backus
and P. Naur introduced a notation called BNF (Backus–
Naur–Form). The notation consists of rules as follows:

Symbol ::= right side (3)

Symbol is a non–terminal and right side can consist of
terminal and non–terminal expressions. Multiple possible
expressions at the right side can be separated using |.

The notation of γ1 in BNF is as follows:

realnumber ::= integerpart.fraction

integerpart ::= digit | integerpart digit
fraction ::= digit | digit fraction

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

(4)

Sometimes all non–terminals are enclosed between spe-
cial symbols (〈nonterminal〉) and sometimes all terminal
symbols are quoted (”terminal”).

EBNF. The extended BNF notation enhances BNF
with some syntactical abbreviations. EBNF can always
be transformed back to BNF, so no additional functional-
ity is added.

The recursion A ::= A B | φ can now be written as
A ::= {B}, where φ is the empty sequence. To limit the
number of elements, we could write {...}max

min , where min is
the lower boundary and max is the upper boundary of the
recurrences. Instead of writing {...}1

0 we can use brackets
[...].

Chomsky Hierarchy. Formal grammars can be classi-
fied using the Chomsky hierarchy. The hierarchy defines
four types of grammars with four types of languages. The
grammar types differ in the allowed production rules.

• Type-0 grammars define a recursively enumerable lan-
guage with no restrictions on the production rules.

• Type-1 grammars define a context–sensitive language
with production rules of the form αAβ → αγβ with
A a non–terminal and α, β, γ strings of terminals and
non–terminals. γ must be non empty.

• Type-2 grammars define a context–free language with
production rules of the form A → γ with A a non–
terminal and γ as a string of terminals and non–
terminals.

• Type-3 grammars define a regular language with pro-
duction rules restricted to A→ aB or A→ a with A,
B as non–terminal and a as a terminal symbol.

Interesting in this context is the computational com-
plexity of the grammars. Type-1 grammars are classified
under PSPACE, therewith they can be solved with polyno-
mial memory and unlimited time. Type-2 grammars are
classified under NC, therewith they can be solved efficiently
(in polylogarithmic time) on parallel computers.

Considerations on Process Definitions. Because of
computational complexity, the grammars used for existing
programming languages are Type-2 with additional rules.
The additional rules are used for context–sensitive features
like variable declarations and typing. In addition to be
useful, the rules have to be univocal.

Attribute Grammars. Attribute grammars are gram-
mars, where the non–terminal symbols are enhanced with
attributes. Also, every production rule can have addi-
tional attribute rules, which are used to describe context
conditions. For example, every non-terminal expression
can get a type attribute. The attribute rules can then
define the type compatibility like x ∈ R + y ∈ N = z ∈ R.

2.2 Language design

The following criteria for programming language design
are taken from [TS85]. This book is rather old (1985),
but gives some ideas that are still useful.

It brings up the starting questions: Is it necessary to
design a new language? And if yes, what is the purpose of
the new language? Already twenty year ago, there existed
a bunch of programming languages, which could be easier
modified and adapted than recreating the wheel. How-
ever, if the adapting effort is very high or the language
extensions are profoundly, than a new language should be
designed. The purpose of the new language should be ex-
actly defined.

The remainder of this subsection lists some criteria for
programming language design.

4 Frank Puhlmann

Human Communication. Is the language easily write-
and readable? If the language design incorporates re–use,
than the readability should be rated over writeability. Fur-
thermore, the syntax must accurately and completely re-
flect the semantics of the language.

Prevention and Detection of Errors. The language
should permit error detection at design time. This can
be achieved using extensive typing. However, sometimes
untyped languages are necessary, requiring other methods
for error prevention and detection.

Usability. The language design should be simple and
straightforward. There should be as less ways as possible
to do the same thing. The language should consist of only
as few elements as needed.

Programming Effectiveness. Programming Effec-
tiveness covers the software–engineering aspect of usabil-
ity. One point is the the support for abstraction.

Compilability. Compilability requires reduced com-
plexity and as less context–sensitive statements as pos-
sible.

Efficiency. The efficiency has to be considered in the
context of the total environment. For most cases, effi-
ciency should not be overrated but kept in mind.

Simplicitiy. Simplicity covers the restriction to the ob-
jectives of the reasons, why the new language is designed.
The language should be based on a few, well designed con-
cepts.

Further Considerations

GOTO. In the mid–80th, the GOTO statement was
heavily debated. Today, in most modern programming
languages it has been outdated or even omitted. Do we
still need something similar like GOTO in process descrip-
tions?

Design Domains. Different domains have to be consid-
ered during the design of a programming language. They
include the micro- (tokens), expression- , data-, control-
as well as the compile structures.

Further readings

• Compiler writing is a well establish area; there exist
many lecture scripts about it, like [Kop, Jäg]. All
cited scripts and books about compiler writing intro-
duce formal languages in a more or less complete way.

• A good (and thin, but yet technical) introduction
to compiler writing is a book from Niklaus Wirth
[Wir96].

• An older but more in depth book, concerning compiler
writing, is [TS85]. The language design subsection is
based on it.

• An always cited reference about compiler writing is
the dragon book [ASU00]; it centers on the practical
aspects.

• An object–oriented language implementing activities
and processes is P [P].

3 Rule based Processes

Rule based process descriptions are strongly based on
logic. Wikipedia [Wik] defines logic as follows (March,
17, 2004):

Logic is the study of prescriptive systems of reasoning,
that is, systems proposed as guides for how people (as well,
perhaps, as other intelligent beings/machines/systems)
ought to reason. Logic says which forms of inference are
valid and which are not.

By using logic, we can make statements about the envi-
ronment of a process and define logic rules which execute
activities based on the current state of the environment.

3.1 Foundations

Different kinds of logic exist, like Aristotelian, formal
mathematical, philosophical as well as propositional and
predicate logic. Our point of interest is predicate logic.

Predicate logic consists of variables, objects constants,
predicate constants, function constants and logical con-
nectives. Predicate logic requires a world in which the
propositions apply. We can formulate the predication that
the sky is blue as:

is blue(sky) (5)

A function in our world is:

eye color(Frank) (6)

Equations can be formulated like this:

eye color(Frank) = eye color(Anke) (7)

We can use variables to defines statements. The state-
ment can be evaluated if we specify x:

Add(3, x) = 8 (8)

Variables can also be bound to quantifiers. If a variable
is bound, it denotes an element, which is not any further
defined as that it exists, or that it can be every element
of a set:

∃x.(Add(3, x) = 8) (9)

∀x.(Add(3, x) = 8) (10)

Notes About: Concepts for Variability in Processes 5

Σ1 A
sorts: nat Anat =def N
opns: zero :→ nat zeroA =def 0

succ : nat→ nat succA(n) =def n+1
add : nat nat→ nat addA(n,m) =def m+

n
rels: Prim 〈nat〉 PrimA =def

{n|n is a
prime}

Table 1: A structure A for a signature Σ1

Also, logical connectors can be used:

is blue(eye color(Frank)) → is blond(Frank) (11)

To give a more funded background, we now formally de-
fine logical signatures, structures, variables and formulas
for predicate logic. The definitions are taken in a short-
ened form from [EMC+01].

Logical Signature. A logical signature is defined as a
triple:

Σ = (S,OP,R) (12)

with S as a non empty set where the elements are called
sorts, OP as a set where the elements are called operation–
symbols, and R as a set, where the elements are called
relation–symbols. Every operation–symbol f ∈ OP is de-
clared as f : s1 . . . , sn where n ∈ N and s1, . . . , sn ∈ S. If
n = 0, f is called a constant–symbol, else a function–
symbol. Every relation–symbol r ∈ R is declared as
r : 〈s1 . . . sn〉, where n ∈ N+ and s1, . . . , sn ∈ S.

Structure. A structure for a logical signature Σ, called
Σ–structure is a Σ–algebra defined as a triple:

A = ((As)s∈S , (fA)f∈OP , (rA)r∈R) (13)

For every s ∈ S is As a non empty set, every constant–
symbol c is an element from As, every function–symbol
f is a mapping fA : As1

× . . . × Asn
→ As, and every

relation–symbol is r a relation rA ⊆ As1
× . . .×Asn

.

An example of a structure A for a logical signature Σ1

is given in table 1.

Variables. Let X = (Xs)s∈S a family of sets, whose
elements are called variables and s ∈ S : Xs ∩ OP = ∅.
Variables are assigned using β : X → A.

Formulas. Terms are evaluated using xeval(β) on the
terms of TΣ(X). If Σ is a logical signature and X is a
fitting family set of variables, we can define formulas as
follows:

1. If s ∈ S and t1, t2 ∈ TΣ,s(X), so is the expression

t1 = t2 (14)

called an equation over Σ and X .

2. If r : 〈s1 . . . sn〉 is a relation–symbol and ti ∈ TΣ,si
(X)

for i = 1, . . . , n, so is the expression

r(t1, . . . tn) (15)

called a predication over Σ and X .

3. The set FormΣ(X) of the formulas of the first–order
predicate logic over Σ and X is inductive defined as
follows:

• Every equation and every predication over Σ and
X is a predicate logical formula.

• The logical symbols ⊤ (true) and ⊥ (false) are
predicate logical formulas.

• If ϕ is a predicate logical formula, then ¬ϕ is a
predicate logical formula.

• If ϕ and ψ are predicate logical formulas, then
(ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ→ ψ) and (ϕ↔ ψ) are also
predicate logical formulas.

• If ϕ is a predicate logical formula and x is a
variable, then (∀x.ϕ) and (∃x.ϕ) are predicate
logical formulas, too.

A formula is called atomic, iff it is an equation, a pred-
ication or one of ⊤ and ⊥. The set of all atomic formulas
over Σ and X are called AtomΣ(X).

Instead of writing ¬(ϕ = ψ) we could write (ϕ 6= ψ)
and (¬∀x.ϕ) can be written as (∄x.ϕ).

3.2 ECA approach

The ECA approach originates from active database sys-
tems and means Event, Condition, Action rule [DHL90].
The event component specifies when a rule must be exe-
cuted. After invoking the rule, the condition component
must be checked and if it matches, the action component
is executed.

Beside from active databases, the ECA approach could
also be used to specify a control flow between different
activities [KEP00]. The next paragraphs summarize the
cited papers.

6 Frank Puhlmann

EventON

ConditionIF

Action
then
DO

Alternative
Action

else
DO

EventON

ActionDO

EventON

ConditionIF

ActionDO

a) b) c)

Figure 1: The EA (a), ECA (b) and ECAA (c) notation
for business rules

Coupling Modes. The coupling modes originate from
database transactions and specify the coupling between
events and conditions (EC) or between conditions and ac-
tions (CA). Therefore, we suppose a transaction T that
signals an event E for a rule R with condition C and action
A. The following coupling modes can be applied:

• Immediate: C is evaluated within T immediately
when E is detected (EC) or A is executed immedi-
ately after C is evaluated (CA), halting the remaining
steps of T .

• Deferred: C is evaluated (EC) or A is executed (CA)
after the last operation of T , but before T commits.

• Decoupled: C is evaluated (EC) or A is executed
(CA) in a separate concurrently transaction T ′. The
dependencies between T and T ′ must be resolved first.

Triggers. A rule can have multiple triggers (events, E).
The following triggers can be used (incomplete enumera-
tion):

• OR–Trigger (E1∨E2), event E1 or E2 trigger the rule.

• AND–Trigger (E1 ∧ E2), event E1 and E2 together
trigger the rule.

• Sequence–Trigger (E1, E2), event E1 followed by E2

triggers the rule.

• Counter–Trigger (n∗E), n times the event E triggers
the rule.

• m–out–of–n–Trigger, m events out of a set of events
n trigger the rule.

• Periodical–Trigger, every n–th event triggers the rule.

• Interval–Trigger, every event E within an interval of
events trigger the rule.

In addition, we need time triggers, that trigger an event
at absolute, relative or repeated times. Finally, an event
can trigger more than one rule, so that a rule priority is
needed.

e1ON

a1 DO e2

ON

...DO

e2

a) e1ON

a1 DO e2

ON

a2a e3aDO

e2 ON

a2b e3bDO

e2

b)

e
1

ON

c1IF

a
1a

 then
DO

a
1b

 else
DO

c)

e
2a

e
2b

ON

...DO

e
2b

ON

...DO

e
2a

Figure 2: Rules for modeling sequential (a), parallel (b)
or alternate (c) control flow

ECmAn. The ECmAn paradigm for workflows can be
found in [KEP00]. It allows m conditions and n actions.
Often used constructs in the workflow domain are ECAA,
ECA and EA rules. They are shown in figure 1.

By using these constructs, different control flow struc-
tures like sequence, parallel or alternate execution can be
defined (see figure 2). Other constructs like non–exclusive
choice or repeated actions are contained in the cited pa-
per. Actors and data can be added by defining an actor for
every condition or action and data can be modeled using
input and output fields for every condition or action.

Refinement. ECA business rules can refined by replac-
ing a rule with a more complex one. This way, one can
start modeling using abstract rules, which are then re-
fined to elementary and precise rules that can be used to
derive a workflow specification. The refined rules must
take the same input event(s) and generate the same out-
put event(s).

Rule Repository. A rule repository contains abstract
and formalized rules. The designer must use the rule
repository, the data model and the organizational model
to create a process model.

3.3 Workflow Planner

This subsection is based on an internal paper by Harald
Meyer and Hilmar Schuschel [MS04]. Their planner ap-
proach uses pre– and post–conditions (effects) for each
activity. They described requirements for an automated
planner.

A planner combines single activities to process defini-
tion by using the pre– and post–conditions. The planning
algorithm is therewith a search within the rule space R∗.

An ideal planner should only find a partial order plan
to allow parallel execution. They stated that the expres-
siveness of the modeling language is very important and
defined the following requirements:

Notes About: Concepts for Variability in Processes 7

• The logical representation should be based on first–
order predicate calculus.

• Conditional effects should be supported to allow eas-
ier modeling.

• Uncertainty must be supported. Uncertainty is some-
thing that is not known at the design–time of the pro-
cess and must be decided at run–time (e.g. a data–
based xor split).

• Arithmetic functions are needed to cover aspects like
cost and durations.

• Metrics can be used to define optimization criteria.

• Temporal planning allows the optimization of the crit-
ical path length when creating parallel process flow.

Further considerations

Combinations. The ECA approach describes how a
process actually works, whereas the planner approach fo-
cuses on properties for building processes based on metrics
and other properties.

Further readings

• A framework for a business rule driven web service
composition can be found in [OYP03].

• Concurrent Transition Logic as a foundation for
workflow modeling and execution can be found in
[DKRR98].

4 Set theoretic Graph Grammars

Graph grammars can be used to describe the structures
of graphs. Every diagram of a visual process modeling
notation like UML activity diagrams [Gro03], Petri nets
[Pet62] or BPMN [BPM04] can be seen as some kind of
graph.

A graph grammar defines rules for generating, trans-
forming and testing a graph. Therewith a graph grammar
can be used for generating graphs that belongs to a cer-
tain class. The other way around it can be used to test if
a certain graph belongs to a class. It can also be used for
transforming graph structures, e.g. for executing or opti-
mizing a graph. By using thus possibilities, graph gram-
mars can be used for formal describing the variability of
processes.

Graph grammars can be categorized into different ap-
proaches. The one we introduce here is the set theoretic
approach. The set theoretic approach is intuitive compre-
hensible and allows the representation of complex graphs
with formal methods. Others approaches include the cat-
egory theoretic and the logic oriented view. The first is
based on the mathematical category theory, using total
and associative catenations. The logic oriented approach

a a

b

c

d

d

e a

Figure 3: A directed, labeled graph

1:a 2:a

I:b

II:c

4:d

3:d

III:e 5:a

Figure 4: A directed, labeled graph with element number-
ing

uses formula sets to capture the graph as well as the graph
rules and executes a rule by modifying the formula set.

The following considerations have been collected from
different sources like lecture scripts [LMT95, SW92] be-
cause there exist a lack of textbooks on this area, as
far as we know. However, there exists a handbook set
[Roz97, Roz99a, Roz99b] which still must be examined. 1

4.1 Foundations

We start with defining some essential key words for talking
about graphs. The kind of graphs we use here are called
directed, labeled graphs. A graph consists of vertices (V)
and edges (E). Every edge has a source and a target ver-
tex, making it directed. We can label vertices and edges
by using a finite set of labels (L). An example is shown
in figure 3. For better referencing parts of a graph, all
elements can be numbered. To differ numbers from labels,
we define a pair x : y where x is the number and y is the
label. The extended graph is shown in figure 4.

Graph. Different approaches exist to define a graph for-
mally. We define a directed, labeled graph as a six-tuple
over a labeling alphabet L:

G = (V,E, s, t, l,m) (16)

where V is a set of vertices and E is a set of edges. The
components s and t define a mapping E → V , where each
edge is assigned a source vertex (s) and a target vertex
(t). The component l defines a mapping l : V → L and
m defines a mapping m : E → L, where each vertex and
edge is assigned a label. The components of a graph G are
named GV , GE , sG, tG, lG and mG.

1At a first glance, volume 1 covers basic techniques like the one

described in this section. Many others like hyperedge replacement

or node replacement graph grammars can also be found. Volume 3

center on interaction and distribution of graph systems. The graph

8 Frank Puhlmann

a)

b)

I:s II:xs

III:a

IV:a

V:xj VI:e

1

2

3

4

5

6

Figure 5: A BPMN diagram (a) seen as a directed, labeled
graph (b)

L:

:c :b

:a

:a

R:

:c :b
:a

Figure 6: Graph substitution

The example from figure 5 can be written in algebraic
notation as follows, where L={s,a,xs,xj,e} (s=Start Event,
a=Activity, xs=XOR Split, xj=XOR Join, e=End Event):

G1 =({I, II, III, IV, V, V I},
{1, 2, 3, 4, 5, 6},
{(1, I), (2, II), (3, II), (4, III), (5, IV), (6, V)},
{(1, II), (2, III), (3, IV), (4, V), (5, V), (6, V I)},
{(I, s), (II, xs), (III, a), (IV, a), (V, xj), (V I, e)},
∅)

(17)

Graph Productions Rules. For a better understand-
ing, we informally introduce graph production rules. We
cover a special kind, the set theoretic graph substitution
rule. Therewith we replace a part of a graph with another
graph. This is shown in figure 6. We have an original
graph L and a destination graph R. A graph substitu-
tion rule defines these two graphs and a common partitial
graph K. K is contained in L as well as in R. K does
not consist of anything else (K = L ∩ R). If we have an
original graph G that contains L as a partitial graph we
can cut off anything in G that is equal to L, just leaving
K as cutting/gluing points. We then can glue graph R to
the remaining cutting/gluing points. An example rule is
shown in figure 7.

A graph substitution rule is written as (L,K,R), con-
taining three graphs. The following process steps ap-
ply to an original graph G and a graph substitution rule
(L,K,R):

grammar section in this notes can of course only cover a very small

subset.

L:

:c :b

:a

:a

K:

:c :b

R:

:c :b
:a

Figure 7: Sample graph substitution rule (L,K,R)

L:

v1:x v2:x

K:

v1:x v2:x
e

Figure 8: Context–free graph substitution rule (L,K, ..)

1. (L,K,R) can be applied on G, if G contains L as
partitional graph.

2. Every vertices and edges from L that are not con-
tained in K are deleted from G. This creates a re-
maining graph D.

3. Every vertices and edges from R that are not con-
tained in K are added to D. The added elements
should be glued to D as R is connected to K.

The formal definition of a graph substitution rule is as
follows: A graph substitution rule p is a triple of graphs
(L,K,R), so that there exists a graph K included in L
and R as a partitional graph, K ⊆ L and K ⊆ R and
L ∩R = K. L is the left side, R the right side of the rule
and K consists of the common elements of the left and
right side.

The formal definition of a graph substitution rule was
easy, but problems occur if we try to formalize the execu-
tion steps of a rule p on a graph G (the informal process
steps above). The definition of L ⊆ G does not match
alone. We must first rename either L or G to allow com-
parison. Further we must take care that no vertex of R−L
is contained in G (formally: (L ∪R) ∩G = L). The com-
plete formalization can be found in [LMT95].

Graph Grammar. A graph grammar γ = (T,N, S,R)
consists of a set T of terminal labels for vertices and edges,
a set N of non–terminal labels, an initial graph S over
T ∪N and a set R of graph substitution rules over T ∪N .

Graph Language. A graph language λ(γ) that is de-
fined through γ = (T,N, S,R) consists of all terminal la-
beled graphs GRAPHT that can be derived from S using
R.

4.2 Context–free Graph Grammars

Graph grammars can be classified using the Chomsky hi-
erarchy. A Chomsky grammar has a context free language
if a single variable can be replaced, regardless of the left
and right context of the used word [EP02].

The computability of context–free grammars is classi-
fied under NC. Therewith it can be solved efficiently (in
polylogarithmic time) on parallel computers.

Notes About: Concepts for Variability in Processes 9

b)

a)
L:

:a :a

K:

:a :a

R:

:a :a

:a

Figure 9: A context-free graph substitution rule (a) for
adding an activity between two existing activities in a
BPMN diagram (b)

Context–free Graph Grammar. A graph grammar
γ = (T,N, S,R) is called context free, if the left sides of
the rules (RL) are equal to ({v1, v2}, {e}, s, t, l,m) with
s(e) = v1 and t(e) = v2 and if the middle part of the rules
(RK) are equal to ({v1, v2}, ∅, ∅, ∅, l, ∅) and all vertices in
GRAPHT are marked with a special label (and are there-
with not distinguishable). The left and middle part of a
context–free rule is shown in figure 8.

An example for a context-free rule is shown in figure
9. Between two activities in a BPMN diagram another
activity can be inserted. The problem is that this diagram
can only consists of activity elements, because all vertices
should be labeled the same (a).

4.3 Context–sensitive Graph Grammars

In the Chomsky hierarchy, a grammar has a context–
sensitive language if a variable A is replaced through a
string α with a length of at least 1. The replacement of A
is only accomplished, if the left and right context that is
required in the rule is found in the original word [EP02].

The computability of context–sensitive grammars is
classified under PSPACE. Therewith it is solvable with poly-
nomial memory and unlimited time.

Context–sensitive Graph Grammar. A graph gram-
mar γ = (T,N, S,R) is context–sensitive, if the right sides
of the rules (RR) contain at least as much vertices as the
left side of the rules (RL). Formally: |RLV

| ≤ |RRV
|. The

vertices can be labeled freely. [Incomplete definition]

An example for a context–sensitive rule is shown in fig-
ure 10. The rule creates an edge (sequence flow) between
a vertex labeled xs (XOR split) and a vertex labeled e
(end event). The rule p is formally written as (L,K,R):

L =({v1, v2}, ∅, ∅, ∅, {(v1, xs), (v2, e)}, ∅)
K =({v1, v2}, ∅, ∅, ∅, {(v1, xs), (v2, e)}, ∅)
R =({v1, v2}, {e1}, {(e1, v1)}, {(e1, v2)},

{(v1, xs), (v2, e)}, ∅)

(18)

Further considerations

Vertex Attributes. A vertex label only indicate a ter-
minal or non–terminal marker for a vertex. In the previous

c)

b)

I:s II:xs

III:a

IV:a

V:xj VI:e

1

2

3

4

5

6

7

a)
L:

v1:xs v2:e

K:

v1:xs v2:e

R:

v1:xs v2:e
e1

Figure 10: A context-sensitive graph substitution rule (a)
applied to a graph (b) and visualized as BPMN diagram
(c)

section examples we used it to distinguish between differ-
ent diagram elements. Therewith, a label indicates the
type of a a vertex. Further information can be added by
using vertex attributes.

Terminal vs. Non–Terminal Labels. A label indi-
cates the type of a vertex. Sometimes, we need both, a
terminal as well as non–terminal label for the same type.
E.g. as long as a diagram is under construction, all activ-
ities are labeled a (non–terminal label). An activity can
therewith be replaced through other diagram constructs.
If we like to make an activity final, we need a rule to
transform a to A (terminal label).

It is possible to add non–terminal labeled vertexes, that
do not map to a specific part of the target diagram, while
constructing diagrams. Those could be used as variation
points.

Node Replacement Graphs. Another way to gener-
ate graphs is by using node replacement graphs. Thereby,
a production is of the form X → (D,C) where X is a
non–terminal node label, D is a graph and C is a set of
connection instructions.

Graph Tests. Certain conditions can be defined on a
graph G that must match after applying a graph produc-
tion rule. This is called a graph test. One rule could be,
that there is no outgoing sequence flow from an end event
in BPMN. This could be written formally as follows:

∀x ∈ GV : lG(x) = e→ ∄k ∈ GE : s(k) = x (19)

Open Issues

10 Frank Puhlmann

• Is it possible to define a graph grammar for visual pro-
cess modeling languages like UML activity diagrams
or BPMN?

• What kind of graph grammar would it be (context–
free vs. context–sensitive)?

• Assuming, such a grammar is context–sensitive, is it
possible to define a context–free subset of the rules
while keeping as much potentials of the language as
possible? To define the potentials of a language, e.g.
workflow patterns could be used [vAtHKB00].

• Is it possible to use the labels instead of renaming the
vertices and edges of K to match against a graph G?

Further readings

• All required definitions like partitional graph, inter-
section or union matching to this notes can be found
in [LMT95].

• Considerations on context–free graph grammars can
also be found in [RS97].

• Processes can be executed or simulated using graph
grammars. In [LMT95] a transformation rule for Petri
nets is given.

• In [KM97] it is said that Petri nets can be mapped
on graph grammars, but not the other way around.
They cited an article [Cor95].

• In [KM97] a formal method for business process en-
gineering based on graph grammars is introduced.
The authors used the set theoretic approach enhanced
with hierarchical structured graph grammars.

• A graph grammar programming environment was de-
veloped at the RWTH Aachen [PRO, Sch00].

5 Intelligent Agents

Michael Wooldridge stated in [Woo02] that there is, for an
increasingly large number of applications, a strong need
for systems that can decide for themselves what they need
to do in order to satisfy their design objectives.

Those systems are known as agents. Intelligent or au-
tonomous agents must operate robustly in rapidly chang-
ing, unpredictable, or open environments, where there is
a significant possibility that actions can fail in an unpre-
dictable way.

Those environments can be classified by accessibility,
determinism, episodic vs. non–episodic, static vs. dy-
namic and discrete vs. continuous. If an environment is
sufficiently complex, than the fact that it is actually de-
terministic is not much help; i.e. it might as well be non–
deterministic. The most complex class is an inaccessible,
non–deterministic, non–episodic, dynamic and continous
environment.

Using the above statement, think a bit about the inter-
net. Now think about handling interorganizational work-
flow in such an environment. The advocates of agent based
technologies claim to have the solutions covering the prob-
lems. A lots of publications concerning agents and work-
flow have been written. Some are cited in this section.

5.1 Foundations

There exists no common definition for agents yet. In
[MS99], an intelligent agent is defined as an entity that has
some degree of autonomy, reasoning and learning capabili-
ties and is able to communicate in an intelligent way with
other agents. An agent expresses autonomy by showing
reactive and/or proactive behavior regarding its environ-
ment and taking initiative independently of a human.

Agents can be seen from different views like computa-
tional or even philosophical. A computational view might
see agents as the next step in programming, like a succes-
sor of the object-oriented programming paradigm. Agents
enhance object with subject–like features (e.g. ontol-
ogy, knowledge/believe about their environment, goals).
Communication is enhanced by asking questions to other
agents instead of just invoking methods.

Intelligent agents usually have a persistent state, like ob-
jects in true object languages like Self. As objects in Self,
agents can be cloned and modified to create new versions
keeping the knowledge and experience of its predecessor.

To successful develop agents, theories from different do-
mains have to be combined. Those are the theory about
actions and change (from artificial intelligence), the the-
ory of norms (covering social attitudes), database theory,
the theory of concurrent computing as well as principles of
software engineering.

In the following paragraphs, formal definitions concern-
ing agents are given; they are taken from [Woo02].

Agent. If we define the states of the environment of an
agent by a set S = {s1, s2, ...}, and the effective capabili-
ties of an agent by a set A = {a1, a2, ...} of actions, then
an agent can be defined as a function:

action : S∗ → A (20)

This function maps sequences of environment states to
actions. This agent is called a standard agent, he decides
what action to perform on the basis of its history — the
sequence of environment states that the agents has yet
encountered.

Purely reactive Agent. An agent is purely reactive, if
the decision making is based entirely on the present:

action : S → A (21)

The purely reactive agent simply responds directly to
his environment, without referencing former states. A
purely reactive agent is a subset of a standard agent.

Notes About: Concepts for Variability in Processes 11

Environment

Agent

see action

Figure 11: An agent in an environment

Environment Behavior. The (non–deterministic) be-
havior of an environment can be modeled as a function2:

env : S ×A→ 2S (22)

The function env takes the current state of the envi-
ronment s ∈ S and an action a ∈ A as input and maps
them to a set of environment states that could result from
performing the action a in state s. If the result always con-
tains one single member (|env| = 1) then the environment
is deterministic.

Agent History. If we define s0 as the initial state of
the environment at the time the agent appears, then the
sequence

h : s0
a0→ s1

a1→ s2 . . .
au−1→ su

au→ . . . (23)

represents a possible history of the agent in the en-
vironment iff ∀u ∈ N, au = action((s0, s1, ..., su)) and
∀u ∈ N+, su ∈ env(su−1, au−1) hold true. We denote by
hist(agent, environment) the history of an agent in an
environment.

Behavior Equivalence. Two agents ag1 and ag2 are
behaviorally equivalent with respect to an environment
env iff hist(ag1, env) = hist(ag2, env).

Perception. The concepts of an agent can be further
refined. The agents decision function is divided into a
function to observe its environment see, which maps envi-
ronment states to percepts P and action is now overloaded
as a function mapping sequences of percepts to actions:

see : S → P (24)

action : P ∗ → A (25)

This concept is visualized in figure 11. It allows in-
teresting considerations about agents. Suppose, that we
have two environment states s1 ∈ S and s2 ∈ S, such that
s1 6= s2, but see(s1) = see(s2). This means, that two
different environment states are mapped to the same per-
cept. The agent could therefore not distinguish between
s1 and s2. Let x and y represent two statements, so that
we have a set of environment states:

2Where 2S is the power set of S.

Environment

Agent

see action

next state

Figure 12: An agent with state

Sxy = {{x, y}
︸ ︷︷ ︸

s1

, {x,¬y}
︸ ︷︷ ︸

s2

, {¬x, y}
︸ ︷︷ ︸

s3

, {¬x,¬y}
︸ ︷︷ ︸

s4

} (26)

If an agent only perceives x using his see function, than
the state of y is unimportant. He therefore can not distin-
guish between the states s1 and s2 as well as between s3
and s4.

Agents with State. The history function of an agent
can be further refined. Agents with state maintain inter-
nal data structures which are used to record information
about the environment state and history. Let I be the set
of all those internal states. The agent’s decision making
function is overloaded to generate actions based on the
internal state information:

action : I → A (27)

Additionally, a function next is needed, which maps a
percept and an internal state to another internal state:

next : I × P → I (28)

This concept is visualized in figure 12. The agent starts
in an initial state s0. It observes its environment and
generates a percept using see. The internal state of the
agent is then updated using the next function, which takes
the percept and s0 as input. The agents than generates an
action using the updated set I. After that, another cycle
begins.

Concrete Architectures. In the last paragraphs, we
defined only abstract agents. We used an abstract function
action which somehow manages to select an action. The
following is an enumeration of possibilities to implement
this function:

• Logic based Agents: Decision making is realized
through logical deduction.

• Reactive Agents: Decision making is implemented
as some kind of direct mapping situations to actions.

• Belief–Desire–Intention Agents (BDI): Decision
making is realized through manipulating data struc-
tures that represent the beliefs, desires and intentions
of the agent.

12 Frank Puhlmann

• Layered Architecture: Decision making is par-
titioned into different layers, each dealing with the
agent’s environment at different levels of abstraction.

5.2 Workflow Agents

If we imagine a workflow based on the internet, the num-
ber of possible exceptions is very large; this leads to the
consequence that most workflows are incomplete by de-
sign. If one tries to cover all possible exception into a
workflow, it will soon render it unusable. In [HS98] it is
stated, that a dynamic approach is desirable, so that the
workflow is enhancing itself by including often appearing
exceptions.

The metamodel of most workflow systems is based on a
variant of an activity network which uses graph structures.
This workflow is defined by some central authority prior to
use. The static structure make it hard to use for humans,
which like to have some kind of control about their work.
Furthermore, there can be dynamic requirements derived
from a highly complex environment, that could not be
foreseen and included at the design time of the process.
That is the point, where workflow agents enter the game.

Agents for Workflow. Workflow agents perceive, rea-
son about and affect their environment. Furthermore they
can be adaptive and communicative. For a given environ-
ment, different types of agents could be developed. Each
of them is assigned one or more roles. The roles of great-
est interest for workflows are user-, resource- and broker
agents. Those agents are aware of their local environment
and can adapt to a workflow. The agents communicate
with each other to ensure global constraints and efficiency.
Most important, agents can learn from repeated instances
and therewith adapt to changing environments.

Agents and ACID. ACID means Atomicity, Consis-
tency, Isolation and Durability for transactions in tradi-
tional database engineering. In [HS98] it is stated that the
ACID criteria can be hardly met in an open environment.
The authors defined some kind of relaxed transaction pro-
cessing, where criteria can only be guaranteed for a special
time interval.

Interoperation. Another area for workflow agents is
the interaction between different workflows. A workflow
could be defined by web–services, which could be coordi-
nated by workflow agents.

Dynamic Workflow Agents. A concept for dynamic
workflow agents has been developed at the HP–Labs
in Palo Alto [CDHG00]. The authors stated, that E-
Commerce is a dynamic plug and play environment. Ser-
vices as well as business partnerships need to be cre-
ated dynamically and must be maintained only a short
time. They developed a dynamic behavior modification
for agents. Those dynamic agents do not have a fixed

set of predefined functions, instead they carry application
specific actions, which can be loaded and modified on the
fly. The agents can expose those abilities as well as their
knowledge, intentions and goals through messaging. Fur-
thermore they developed an infrastructure supporting dy-
namic service construction, modification and movement in
which dynamic workflow agents can interact.

The dynamic workflow agents are designed as web ob-
jects. They can be configured via an URL, on which
the state of the agent and its current tasks are listed.
The agents communicate using XML, and can dynami-
cally load XML interpreters for different domains. The
interpreters can be generated automatically using seman-
tic web features. Several dynamic agents can cooperate to
reach a goal, like a purchase task.

A dynamic agent is a carrier of tasks that represents
steps of a business process. It is a continuous running ob-
ject with a persistent communication channel and knowl-
edge across tasks and processes. They are designed to
integrate system components on the fly.

Further readings

• An excellent paper covering the key concepts of in-
telligent agents is [Woo02]. Much of the foundation
section is based on this paper.

• In [CDHG00] the dynamic workflow agents are de-
scribed.

• Mobile agents for interorganizational workflow are
considered in [MLL97].

• In [Bog99] mobile agents with Java are considered.

• An open source framework from IBM for Java and
agents, called Aglets, can be found under [AGL]. The
webpage also contains links to further information like
virtual enterprises with agents.

6 Process Algebra

Process algebra can be used for the description of and
reasoning about processes. Different algebras covering se-
quential, parallel, communication and mobile processes
have been developed during the last decades.

Almost all process algebra are based on a very small set
of axioms, making them easy to handle. By combining the
axioms or adding additional components like constants or
rules, one has a very powerful framework.

6.1 Foundations

We start the foundations by introducing a basic process al-
gebra (BPA), on which almost all other algebras are based.
We then extend or investigate the BPA by different things
like deadlocks, empty processes, recursion, bisimulation,
concurrency or abstraction.

Notes About: Concepts for Variability in Processes 13

x+ y = y + x (A1)
(x+ y) + z = x+ (y + z) (A2)
x+ x = x (A3)
(x+ y)z = xz + yz (A4)
(xy)z = x(yz) (A5)

Table 2: The axioms EBPA of the basic process algebra
BPA

Basic Process Algebra (BPA). The basic process al-
gebra is a tuple BPA = (ΣBPA, EBPA) where ΣBPA is a
signature, e.g. the set of constants and function symbols,
and EBPA is a set of axioms, e.g. a set of equations of the
form t1 = t2 where t1 and t2 are terms.

ΣBPA consists of two binary operators, + and ·, and a
number of constants, named a, b, c, The set of constants
is denoted by A, so that we have ΣBPA = {+, ·} ∪A. The
operator · is often omitted, we write ab instead of a · b.
Also, · binds stronger than all other operators and + binds
weaker. The axioms EBPA of the basic process algebra are
given in table 2.

We still need some semantics for the specification of
the BPA. The constants a, b, c, .. are called atomic actions
which are indivisible. The · is the product or sequential
composition; x · y is the process that first executes x and
after completition of x starts y. The + is the sum or
alternate composition; x + y is the process that executes
either x or y but not both.

Basic Terms. The BPA has a set of terms which are
called basic terms: (1) every atomic action a is a basic
term, (2) if t is a basic term and a is an atomic action,
then a · t is a basic term and (3) if t, s are basic terms,
then t+ s is a basic term.

Action Relations. The action relations describe which
actions a process can perform. We define two relations on
the set of BPA terms,

a→ and
a→ √

for each a ∈ A.

• t
a→ s denotes that t can execute a and then turn into

s; i.e. the execution of step a in state t moves us to
state s.

• t
a→ √

denotes that t can terminate by executing a.

An inductive definition of the possible action relations
is given in table 3. The table also contains generalized
action relations where σ is defined as σ ∈ A+. Therewith,

σ is a sequence of actions and t
σ
։ s is called a trace of t

by σ.

For example, the action relations of the term (a + bb)c

are (1) (a + bb)c
ac
։

√
and (2) (a + bb)c

bbc
։

√
. A graph

containing all possible action relations is shown in figure
13.

a
a→ √

x
a→ x′ ⇒ x+ y

a→ x′ and y + x
a→ x′

x
a→ √ ⇒ x+ y

a→ √
and y + x

a→ √
x

a→ x′ ⇒ xy
a→ x′y

x
a→ √ ⇒ xy

a→ y

t
a→ s ⇒ t

a
։ s

t
σ
։ and s

ρ
։ r ⇒ t

σρ
։ r

t
a→ √ ⇒ t

a
։

√

t
σ
։ s and s

ρ
։

√ ⇒ t
σρ→ √

Table 3: The action relations for the BPA

(a+bb)c c

bc

√
ca

bb

Figure 13: A graph based on the action relations for the
term (a+ bb)c

Reasoning. We could do some reasoning based on the
axioms. For example we could prove that a(b+b) = ab+ab:

a(b + b)
A3⇒ a(b) ⇒ ab

A3⇒ ab+ ab � (29)

We had to prove this term, because the axiom x(y+z) =
xy + xz that gives full distributivity is missing in table 2.
That is correct, because the left side describes a free choice
process whereas the right side describes a pre–selective
choice.

We could also prove that BPA ⊢ a(b + b) = ab + ab,
whereX ⊢ y stands for derivability, meaning we can derive
y from X :

BPA ⊢x = x+ x (30a)

BPA ⊢ab = ab+ ab (30b)

BPA ⊢a(b+ b) = ab+ ab � (30c)

Line 30a was derived using axiom A3. Line 30b was
derived by substituting x by ab. Line 30c was derived by
expanding the left side b using rule A3.

Deadlock. A process is called a deadlock if it has
stopped executing actions and, for whatever reason, can
not continue although there are actions left. A deadlock
is denoted by the special constant symbol δ, where δ /∈ A.

The extended algebra BPAδ consists of additional ax-
ioms shown in table 4 (ΣBPAδ

= ΣBPA ∪ {δ}, EBPAδ
=

EBPA ∪ {A6, A7}). The axiom A6 states that there is

x+ δ = x (A6)
δx = δ (A7)

Table 4: The additional axioms for deadlocks

14 Frank Puhlmann

xǫ = x (A8)
ǫx = x (A9)

Table 5: The additional axioms for empty processes

no deadlock as long as there is an alternative action. A7
states that after a deadlock has occurred, no further ac-
tions are possible.

Empty Process. As a counterpart to δ, we have a pro-
cess ǫ, the empty process. The only action ǫ contains is
successful termination. We assume that ǫ /∈ A and define
some additional axioms shown in table 5. The complete
definition for BPAǫ is (ΣBPAǫ

= ΣBPA ∪ {ǫ}, EBPAǫ
=

EBPA ∪ {A8, A9}).
A process algebra containing the deadlock as well as the

empty process is written as BPAδǫ.

Recursion. Recursion allows the possibility for the ob-
ject to be defined to occur again in the right-hand side of
the definition. We have to kinds of recursive definitions,
the recursive equation and the recursive specification:

• Recursive equation: X = s(X), where s(X) is a
term over BPA containing the variable X but no
other variables.

• Recursive specification: X = sX(V), for eachX ∈
V where sX is a term over BPA containing variables
from the set V .

Guarded Recursion. (1) If s is a term over BPA con-
taining a variable X , we call an occurrence of X in s
guarded if s has a subterm of the form a · t where a is
an atomic action and t is a term containing X . (2) A
term s is completely guarded if all occurrences of all vari-
ables in s are guarded. (3) A recursive specification E is
completely guarded if all right hand sides of all equations
of E are completely guarded terms. (4) A term s is also
guarded if we can rewrite s to a completely guarded term
by using the axioms.

Bisimulation. A bisimulation is a binary relation R on
two processes p and q: (1) if R(p, q) and p

a→ p′ then there

is a q′ such that q
a→ q′ and R(p′, q′), (2) if R(p, q) and

q
a→ q′ then there is a p′ such that p

a→ p′ and R(p′, q′),

(3) if R(p, q) then p
a→ √

iff q
a→ √

. Two processes p
and q are bisimilar, denoted by p ↔ q, if there exists a
bisimulation between p and q.

Informally, bisimilarity means that the branching struc-
tures of two processes are equal; e.g. if one process is
capable of performing a step a to a new state then any
equivalent process should be able to do an a step to a
corresponding state.

x ‖ y = xTy + yTx (M1)
aTx = ax (M2)
axTy = a(x ‖ y) (M3)
(x+ y)Tz = xTz + yTz (M4)

Table 6: The additional axioms for concurrency

xτ = x (B1)
x(τ(y + z) + y) = x(y + z) (B2)

Table 7: The additional axioms for abstraction

Concurrency. Processes that can occur in parallel are
denoted by the merge operator ‖, e.g. x ‖ y. Merged
processes can be seen as interleaved serial processes. Every
time we see either the next action of x or the next action
of y. Intuitively, we can state a ‖ b = ab+ ba.

To formally define the extended BPA signature, called
Process Algebra (PA), we need the left merge operator
T. Here, xTy has the same meaning as x ‖ y with the
restriction that the first step must come from x. We define
the components of PA as follows: ΣPA = ΣBPA ∪ {‖, T},
and EPA = EBPA∪{M1,M2,M3,M4}. The new axioms
M1 −M4 are shown in table 6.

Renaming. We define an unary renaming operator ρf

which replaces every occurrence of a constant a ∈ A by
f(a). Thereby f maps to f : A→ A∪C, where C is a set
of special constants like δ or ǫ.

Abstraction. We can abstract from certain process ac-
tions by hiding them. However, we can not easy remove
a constant symbol, instead we substitute it by a special
symbol. Therefore, we introduce a new constant τ , the
silent step. The substituted term can be processed by
new axioms, the τ laws, given in table 7.

For example, if we have the process a+bδ, by abstracting
from b we obtain a+ τδ and can not remove τ . If we have
a process abc and abstract from b, we obtain aτc = ac. We
can now define BPAτ or BPAτ

δǫ as previously (omitted).

Communication. Communication is rather hard to
handle using standard PA. Other process algebra like
CSP or CCS introduce special syntax and semantics.

Instead of looking at this algebra, we consider a newer
approach for the communication inside concurrent and
mobile systems, the π-calculus.

6.2 π-Calculus

The π-calculus is a mathematical model of processes with
changing structures, called mobile processes. It supports
systems with arbitrary linked processes and allows for
changing this linkage by the use of communication. There-
for, a technique called link passing is used. In this subsec-
tion we introduce the basic construction of the π-calculus;

Notes About: Concepts for Variability in Processes 15

Prefixes α ::= ax Output
a(x) Input
τ Silent

Agents P ::= 0 Nil
α.P Prefix
P + P Sum
P | P Parallel
if x = y then P Match
if x 6= y then P Mismatch
(vx)P Restriction
A(y1, ..., yn) Identifier

Definition A(x1, ..., xn)
def
= P (i 6= j ⇒ xi 6= xj)

Table 8: The syntax of the π-calculus

much more details and examples are referenced under fur-
ther readings.

The π-calculus is based on names (contained in the set
N) and process, or agent identifiers from the set K. We use
a, b, ... ∈ N to range over names and P,Q, ... ∈ K to range
over processes. The syntax of the π-calculus is shown in
table 8. It is explained in the following paragraphs.

Empty Agent. The empty agent 0 cannot perform any
action.

Output Prefix ax.P. The output prefix is used to send
the name x along the name a.

Input Prefix a(x).P. The input prefix is used to receive
a name along the name a and then x is replaced by the
received name.

Silent Prefix τ.P. The silent prefix τ represents an
agent that does not interact with the environment.

Sum P + Q. The sum represents an agent that can ei-
ther execute P or Q.

Parallel Composition P | Q. The parallel composi-
tion represents an agent that executes P and Q in parallel.
P and Q can communicate if one performs an output and
the other a corresponding input along the same name.

Comparison. The agents if x = y then P or if x 6=
y then P will behave as P if x and y are the same or
different names.

Restriction. The agent (vx)P behaves as P but the
name x is locally bound to P , so it can not be used as a free
name anymore. We define the free names of the process
P as fn(P) → N and the bound names as bn(P) → N
where fn(P) ∩ bn(P) = ∅.

Identifiers. Every identifier has a definition so that
A(y1, ..., yn) behaves as P with yi replacing xi for each
i. A definition can be thought of as a process declaration
with x1...xn as formal parameters. The identifier is an
invocation which replaces every xi with yi.

In later versions of the calculus, a bang-operator (writ-
ten as !P) is introduced instead of identifiers. This oper-
ator replicates a given process recursively and simplifies
the π-calculus.

Substitution. A substitution is a function that maps
names to names: fsub : N → N . We write {x/y} for the
substitution that maps y to x.

Examples. We consider some basic examples for the π-
calculus in the following lines.

a(x).cx | ab τ→ cb | 0 (31)

The example in formula 31 shows communication be-
tween parallel processes. The right hand process sends
the name b over the name a. The left hand process re-
ceives the name b over the name a and thereafter replaces
every local occurrence of x with b.

S | C | P ≡ ba.S | b(c).cd.C | a(e).P (32)

A popular example for the π-calculus is a server S that
holds a link a to a printer. The server sends the link to a
client C which in turn can send data d to the printer P .
The processes are shown in formula 32.

(ve)(S | e.R) (33)

Formula 33 shows communication using a private chan-
nel e. Currently, only process S can invokeR by using e. It
could also give the link name e to another process, thereby
expanding the scope of the restriction. Please note, that e
and e are an abbreviation for e(x) and ex in the case that
x is unimportant; e is thereby used as a trigger.

(vp)cp.pd.pe.S (34)

An extended example for using private channels is
shown in formula 34. Imagine, S wants to send two names,
d and e, to a client. By first establishing a private channel
p, it ensures that the same client receives both names in
the case that there exist multiple clients.

c(p).p(x).p(y).Q (35)

The matching client for formula 34 is shown in formula
35. It first receives the bound name p and thereby expands
the scope to the client. It then receives c and d over p.

The scope extrusion of p for the process S (formula 34)
to a particular process C (formula 35) is shown in figure
14. In a) the original situation is given; a process S holding
two names d and e as well as a bound name p. In b) the

16 Frank Puhlmann

S

C

C

Scope of p

d e

S

C

C

Scope of p

p

ed

S

C

C

Scope of p

p

ed

a) b) c)

Figure 14: π-calculus scope extrusion

bound name p is send to a particular process C. Finally,
in c), the names d and e are transmitted from S to C over
p.

Further considerations

Open Issues

• As van der Aalst asked in an unpublished discussion
paper [vA], how efficient can the workflow patterns
be modeled using process algebra?

Further readings

• The foundations of process algebra can be found in
[BW90].

• Hoare’s CSP (Communicating Sequential Processes)
can be found in [Hoa78].

• Milner’s CCS (Calculus of Communicating Systems)
is described in [Mil89].

• In his Turing Award lecture, Robin Milner [Mil93a]
draws the path from sequential over communication
up to mobile process algebra.

• The π–Calculus was early described in [MPW92].
The first part contains easy to follow examples,
whereas the second part contains more formal descrip-
tions.

• Robin Milner wrote a tutorial [Mil93b] and a single
book [Mil99] about the π–Calculus. The book con-
tains a nice introduction to automata theory and la-
beled transition systems as well as good examples.
Beside the introduction, the key concepts are difficult
to read and comprehend. The earlier papers men-
tioned above are much easier to understand.

• Another introduction to the π-Calculus can be found
in [Par01].

7 Business Process Model Trans-

formations

A rule based approach for reasoning about business pro-
cess model transformations is introduced in [SO00].

T1 T2

Sequence

T1 T2

Choice

C1

T1

T2

T3

Synchronizer

T4

T1

T2

T3

C1 T1 ∨ T2 ∨ T3 T1 ⋀ T2 ⋀ T3 T4

Figure 15: Mapping modelling structures to triggering
constraints

The general idea is very simple. The authors start
with defining three types of relationships between work-
flow graphs. Then they state different transformation
rules that obtain a given kind of relationship between the
old and the new graph. The paper is concluded by giving
some formal triggering constraints, which can be used to
reason about the transformation rules. However, this is
not done in the paper.

Nodes. The authors use the concept of execution nodes
and coordination nodes to define relationships. An execu-
tion node is a node that directly performs action, usually
it is an activity that does not act as a null (or placeholder)
activity. Choice and merge nodes are coordination nodes.

Equivalent Relationship. A workflow graph G′ is de-
fined to be structurally equivalent to another workflow
graph G, written as G′ ↔ G, if the sets of execution nodes
in both G and G′ are equal and each of them preserves the
structural/control flow constraints specified in the other.

Imply Relationship. A workflow graph G′ implies an-
other workflow graph G, written as G′ → G, if the sets
of execution nodes in both G and G′ are equal and G′

preserves the structural/control flow constraints specified
in G. G may not satisfy all of the structural/control flow
constraints specified in G′.

Subsume Relationship. A workflow graph G′ sub-
sumes another workflow graph G, written as G′ ⊃ G, if
the set of execution nodes in G is a subset of the execution
nodes in G′ and G′ preserves the structural/control flow
constraints specified in G. G may not satisfy all of the
structural/control flow constraints specified in G′.

Transformation Rules. Transformation rules that
preserve a given kind of relationship between an original
graph G and a transformed graph G′ can be found in the
original paper.

Formal Considerations. The transformation rules
stated in the original paper are given informal. However
the authors give a rule based approach of how to reason
about them. They defined a triggering constraint of the
form X → Y , meaning that the completion of X triggers

Notes About: Concepts for Variability in Processes 17

the start of Y . X and Y are algebraic terms. The map-
ping of some modeling structures to triggering constraints
is shown in figure 15. The transformation principles are
of the kind R1 → R3, R2 → R3 ⇔ R1 ∨ R2 → R3 where
RX is a triggering constraints term.

Further readings

• This section just covers some interesting key concepts
of the paper; further information can be found in the
paper itself [SO00].

8 Pockets of Flexibility

In [SSO01] a runtime approach for variability can be
found. The authors of the paper categorize three types
of change characteristics in workflow processes: dynamic,
adaptive and flexible workflows. A dynamic workflow is
the ability to change when the underlying business process
evolves. The important question is, how to map the active
workflows to the new model. An adaptive workflow can
react to exceptional circumstances. A flexible workflow is
based on a loosely or partially specified model. The miss-
ing pieces are constructed at runtime and may be unique
to each instance.

The pockets of flexibility center at flexible workflow by
bridging the workflow process and workflow execution as-
pect. The authors introduce a layer between the definition
and execution data as well as a workflow model which only
consists of the partial definitions. Those partial definitions
are called flexible workflow and consist of:

• A defined core process containing

– Pre-defined workflow activities and

– Pockets of flexibility within the pre-defined pro-
cess with

∗ A set of workflow fragments, where a frag-
ment can be a single or compound activity
and

∗ a special activity called build activity that
provides rules for instantiating the pocket
with a valid composition of workflow frag-
ments.

An example workflow with a pocket of flexibility is
shown in figure 16. The notation is BPMN [BPM04] with
an enhancement, the pocket of flexibility.3

The pocket of flexibility can be seen as an activity within
a process, therewith it does not depend on a particular
workflow language. The example was taken from the orig-
inal paper [SSO01] and converted to BPMN. The pocket of
flexibility is defined as special kind of sub–process, marked
with a build–marker. The parts inside the build activity

3The enhancement was proprietary defined by the author of this

note to illustrate the examples in this section.

Receive
patient

Create
file

Retrieve
file

Examine
patient

Prop. Build Marker

Make
diagnosis

Receive
payment

Mamogram

Ultra
Sound

Second
Opinion

Figure 16: Specifying flexible workflow using pockets of
flexibility

will be combined on a case–by–case basis. They can con-
sists of different kinds of process fragments. When the
process flow arrives at the build activity, the sub–process
inside is constructed using these fragments. Prior to build-
ing, the instance specification of the whole process is called
an open instance. After building all specific build activi-
ties, the instance specification is called instance template.
A process may contain several build activities, in hierar-
chical or sequential order.

The build activity contains rules for combining the con-
tained elements. Only instance templates following these
rules are allowed. The build activity can be executed fully
or partially automated or entirely manual. The fully au-
tomatic build uses instance data and given constraints.
The partially automated building invokes an application
program to build the instance template from a given set
of process fragments, following the given constraints. Un-
der manual controll, new fragments can be defined using a
process/workflow client. The new and existing fragments
are used to build an instance template.

There remain some questions, like what kind of process–
fragments should be allowed? The authors of the paper
state that sequence, fork and synchronize as well as itera-
tion fragments can be used very well. It is suggested not to
use choice or merge constructs, since those choices should
be made while executing the build activity. The authors
further identify three factors for customizing a build ac-
tivity for a given application:

• Type: Fully or partially automated or manual con-
trolled selection of process fragments

• Extent: How many process fragments can be selected
from the available pool

• Structure: What modeling constructs can be used to
compose the process fragments

Further work needs to be done by designing an appropri-
ate language for specifying the build rules and constraints.

Open Issues

1. How to solve dependencies between different build ac-
tivities?

18 Frank Puhlmann

PP/PPS

Figure 17: Protocol/projection inheritance-preserving
rule PP/PPS

9 Inheritance of Workflows

W.M.P van der Aalst developed a workflow language
based on Petri nets to describe a workflow [vAvH02]. To-
gether with T. Basten, he developed rules for the inheri-
tance of workflows [AB97, Bas98, AB99].

Van der Aalst and Basten identified four different no-
tations of inheritance concerning workflow nets: protocol
inheritance, projection inheritance, protocol/projection in-
heritance and life-cycle inheritance.

In [Aal99] projection inheritance is defined based on ab-
straction:

If it is not possible to distinguish between x and y when
arbitrary tasks of x are executed, but when only the efforts
of tasks that are also present in y are considered, then x is
a subclass of y with respect to projection inheritance.

This means, if we hide the new parts of the sub–process
x, and then the behavior of the remainder of x is exactly
like y, we have projection inheritance.

Protocol inheritance is defined based on encapsulation
[Aal99]:

If it is not possible to distinguish x and y when only
tasks of x that are also present in y are executed, then x is
a subclass of y.

This means, if we block all tasks present in x but not
in y and the behavior of x is still the same as y, we have
protocol inheritance.

Protocol/projection inheritance is the most restrictive
form of inheritance. It combines protocol and projection
inheritance. Life–cycle inheritance is the most liberal form
of inheritance, protocol and/or projection inheritance im-
plies life–cycle inheritance. The following inheritance–
preserving transformation rules are formally proofed in
[AB99].

Protocol/projection inheritance–preserving rule.
There is one transformation rule confirming to proto-
col/projection inheritance, PP/PPS (see figure 17). New
transitions and places are added to the workflow net in
such a way, that tokens are only temporary removed from
the place in the original net. The added subnet may con-
sist of any structure, as long as it is guaranteed that any
token taken from the original place will return finally and
no tokens remain in the subnet. The PP/PPS rule adds
additional behavior to the workflow.

PT/PTS

Figure 18: Protocol inheritance-preserving rule PT/PTS

PJ/PJS

PJ3/
PJ3S

Figure 19: Projection inheritance-preserving rules PJ/PJS
and PJ3/PJ3S

Protocol inheritance–preserving rule. The proto-
col inheritance-preserving transformation rule PT/PTS is
shown in figure 18. The added subnet removes tokens from
places of the original net and places them back at other
places in the original net. The added subnet may con-
sists of any structure, as long as it is guaranteed that any
token taken from the original net will finally return and
no tokens remain in the subnet. Other requirements are
that all new tasks consuming tokens from the original net
should not appear in the original net and that the route
via the subnet does not create new states in the original
net. The PT/PTS rule allows the addition of alternative
behavior for the workflow.

Projection inheritance–preserving rules. There are
two transformation rules confirming to projection inheri-
tance, PJ/PJS and PJ3/PJ3S (see figure 19). The subnet
inserted using rule PJ/PJS consumes tokens fired by the
original task and places them finally back to the original
target place. The added subnet may consists of any struc-
ture, as long as it is guaranteed that any token fired by
the original task will finally be placed in the original target
place and no tokens remain in the subnet. The PJ/PJS
rule allows the addition of a new subnet in a workflow,
replacing an existing connection.

The subnet producible by rule PJ3/PJ3S takes addi-
tional tokens generated by a task from the original net
and finally places them back as new input places for a
task in the original net. The added subnet may consists
of any structure, as long as (1) the execution of the firing
task of the original workflow is always follow by the execu-

Notes About: Concepts for Variability in Processes 19

tion of the receiving task of the original workflow, (2) the
activation of the subnet via the firing task of the original
workflow is always followed by a state which marks the
input places of the receiving task of the original workflow
in the subnet and (3) no tokens remain in the subnet af-
ter firing the receiving task of the original workflow. The
PJ3/PJ3S rule allows the addition of parallel behavior in
a workflow.

Further readings

• The inheritance–preserving rules have been applied
in a paper covering a public to private approach
[vAW01].

• Further considerations covering different problem do-
mains can be found in [Aal99].

10 Further ideas

References

[Aal99] W.M.P. van der Aalst. Inheritance of Work-
flow Processes: Four problems - One Solu-
tion? In F. Cummins, editor, Proceedings
of the Second OOPSLA Workshop on the
Implementation and Application of Object-
Oriented Workflow Management Systems,
pages 1–22, Denver, Colorado, 1999.

[AB97] W.M.P. van der Aalst and T. Basten. Life-
cycle Inheritance: A Petri-net based ap-
proach. In P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets 1997,
volume 1248 of LNCS, pages 62–81, Berlin,
1997. Springer-Verlag.

[AB99] W.M.P. van der Aalst and T. Basten. Inheri-
tance of Workflows: An approach to tackling
problems related to change. Computing sci-
ence reports 99/06, Eindhoven University of
Technology, Eindhoven, 1999.

[AGL] IBM Aglet Homepage.
http://www.trl.ibm.com/aglets/ (March
25, 2004).

[ASU00] Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman. Compilers. Addison–Wesley, Read-
ing, Massachusetts, 2000.

[Bas98] Twan Basten. In Terms of Nets: System
Design with Petri Nets and Process Algebra.
PhD thesis, Eindhoven University of Tech-
nology, Eindhoven, The Netherlands, 1998.

[BEA03] BEA Systems, IBM, Microsoft, SAP, Siebel
Systems. Business Process Execution Lan-
guage for Web Services Version 1.1, May
2003.

[Bog99] Marko Boger. Java in verteilten Systemen.
dpunkt.verlag, Heidelberg, 1999.

[BPM04] BPMI.org. Business Process Modeling No-
tation, 1.0 edition, May 2004.

[BW90] J.C.M. Baeten and W.P. Weijland. Pro-
cess Algebra. Cambridge Tracts in Theoret-
ical Computer Science. Cambridge Univer-
sity Press, Cambridge, 1990.

[CDHG00] Qiming Chen, Umesh Dayal, Meichun Hsu,
and Martin Griss. Dynamic-Agents, Work-
flow and XML for E-Commerce Automa-
tion. In K. Bauknecht, S. Kumar Madria,
and G. Pernul, editors, Electronic Com-
merce and Web Technologies: First Inter-
national Conference, EC-Web 2000, volume
1875 of LNCS, pages 314–323, Berlin, 2000.
Springer-Verlag.

[Cor95] A. Corradini. Concurrent Computing:
From Petri nets to Graph Grammars.
In Proceedings of the Joint COMPU-
GRAPH/SEMAGRAPH Workshop on
Graph Rewriting and Computation, 1995.

[DHL90] Umeshwar Dayal, Meichun Hsu, and Rivka
Ladin. Organizing long-running activities
with triggers and transactions. In Proceed-
ings of the 1990 ACM SIGMOD interna-
tional conference on Management of data,
pages 204–214, New York, 1990. ACM Press.

[DKRR98] Hasan Davulcu, Michael Kifer, C. R. Ra-
makrishnan, and I. V. Ramakrishnan. Logic
Based Modeling and Analysis of Workflows.
In Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 25–33.
ACM Press, 1998.

[EMC+01] H. Ehrig, B. Mahr, F. Cornelius, M. Große-
Rhode, and P. Zeitz. Mathematisch–
strukturelle Grundlagen der Informatik.
Springer–Verlag, Berlin, 2nd edition, 2001.

[EP02] Katrin Erk and Lutz Priese. Theoretische
Informatik. Springer-Verlag, Berlin, 2nd edi-
tion, 2002.

[Gro03] Object Management Group. UML 2.0
Superstructure Final Adopted specification.
Object Management Group, 2003.

[Hoa78] C.A.R. Hoare. Communicating sequential
processes. Communications of the ACM,
21(8):666–677, 1978.

[HS98] Michael N. Huhns and Munindar P. Singh.
Workflow Agents. IEEE Internet Comput-
ing, pages 94–96, July 1998.

http://www.trl.ibm.com/aglets/

20 Frank Puhlmann

[Jäg] Michael Jäger. Script: Com-
pilerbau – eine Einführung.
http://hera.mni.fh-giessen.de/∼hg52/lv/compiler/skripten/compilerskript/pdf/compilerskript.pdf

(March 25, 2004).

[KEP00] Gerhard Knolmayer, Rainer Endl, and Mar-
cel Pfahrer. Modeling Processes and Work-
flows by Business Rules. In W. van der
Aalst, J. Desel, and A. Oberweis, edi-
tors, Business Process Management: Mod-
els, Techniques, and Empirical Studies, vol-
ume 1806 of LNCS, pages 16–29, Berlin,
2000. Springer-Verlag.

[KM97] Christoph Klauck and Heinz-Jürgen Müller.
Formal Business Process Engineering based
on Graph Grammars. International Journal
of Production Economics, 50:129–140, 1997.

[Kop] Herbert Kopp. Script: Compilerbau.
http://www.informatik.fh-wiesbaden.de/∼weber/comp/kopp/co buch.pdf

(March 25, 2004).

[LMT95] Michael Löwe, Jürgen Müller, and Gabriele
Taentzer. Einführung in die Theoretische In-
formatik: Graphersetzung. Universität Bre-
men, 1995.

[Mil89] Robin Milner. Communication and Concur-
rency. Prentice Hall, New York, 1989.

[Mil93a] Robin Milner. Elements of Interaction. Tur-
ing Award Lecture. Communications of the
ACM, 36:78–89, January 1993.

[Mil93b] Robin Milner. The polyadic π–Calculus: A
tutorial. In Friedrich L. Bauer, Wilfried
Brauer, and H. Schwichtenberg, editors,
Logic and Algebra of Specification, pages
203–246, Berlin, 1993. Springer-Verlag.

[Mil99] Robin Milner. Communicating and Mobile
Systems: The π-calculus. Cambridge Uni-
versity Press, Cambridge, 1999.

[MLL97] M. Merz, B. Liberman, and W. Lamersdorf.
Using Mobile Agents to support Interorga-
nizational Workflow. Applied Artificial In-
telligence, 11:551–572, September 1997.

[MPW92] Robin Milner, Joachim Parrow, and David
Walker. A calculus of mobile processes, Part
I/II. Information and Computation, 100:1–
77, September 1992.

[MS99] John-Jules Ch. Meyer and Pierre-Yves
Schobbens. Formal Models of Agents: An
Introduction. In John-Jules Ch. Meyer
and Pierre-Yves Schobbens, editors, For-
mal Models of Agents: ESPRIT Project
ModelAge Final Workshop, volume 1760 of
LNCS, pages 1–7, Berlin, 1999. Springer-
Verlag.

[MS04] Harald Meyer and Hilmar Schuschel. Re-
quirements on a Planner for Workflow Mod-
eling. Internal HPI/BPT paper, 2004.

[NB02] John Noll and Bryce Billinger. Modeling
Coordination as Resource Flow: An Object-
Based Approach. In Proceedings SEA ’02,
Cambridge, 2002.

[OYP03] Bart Orriëns, Jian Yang, and Mike P. Pa-
pazoglou. A Framework for Business Rule
Driven Web Service Composition. In Con-
ceptual Modeling for Novel Application Do-
mains, volume 2814 of LNCS, pages 52–64,
Berlin, 2003. Springer-Verlag.

[P] P language homepage.
http://blrc.edu.cn/research/p/ (April
13, 2004).

[Par01] Joachim Parrow. An Introduction to the π–
Calculus. In Jan A. Bergstra, Alban Ponse,
and Scott A. Smolka, editors, Handbook of
Process Algebra, pages 479–543. Elsevier,
2001.

[Pet62] Carl Adam Petri. Kommunikation mit Au-
tomaten. PhD thesis, Institut für Instru-
mentelle Mathematik, Bonn, 1962.

[PRO] PROGRES homepage.
http://www-i3.informatik.rwth-aachen.de/resear

(March 25, 2004).

[Roz97] Grzegorz Rozenberg, editor. Handbook of
graph grammars and computing by graph
transformations, Volume 1: Foundations.
World Scientific, 1997.

[Roz99a] Grzegorz Rozenberg, editor. Handbook of
graph grammars and computing by graph
transformations, Volume 2: Applications,
Languages and Tools. World Scientific, 1999.

[Roz99b] Grzegorz Rozenberg, editor. Handbook of
graph grammars and computing by graph
transformations, Volume 3: Concurrency,
Parallelism, Distribution. World Scientific,
1999.

[RS97] G. Rozenberg and A. Salomaa, editors.
Handbook of Formal Languages, Volume 3:
Beyond words. Springer-Verlag, 1997.

[Sch00] Andy Schürr. PROGRES for Beginners.
RWTH Aachen, Lehrstuhl für Informatik
III, 2000.

[Seb99] Robert W. Sebesta. Concepts of Program-
ming Languages. Addison–Wesley, Reading,
Massachusetts, 4th edition, 1999.

[Set96] Ravi Sethi. Programming Languages: Con-
cepts & Constructs. Addison–Wesley, Read-
ing, Massachusetts, 2nd edition, 1996.

http://hera.mni.fh-giessen.de/~hg52/lv/compiler/skripten/compilerskript/pdf/compilerskript.pdf
http://www.informatik.fh-wiesbaden.de/~weber/comp/kopp/co_buch.pdf
http://blrc.edu.cn/research/p/
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html

Notes About: Concepts for Variability in Processes 21

[SO00] Wasim Sadiq and Maria E. Orlowska. On
business process model transformations. In
A.H.F. Laender, S.W. Liddle, and V.C.
Storey, editors, Conceptual Modeling - ER
2000: 19th International Conference on
Conceptual Modeling, volume 1920 of LNCS,
pages 267–280, Berlin, 2000. Springer-
Verlag.

[SSO01] Shazia Sadiq, Wasim Sadiq, and Maria Or-
lowska. Pockets of Flexibility in Work-
flow Specification. In Conceptual Model-
ing - ER 2001 : 20th International Con-
ference on Conceptual Modeling, volume
2224 of LNCS, pages 513–526, Berlin, 2001.
Springer-Verlag.

[SW92] Andy Schürr and Bernhard Westfech-
tel. Graphgrammatiken und Grapherset-
zungssysteme. Technical Report Aach-
ener Informatik-Berichte Nr. 92-15, RWTH
Aachen, 1992.

[TS85] Jean-Paul Tremblay and Paul G. Sorenson.
Compiler Writing. McGraw-Hill Book Com-
pany, New York, 1985.

[vA] W. M. P. van der Aalst. Pi calculus ver-
sus petri nets: Let us eat ”humble pie”
rather than further inflate the ”pi hype”.
http://is.tm.tue.nl/research/patterns/download/pi-hype.pdf

(May 31, 2005).

[vAtHKB00] W. M. P. van der Aalst, A. H. M. ter Hof-
stede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Technical Report BETA
Working Paper Series, WP 47, Eindhoven
University of Technology, 2000.

[vAvH02] Wil van der Aalst and Kees van Hee. Work-
flow Management. MIT Press, 2002.

[vAW01] W. M. P. van der Aalst and M. Weske.
The P2P approach to Interorganizational
Workflow. In K.R. Dittrich, A. Gep-
pert, and M.C. Norrie, editors, Proceed-
ings of the 13th International Conference on
Advanced Information Systems Engineering
(CAiSE’01), volume 2068 of LNCS, pages
140–156, Berlin, 2001. Springer-Verlag.

[Wik] Wikipedia - The Free Encyclopedia.
http://www.wikipedia.org (March 25,
2004).

[Wir96] Niklaus Wirth. Grundlagen und Techniken
des Compilerbaus. Addison-Wesley, Bonn,
1996.

[Woo02] Michael Wooldridge. Intelligent Agents: The
Key Concepts. In V. Máık, O. Tpánková,
H. Krautwurmová, and M. Luck, edi-
tors, Multi-Agent-Systems and Applications

II : 9th ECCAI-ACAI/EASSS 2001, AE-
MAS 2001, HoloMAS 2001, volume 2322 of
LNCS, pages 3–43, Berlin, 2002. Springer-
Verlag.

http://is.tm.tue.nl/ research/patterns/download/pi-hype.pdf
http://www.wikipedia.org

	Classifications
	Control Flow oriented approaches
	Classical programming approaches
	Other approaches

	Procedural languages
	Formal languages
	Language design

	Rule based Processes
	Foundations
	ECA approach
	Workflow Planner

	Set theoretic Graph Grammars
	Foundations
	Context--free Graph Grammars
	Context--sensitive Graph Grammars

	Intelligent Agents
	Foundations
	Workflow Agents

	Process Algebra
	Foundations
	-Calculus

	Business Process Model Transformations
	Pockets of Flexibility
	Inheritance of Workflows
	Further ideas

