Introduction to the PiVizTool

Anja Bog
anja.bog@hpi.uni-potsdam.de

November 22, 2006

The PiVizTool is a tool for the simulation and analysis of mobile concurrent
systems described in the m-calculus. PiVizTool has been developed by Anja Bog
in the course of a master’s thesis.

The tool graphically displays the linking structure of a defined m-calculus
system. For the graphical representation an extended version of Robin Milner’s
flow graphs [3] is utilized. The evolution of the displayed m-calculus system
can be influenced step-by-step through a user’s interaction with the graphical
representation. Thereby, the interaction behavior and link passing mobility of
the m-calculus agents in the system can be monitored. Due to the visualization
of the interacting m-calculus agents and their links among each other, an easier
understanding of 7-calculus system evolution is achieved.

The m-calculus systems as input for the tool can be described by using the
same input syntax as the Mobility Workbench (MWB) [4] and Another Bisim-
ulation Checker (ABC) [I].

1 Running PiVizTool

As a prerequisite for running the PiVizTool, an installation of the Graphviz
graph visualization software [2] is required. Graphviz provides the dot graph
drawing engine, which is used by the PiVizTool to automatically create the
layout of the presented 7-calculus system. Executable installation packages can
be downloaded at:

http://www.graphviz.org/

The dot installation path can be configured in the “File — Set dot execution
path...” menu.

The PiVizTool application is written in Java. It is distributed as a Java
Archive (JAR) and can be run using the Java interpreter. The command for
starting the PiVizTool application is:

java —jar PiVizTool.jar

2 Example

As a short introductory example to how the PiVizTool works, we imagine a
situation from every-day life. Let’s assume two persons: John and Mary. Both
have a telephone. John wants to call Mary, but does not know her telephone

http://www.graphviz.org/

number. Luckily, Mary has registered with the directory assistance, so John can
just call the directory assistance by using its publicly known number and ask for
Mary’s number. Now that John knows Mary’s number, he is able to call her and
talk to her. In this example, after John has queried Mary’s telephone number, a
new link that can be used for communication between John and Mary has been
established. The two states of the linking structure of the system are depicted

in Figures and

(a) (b)

Figure 1: John and Mary

For a translation of this situation into a m-calculus system, we need to define
three m-calculus agents, one for each: Mary, John and the directory assistance.
Furthermore, we need the telephone numbers as names for communication:

e John’s number: j_tel
e Mary’s number: m_tel

e The name under which Mary has been registered with the directory assis-
tance: mary

Directory assistance’s number: d

The w-calculus agent representing John is structured as follows. The pub-
licly known name d is used to query the directory assistance for Mary’s com-
munication link. With this query, the name mary is sent as an identifier, so
the directory assistance knows, whose data John asks for. Additionally, John
transmits his communication link, so the directory assistance can send Mary’s
communication data to him. Then he is able to use the received name for com-
munication with Mary. Regarding the structure of Mary’s process, she only
waits until somebody sends her a message.

John(d,mary) = (vjtel)d(mary,j-tel).j_tel(marys_number).
(John(d, mary) |
(vhello)marys_number (hello).0)
Mary(mztel) = m_tel(message).Mary(m_tel)

To simplify the process definition for the directory assistance, we assume the
state that Mary is already registered and only take into account the part that
is needed for providing John with Mary’s number.

DirectoryAssistance(d, m_tel, mary)
= d(name, chan).(DirectoryAssistance(d, m_tel, mary) |
[name = mary|chan{m _tel).0)
+ m_tel{message).DirectoryAssistance(d, m_tel, mary)

Finally, to provide the independent agents Mary, John and Directory Assis-
tance with a common scope for the used names, we define an agent S for the
entire system:

S = (vmctel,mary,d)(John(d, mary) | Mary(m_tel) |

DirectoryAssistance(d, m_tel, mary))

To be used as input for the PiVizTool, the definitions are refined into the
following ASCII representation. As can be seen, an additional tag exec is
inserted. This tag tells the PiVizTool, which of the defined agents are to be run
initially.

exec agent S = (“m_tel,mary,d) (John(d,mary) | Mary(m_tel) |
DirectoryAssistance(d,m_tel,mary))

agent John(d,mary) = ("j_tel)’d<mary,j_tel>.j_tel(marys_number).
(John(d,mary) |
("hello) ’marys_number<hello>.0)

agent Mary(m_tel) = m_tel(message).Mary(m_tel)

agent DirectoryAssistance(d,m_tel,mary)
= d(name,chan) . (DirectoryAssistance(d,m_tel,mary) |
[name = mary]’chan<m_tel>.0)
+ ’'m_tel<message>.DirectoryAssistance(d,m_tel,mary)

Some screenshots of the PiVizTool during the simulation of this example
are shown below. Before explaining the shown process some general comments
regarding the user interface will be given. The user interface is separated into
two parts. The left hand side gives a list of restricted names in the displayed
system. From this list one or more names can be selected. Upon selection, a
name’s scope will be immediately shown in the graphical representation. The
scope of a name is represented by connecting the name and all the nodes rep-
resenting agents in the scope of the name with dashed lines. The right hand
side shows the graphical representation of the current linking state of the sys-
tem. Direct interaction with this graphical representation causes the w-calculus
system to change states. Agents are represented by oval nodes and the links
between the agents represent message sending and receiving. The receiving side
is annotated by a small dot. The label of the communication link gives the
information, which name is used for sending/receiving. Communications have
to be distinguished into blocked and active ones. Active ones art those, whose

prefixes are not blocked by other prefixes. They are displayed as black links.
Blocked communications are displayed as shaded links. Tau actions of agents
that are currently executable are displayed by shading the node of the agent
they belong to.

2 PiVizTool
File Wiew Execution Help

ExecStep DotExecTree DotDefTres

d#ZCDDEd nares) Graphical Pi-Process | Original Pi-Process || Current Pi-Process

hello
i_tel#3
m_tel#0
mary#l

Directoryssistance

Figure 2: Screenshot: State after loading definitions into the tool

< o CEX

File ‘Yiew Execution Help

. ExecStep DotExecTree DotDefTree

Scoped names Graphical PFRProcess | Original Pi-Process | Current Pi-Process

mary#l DirectoryAssistance

Send: 'd#Z<mary#1, j_tel#3> Receive: d#z(name, chan)

Figure 3: Screenshot: John requestet Mary’s number

Figure [2] depicts the initial linking structure after the definitions have been
loaded into the tool. Figure[3|shows that John has requested Mary’s information
from the directory assistance and is now able to receive the information via the
channel j_tel, he has provided the directory assistance with. In Figure [4] the
state of John being able to communicate with Mary by using the received link
is depicted.

This concludes the short introduction to the PiVizTool. More information
regarding implementation details and used data structures, as well as more
sophisticated examples, can be found in the associated master’s thesis “A Visual

< piVizTool

File Wiew Execution Help

ExecStep DotExecTree DotDefTres

Scoped names Graphical Pi-Process | Original Pi-Process | Current Pi-Process

Ni_telzs

Directoryhssistance

_teld)

Send: 'j_tel#3<m_tel#0> Receive: j_tel#3(marys_number)

Figure 4: Screenshot: John establishing a connection with Mary

Environment for the Simulation of Business Processes based on the Pi-Calculus”
by Anja Bog.

References

[1] Sebastien Briais. The ABCs User Guide. Available at: http://lamp.epfl.ch/
sbriais/abc/abe.html, 2003.

[2] Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. In Software — Practice
and Experience, 30(11), pages 1203 — 1233, 2000.

[3] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, New York, NY, USA, 1999.

[4] Bjorn Victor and Faron Moller. The Mobility Workbench A Tool for the
Pi-Calculus. In David Dill, editor, CAV94: Computer Aided Verification,
volume 818 of Lecture Notes in Computer Science, pages 428—440. Springer-
Verlag, 1994.

	Running PiVizTool
	Example

