
An IoT Solution Methodology

Frank Puhlmann, Dirk Slama

Bosch Software Innovations GmbH
D-10785 Berlin, Germany

{frank.puhlmann,dirk.slama}@bosch-si.com

Abstract. Internet of Things (IoT) projects extend traditional projects,
since they combine four different domains: A Product Design & Manu-
facturing project for the hardware part, an Embedded IT project for the
firmware, a Telecom project for the communication aspects, as well as a
traditional Enterprise IT project for the backend and integration part.
To link these domains together and derive a common understanding be-
tween all stakeholders, we propose an IoT solution analysis methodology
that is based on business processes as key artefacts. This methodology
has been derived from practice over the last three years and applied in
recent practical IoT projects.

1 Motivation

The Internet of Things, abbr. IoT, has gained a lot of coverage in the last years [3,
4, 13]. It is now a common understanding that the implications of this develop-
ment will have a strong impact on businesses and individuals [15, 5, 12]. Products
will be enhanced with connected services and new business models implemented
on top. Market research companies estimate the number of connected devices into
two-digit billions by 2020 [9] and the possible revenue streams accordingly [6].

In practice, however, IoT projects are not so well understood as the hype
suggests. IoT projects tend to be split across multiple domains [18], making them
hard to execute successfully. First of all, IoT projects have a hardware part, which
is usually a complete project on its own, either retrofitting existing or developing
custom things. Since the hardware needs to be able to communicate and interact,
usually a complex firmware is deployed to it, which needs to be developed and
maintained with a different lifecycle. If the connectivity goes beyond Bluetooth
or Wifi, mobile operators with SIM cards and yet other lifecycles come into
play. Finally, connected things usually require mobile apps or backend services
to operate, which need to be developed and operated in the sense of a traditional
IT project.

Bringing these four different lifecycles—and often also projects—together
requires a structured approach. Issues like waterfall-driven hardware develop-
ments, fixed SIM lifecycles, complex certification of firmwares, and of course the
agile, often Dev-Ops driven backend IT project need to be aligned in the right
way. We covered this topic in depth in our book Enterprise IoT [18]1.

1 Available online at http://enterprise-iot.org/book/enterprise-iot/

2

SO
LU

TI
O

N
 D

R
AF

T Role Role
Overview Tasks Things

Overview Tasks Things

12
OK

1
ISSUE

Calc

Overview Tasks Things

Yes No

Thing

XDK

Thing functionality
description

Pr
oc

es
s

N
am

e
R

ol
e

R
ol

e

Start

Process
BO

End 1

End 2
[APPROVED]

[NEW]

[CLOSED]

Task 1

Task 2
§

<<RootInstance>>
Solution Name

<<ProcessBO>>
Process Name

Start Time
Owner
…

<<ThingBO>>
Thing Name

Id
Owner
Feature []
…

<<Enumeration>>
Process Status

NEW
APPROVED
CLOSED
…

<<Enumeration>>
Thing Status

CREATED
INSTALLED
OPERATING
…

us
es

§

Key rule descriptions

Fig. 1. The IoT Solution Draft Template.

In this paper, we go beyond the books solution delivery approach denoted as
Ignite and propose a hands-on IoT methodology to analyse the initial require-
ments of all involved stakeholders. This IoT Solution methodology assumes that
the use case or focus area has already been identified. It stops right before a
concrete architecture decision, allowing for different implementation strategies
and vendors. The methodology itself is build on proven concepts like use case
analysis and UML class diagrams with a strong focus on business processes.

Figure 1 shows the structure of the basic IoT Solution Draft template. This
template is used in initial IoT project workshops and created together with all re-
quired stakeholders. In contrast to existing approaches, it provides an integrated
view of all artefacts that can be broken down into the different sub-projects later
on. The draft focusses on the key stakeholders, the high-level domain model, the
business processes and rules, user interfaces and patters, as well as—of course—
things and connectivity. All aspects will be broken down in subsequent drafts.

The following paragraphs introduce the required preliminaries in section 2,
formalise the concepts in a meta-model in section 3, and discuss them by ex-
ample in section 4. An aggregating template denoted as Solution Sketch will be
introduced in section 5. Section 6 discusses best practices and related work.

2 Preliminaries

The IoT Solution Methodology re-uses a number of existing standards and best
practices due to their widespread tool availability and practical experiences.
While most of the standards will be simplified for the sake of usability in practice
workshops, the simplification is done by restricting the used elements, so that
they are still fully compliant.

3

Before we move to the standards, however, there is one more term: In the
introduction we talked about things, but we need to detail them for the next
sections. We use the word thing to depict the concept of anything that can be
connected, either physical or virtual. The refinement is given by the term asset :

Preliminary 1 (Assets and Devices). An asset (as defined in Enterprise
IoT in [18]) is a thing of value for a company, i.e. something a company keeps
in its books, like the cars a rental company owns. An assets can have multiple
devices attached that collect data, act on something, or process and transmit
the data.

Preliminary 2 (UML Class Diagrams). A core concept of the IoT method-
ology is given by a subset of UML Class Diagrams, see e.g. [16]. We denote this
subset as Domain Models. A Domain Model always has a single root class with a
specific stereotype RootInstance. This class is used as a start for navigating the
model in queries and expressions. Other stereotypes are used as introduced in
section 4. For simplicity, we do not display the methods as well as attribute types
in the class body, focussing purely on the attributes. We restrict the associations
to inheritance, aggregation, and directed references.

Preliminary 3 (Petri Nets). The lifecycles of Domain Model classes are
described via Petri nets, as defined in e.g. [7]. The primary use is restricted to
the standard visualisation with places and transitions to allow for token games
with the stakeholders. Besides this, all formal rules and formalisations still apply
and might be used for further analysis or implementation later on.

Preliminary 4 (Business Process Diagrams). The process modelling part
of the methodology is based on the BPMN 2.0 specification as defined in [1]. We
restrict the usage to the most common elements as described in [21] but allow for
any addition if understood by the stakeholders. The common elements include
plain Start and End Events, Human and Service Tasks, as well as Exclusive and
Parallel Gateways. We use the Data Object to link with a specified class of the
Domain Model.

3 The IoT Solution Draft Meta-Model

The elements of the Solution Draft are depicted in a meta-model shown in
figure 2. The Solution Draft class groups the elements from figure 1, namely
Rules, User Interfaces, Roles, Processes, the Domain Model including an An-
alytics Model not shown in figure 1, the Things as well as the corresponding
Connectivity concept. Furthermore, the most important associations are shown
to depict the connections between the different elements.

We describe the logic behind the elements and associations in the following
paragraphs. A detailed discussion of the elements follows in section 4 by exam-
ple. We omit obvious extensions to the meta-model like Users etc. for the sake
of simplicity. Furthermore, the meta-model might be enhanced with additional
elements like Reports etc.

4

M
ET

A
M

O
D

EL

<<RootInstance>>
Solution Draft

Role Domain ModelProcess Connectivity

Class Association

ProcessBO ThingBO

Process Node Process Edge Lifecycle

State Transition

Lifecycle Edge

Lifecycle Node

Event

Task

Process Gateway

Rule User Interface

Direct

IoT Gateway

Thing

Tabular Rule

Tree Rule Action View

Analytics Model

Fig. 2. The IoT Solution Draft Meta-Model.

Element 1 (Rule). Rules usually describe stateless logic required for an IoT
solution. We distinguish two variants, either tree- or tabular-based. Rules need
to reference Classes of the Domain Model to describe their input and output
values.

Element 2 (User Interface). User Interfaces group Actions and Views. An
Action is a trigger like a button or slider. A View contains a layout for attributes
of the Classes referenced by the User Interface. A typical view might have a list,
tabular, or textual layout. User Interfaces can also reference Rules and Roles.
The former describes additional logic, like the flow of a wizard via a Tree Rule.
The latter describes access rights, like which Role is allowed to view or edit
elements shown in the User Interface.

Element 3 (Role). A Role represents a stakeholder of the IoT solution with
its corresponding access rights. Roles are mapped to Users, which we omit for
simplicity.

Element 4 (Process). Processes are in the centre of an IoT solution. They
are made up of Process Nodes and Process Edges. Again, for the sake of simplic-
ity, we refer to standards like the BPMN for a complete subset. We depict Process
Gateways, Events, and Tasks in the meta-model. Tasks can reference User In-
terfaces for their visualisation (BPMN User Task) as well as Rules (BPMN Rule
Task) to represent the execution of stateless logic inside a process flow.

Element 5 (Domain Model). The Domain Model describes the logical
business view of the IoT solution data. A Domain Model aggregates Classes
and Associations. Classes can be refined into specializations used as transitional
data inside Processes or data representing a Thing. Classes can also aggregate
Lifecycles, which describe the state transitions a class can have. In terms of
UML, a Lifecycle is usually depicted as an enumeration of the different states.

5

Fig. 3. The Whiteboard Solution Draft.

The behavioural model behind the lifecycle is given by a set of Lifecycle Edges
and Lifecycle Nodes, which resemble a Petri net with States and Transitions.

Element 6 (Analytics Model). An Analytics Model references elements
of the Domain Model to describe goals and computations for machine or deep
learning algorithms used in areas like predictions or self learning of IoT solutions.

Element 7 (Thing). A Thing represents the physical centrepiece of an IoT
solution. It can reference Roles, which describe the rights to own or use (aspects)
of the Thing. A Thing used in an IoT solution also needs to have a reference to
at least one Connectivity model.

Element 8 (Connectivity). Connectivity describes how Things interact
with the backend systems. Typical communications are either Direct or IoT
Gateway based. The former describes direct connectivity with the backend, like
a GSM-enabled car emergency sensor. The latter uses a local device which groups
several Things and provides local logic via onboard Rules, such as given by a
Smart Home gateway.

4 The IoT Solution Draft by Example

This section illustrates the introduced meta-model with the practical example
of a fictional car rental company called Monster Rentals. The company plans to
introduce a pricing based on the driving behaviour of the customer. In addition
to the standard fee, the driver will be charged for harsh accelerations and get
a discount if the ride goes smooth. Furthermore, a crash sensor will immedi-
ately inform the rental company to take actions in case an accident happens.
Therefore, the rental cars will be equipped with onboard units who captures the
driving behaviour and transmit the sensor data in real time to the company. The

6

R
O

LE
S N

am
e

D
es

cr
ip

tio
n

C
ou

nt
 In

iti
al

ly

C
ou

nt
Pl

an
ne

d

Manager Is responsible for the operations
of the rental company office.

1 50

Clerk Is responsible for customer care
and rental support.

3 200

Accountant Is responsible for creating the
invoices.

1 10

Manager

Clerk

Accountant

Capture
Rental

Approve
Rental

Hand-out /
Return car

Create
invoice

Fig. 4. The Roles refinements of the Solution Draft.

backend systems will take care of the booking and invoicing processes. We omit
a user self-service app for simplicity.

The initial creation of the Solution Draft took place on a Whiteboard and
was captured in figure 3. The following subsections will revisit and break-down
the different elements contained in the Solution Draft.

4.1 Stakeholders and Roles

The Solution Draft shows the most important Roles, usually on top. The un-
derlying discussion starts earlier with the Stakeholders, which are split into four
areas: The Solution Users, the Asset Users, the Enterprise Users, as well as the
Partner Ecosystem Users. After having identified them, the relation between the
areas are drawn, e.g. Asset Users interacting with Enterprise Users.

The refinement of the Roles is shown in figure 4. A good way to start is
using graphical UML Use Case diagrams to capture the key use cases. An im-
portant additional step is capturing the number of users, both initially and for
the planned rollout. This information is important to define the scale of the
architecture later on.

4.2 Domain Model and Lifecycles

The Domain Model shows the conceptual view of the solution from a busi-
ness view as well as aligning the different other models. For instance, any field
shown in a mockup UI should have a corresponding attribute or class, or any
thing’s property should be represented as well. The same holds for thresholds
and process variables etc. The running example for the rental company is given
in figure 5. As stated in preliminary 2, we use specific stereotypes:

– ProcessBO : Represents a business object that is routed through a process.
In our rental company, this is the rental process object containing details
like the start time or the price.

– ThingBO : A business object representing a thing, e.g. a car in our example.

7

D
O

M
A

IN
 M

O
D

E
L

<<RootInstance>>

Monster Rentals

<<ThingBO>>

Car

Id

Owner

Feature []

…

<<ProcessBO>>

Rental

Start Time

Owner

Price

…

u
s
e

s

<<Enumeration>>

Rental-Status

NEW

APPROVED

REJECTED

RENTED

RETURNED

BILLED

<<Enumeration>>

Car-Status

OPERATING

CRASHED

UNDER REPAIR

SOLD

Person

First Name

Last Name

Date of Birth

Customer

Customer Number

Last Contact

Type

….

Log

Timestamp

Source

Message

h
a

s

<<Event>>

Fig. 5. The Domain Model refinement of the Solution Draft.

– Event : An event that might occur during the execution of a process or di-
rectly come from a thing. An event instance is usually used as some kind of
log.

– Enumeration: An enumeration is primary used to capture the different states
of a thing or process business object but can also be used for simple enu-
merations like the available colours or car types.

To refer to any entity in the Domain Model, we use a simple arrow/dot
notation starting from any class directly aggregated by the RootInstance, denoted
as Path Expressions. Formally:

PathExp ::= ClassName->PathExp | ClassName |

ClassName.Attribute

ClassName ::= <Name of a Class>

Attribute ::= <Name of an Attribute>

A->B : Denotes a direct association between

class A and B

A.attr : Denotes a direct attribute of class A

Examples:

– Rental.StartTime refers to the start time of any rental; can be filtered
like Rental.StartTime=Today (not formalised here)

– Rental->Customer refers to any Customer

There is a special case, where you don’t need to filter your entities: A Pro-
cessBO class used in a Business Process or Rule always refers to the instance

8

LI
FE

 C
YC

LE
S

<<Enumeration>>
Car-Status

PURCHASED
OPERATING
CRASHED
UNDER REPAIR
SOLD

Purchased

Operating

Crashed

Under
Repair

Sold

? ?

?
?

?

?

?
??

Fig. 6. The Lifecycle refinement of the Solution Draft.

it is bound to. We will discuss this later when we talk about business processes
and rules.

Figure 6 shows the Lifecycle (e.g. behavioural) view of the solution based on
classes of the Domain Model. Especially, each ThingBO and ProcessBO need to
have an aggregated Enumeration representing the different states the business
object can have. The figure shows the status of the Car, which starts with
Purchased from the rental’s company point of view. It has some intermediate
states before reaching the final state Sold. As stated in preliminary 3, a Lifecycle
is a Petri net with a special visualisation of the final place. Each state given by
the attributes of the Enumeration are mapped to a place of the Petri net. The
transitions need to be added accordingly as discussed with the Stakeholders.
A technical implementation will be derived later on, as discussed in the next
subsection.

4.3 Processes and Rules

After having defined the lifecycles of the Business Objects, we need to model
the Business Processes implementing them. In general, two different ways of
implementing the ProcessBO Lifecycles via Processes are possible: (1) Processes
are the only mean to achieve state transitions of the business objects or (2)
processes are the recommended or optional way to achieve the transitions. The
former is usually understood as a process-driven application [19]. The latter is
known as case-driven [10].

As stated in preliminary 4, the modelling of the Processes is done according to
the BPMN 2.0 standard. We usually restrict the use to single Pools with Lanes
for the different Roles. Typically, three different Task types are sufficient: (1)
Human Tasks—a task performed by a human via a frontend; (2) Service Tasks—
a task performed by a system; and (3) Rule Tasks—a calculation executed by
a Rule engine. Furthermore, the Process Gateways can be restricted in many
models to exclusive and parallel behaviour. The Business Objects of the Lifecycle
are linked as discussed in the next paragraph by example.

9

PR
O

C
ES

SE
S

R
en

ta
l P

ro
ce

ss
C

le
rk

M
an

ag
er

New
Rental

Rental

[NEW]

Capture
Rental
Details

Rental
Rejected

[APPROVED]

[RENTED]

Approve
Rental

Approval
required?

Days > 3

[REJECTED]

Reject

Approve

Start
Rental

A
cc

ou
nt

an
t

End
Rental

§Calculate
Rental

[RETURNED]

Create
Invoice

Rental
Ended

[BILLED]

Fig. 7. The Process refinement of the Solution Draft.

Figure 7 shows a Business Process of the Car Rental company. The process
captures the basic Rental Process as executed by a Clerk of the company. To
visualise the ProcessBO used, it is associated graphically with the Start Event. If
the completion of an Activity changes the Lifecycle state of the Business Object,
the outgoing Sequence Flow of the activity associates the ProcessBO with the
corresponding State shown in brackets.

The verify the modelled Business Process, we step through the Process and
check that only Lifecycle Transitions are possible that are captured in the Life-
cycle Model. If the Business Process contains more behaviour, we need to discuss
with our Stakeholders if the Lifecycle Model or the Business Process Diagram
need to be adjusted. If the Lifecycle Model allows more behaviour than is cap-
tured in a single Business Process, this points to a case-driven implementation.
The additional transitions might be captured in other Business Processes or
handled via process-external logic and user interface implementations.

R
U

LE
S Rental->Car-

>Log.Count(Log.Events) §

§ Rental

Rental

==0

else
Calculate
Discount

Calculate
Charges

Rental->Customer.Type

C
al

cu
la

te
 D

is
co

un
t Rental.Price

CustomerType.GOLD

CustomerType.SILVER

CustomerType.STANDARD

:=Rental.Price*0.75

:=Rental.Price*0.90

:=Rental.Price*0.95

Fig. 8. The Rules refinement of the Solution Draft.

10

U
SE

R
 IN

TE
R

FA
C

E

Overview Tasks Cars

Pr
oc
es
s

Overview Tasks Cars

Yes No

NoApprove
Rental

Yes

Overview Tasks Cars

12
OK

1
ISSUE

Overview Tasks Cars

12
Crash(s)

OP

MAP

<<ThingBO>>
Car

Id
Owner
Feature []
,,,

<<Enumeration>>
Car-Status

OPERATING
CRASHED
UNDER REPAIR
SOLD

Fig. 9. The User Interface refinement of the Solution Draft.

While the Business Processes as introduced are usually long-running, Busi-
ness Rules typically describe stateless functional business logic. Like Business
Processes, Business Rules work on Business Objects. More recently, the OMG
standardised a notation for Business Rules, the Decision Model & Notation
(short DMN, see [2]). Since the DMN has not gained the traction that BPMN has
in the acceptance and tools support, we typically recommend a simpler subset:
(1) Tree-based rules; e.g. if-the-else style and (2) Tabular rules; e.g. Excel-style.
Both styles are shown by example in figure 8.

A tree-based Rule takes an entity from the Domain Model as an input. Deci-
sions are denoted as diamonds and possible results are gated by Path Expressions
as introduced in subsection 4.2. A tree-based Rule is also used to orchestrate the
tabular rules, like the calculation of the discount in the example. The table
representation defines how input parameters (like Rental->Customer.Type) are
mapped to an output parameter (e.g. Rental.Price) via Path Expressions.

In general, Business Rules make Business Processes more flexible, since they
have an independent deployment lifecycle, which is usually more easy to change
and adapt. They also help in centralising and re-using business logic in different
Business Processes or other parts of the Solution.

4.4 User Interfaces and Patterns

This subsection focuses on a short recap of the core techniques to map User
Interfaces with the models and artefacts shown before. A refined discussion on
how to map Process and Rules with User Interfaces can be found for instance
in [11]. Still, it has proven valuable to stick to three core principles:

– Use Black/White schematics: A good User Interface should visualise every-
thing if mapped to only two colours.

– Keep it simple: Think twice if you really need each element.

– Focus on functionality: Each element should have a clearly defined function
that is the same where ever it appears.

11

C
O

N
N

EC
TI

VI
TY

As
se

t -
C

ar
En

te
rp

ris
e Enterprise

Applications

Io
T

C
lo

ud
 /

M
2M

Backend

Gateway
(OBU)

On Asset Business
Logic

Devices

WireXD
K

Acceleration Sensors,
Gyroscope

Basic streaming
logic

BTR
as

pb
.

Drivers and functional
items in Prosyst

Wifi
BPM BRM M2M

LAN

Rental Application

Fig. 10. The Connectivity refinement of the Solution Draft.

Figure 9 shows how User Interfaces are linked with Processes and entities
from the Domain Model. For instance, each Human Task, where a decision is
made, must be reflected by corresponding Actions, e.g. buttons, in the UI. The
UI buttons must be labeled the same as the outgoing Sequence Flows of the
Process Gateway following a Human Task. User Interfaces representing entities
from the Domain Model are required to clearly distinct between collections (like
a list of cars) and single entities (like the details of a car). Typically, the bottom
of the UI should show more details and group it by functionality or features.

4.5 Assets and Connectivity

A core concept of the IoT methodology is the Asset Integration Architecture,
short AIA, taken from our Ignite methodology [18]. In contrast to other elements
of the Solution Draft, the AIA already considers possible implementation details
provided by the Telco- and Communications project stream. The example AIA
is shown in figure 10.

Basically, an AIA is split into two sections, the Asset and the Enterprise
part. Which one is top, usually depends on the customer: If the stakeholders are
Enterprise-centric the Enterprise section should be on top, while Asset-centric
stakeholder would model the Asset on top.

Investigating the sample AIA from top to bottom, the core sub-elements
are the Enterprise Applications and the IoT (Cloud) or M2M implementations,
which might be split into a backend or gateway part. In the IoT world, an IoT
Gateway is typically used to connect assets, which (1) have no direct Internet
connectivity build in; e.g. simple door sensors etc or (2) require local business
logic if no Internet connectivity is available; e.g. a car passing through a tunnel.
The asset itself is composed of devices (sensors, actuators) and some on asset
business logic like the detection of an event that needs to be sent.

12
P

R
O

JE
C

T
S

K
E

TC
H Clerk

(2017: 5, 2019: 200)
Manager

(2017: 2, 2019: 30)
Accountant

(2017: 1, 2019: 25)

Task List Car
Management

Customer
ManagementDashboard

Processes

2017: 30/day, 2019: 2.000/day

Rental
Maintenance
Invoicing

§ Rules

2017: 60/day, 2019: 8.000/day

Availability
Pricing/Offer
Pred. Maint.

Integration

2017: 200/day,2019: 12.000/day

SAP
Salesforce

Business Data

2017: 20MB/d, 2019: 1.4GB/d

Rentals (8k each)
Invoices (80k each)
Master Data

Information Model
Hard Acceleration (Events)
Crash (Event)
Sensor Values (Streaming)

10kb/sec active, 50kb/day standby

Functions
Lock/Unlock car
Configure Geofence
Locate car

5 calls/day per asset

Device Data
Status Log Data
Time Series

~ 250kb/day per asset

Analytics

2017: 20/d, 2019: 80.000/d

Usage Optimization
Perfect Routing
Prev. Maintainance

Car

OBU

2017: 50, 2019: 2.500

U
I

B
us

in
es

s
Lo

gi
c

C
on

ne
ct

.

Fig. 11. The final Project Sketch.

In our Rental scenario, we use a Business Process Management System, a
Business Rules Management component, as well as an M2M system. Since these
systems and components run on backend servers, they are all connected by a
Local Area Network (LAN). To implement the IoT Gateway, we use a Raspberry
Pi for the demo scenario, which runs a commercial M2M stack that provides
drivers and business logic (functional items) for the scenario. The Raspberry Pi is
connected via Wifi with the backend and via Bluetooth with the on asset business
logic. For a running prototype, we use a Bosch XDK (see https://xdk.bosch-
connectivity.com) that provides sensors for acceleration as well as a gyroscope
that we use to detect crashes.

5 The IoT Project Sketch

The final activity discussed in the scope of this paper is the creation of a Project
Sketch from the detailed refinements of the Solution Draft. The Project Sketch
is shown in figure 5 and used to give a one-page overview of a proposed project
to a project sponsor.

In contrast to a Solution Draft, a Project Sketch describes the implementation
aspects from three logical layers: User Interfaces, Business Logic, as well as Con-
nectivity. Each layer’s components can be directly translated to a corresponding
technology. The User Interface layer can be implemented for instance in Desktop
Java or with Mobile Apps. The Processes should be implemented with a Business
Process Management System, which might also include the Integration aspects.
The Rules should be implemented with a Business Rules Management System.

13

Different approaches can be used for the Analytics requirements, incl. Complex
Event Processing or Machine Learning Technologies. The Business Data is usu-
ally stored in SQL databases. The Communication layer is implemented by a an
M2M stack. Furthermore, since the Project Sketch is meant as an overview of a
concrete next project, only the topmost Processes, Rules etc. are listed.

Just like the Solution Draft, the Project Sketch starts with the most impor-
tant Roles and their mapping the corresponding User Interfaces of the Appli-
cation. In addition to the Solution Draft, each artefact contains the scales by
numbers, e.g. Users of a specific Role this year and next year. The same holds
for all other aspects, like the number of Process and Rule instances, or the size
of the Business Data. These numbers give an indication on the scale of the final
solution.

While the derivation of the top and middle layer from the Solution Draft
is straightforward, the Connectivity layer needs some additional explanations.
First, the Information Model captures the high level events and data streams
coming from the things; usually implemented in the On Asset Business Logic
or the Gateway/Agent of the Asset Integration Architecture. Second, the Func-
tions cover functionality that needs to be implemented on the things. Third,
the Device Data is usually stored in No-SQL databases to store time series and
log date coming from the things. All described refinements capture the expected
input/output or data size, scaling via the asset numbers shown in the sample
Thing below.

6 Evaluation and Related Work

We use the Solution Draft and Project Sketch in our day-to-day operations to
analyse most customer inquiries. Usually, we receive inquiries via a Request for
Proposal, short RFP. We use the information provided in the RFP to derive a
Solution Draft based on team-internal discussions. Almost anytime, the RFP
lacks information that is required for a complete analysis. The second step is
hence an on-site customer workshop, where we discuss the analysis done with
the customer and try to gather the missing information. In some instances, we
start immediately with a customer workshop, usually if we are already involved
in the IoT ideation and business model creation. The next subsection introduces
best practices collected from multiple projects as well as discusses related work.

6.1 Evaluation

Based on our experience, we derived the following best practices from projects
with customers from multiple domains, including manufacturing, retail, insur-
ance, and mobility.

Best Practice 1 (Use the Solution Draft as a Canvas). The Solution
Draft showed value in structuring the available whiteboard space into differ-
ent regions. Regardless with which aspect the customer starts, the draft helps
drawing it in the right place with space left for the other aspects.

14

Best Practice 2 (Use the Solution Draft as a Guide on the Required
Inputs). In our daily practice, we often observe that customers are not aware
of all the different aspects required for an IoT solution. The Solution Draft helps
them to see the blind spots directly on the canvas. This often leads to an early
and open discussion on which requirements need to be discussed in detail from
the customer’s end.

Best Practice 3 (Detail as needed). Use the refinements of the Solution
Draft as required. Usually, the refinements are done within specific workshops
and selected team members only. A detailed discussion on the different domains
(hardware-, embedded-, telco, enterprise-project) can be found in [18].

Best Practice 4 (Application areas). In our experience, the Solution Draft
methodology is used best for individual projects implemented with standard tool
suites. We successfully applied it for mobility, retail, insurance, and industrial
monitoring solutions. If the customer expects an out-of-the box solution, e.g.
often found in areas of Industry 4.0, the Solution Draft does work, but a more
focussed configuration of the packaged solution often fits better.

Best Practice 5 (Project Sketch). Use the Project Sketch to propose
a concrete project to a sponsoring stakeholder. The Project Sketch makes it
easy to derive vendor-specific implementations of IoT solutions. Furthermore,
the scale of the implementation is visualised and can be directly discussed with
the stakeholders. Many product managers, for instance, do not foresee the vast
amount of data that is produced by the things that needs to be stored, either
by specification or legal requirement.

6.2 Related Work

Structured methodologies for analysing problems in general or specific domains
exists almost as long as computer science. For instance, an early approach to
formally capture behaviour is given by Petri nets [7]. The Unified Modelling
Language (UML) is mostly known for its Class Diagrams, which capture the
static structure of a software system [16]. Domain-specific notations include for
instance the EPK standard used by the ARIS business process methodology [8].
Newer standards include the Business Process Model and Notation (BPMN)
standard [1].

To the best of our knowledge, there exists no vendor-independent standard
for modelling and analysing IoT solution yet. We wrote an early introduction to
an IoT Project methodology denoted as Ignite [18]. This methodology, however,
has a strong focus on the project execution and organisation and only partly
focused on the analysis. Some concepts, like the Asset Integration Architecture
have been taken from this work.

Other authors, however, discuss an IoT methodology from different angles
or use cases besides modelling and analysis as we did. For instance, V. Sharma
et.al. discuss a design-thinking based approach in [17]. Their paper focusses on
the discovery of use cases for IoT scenarios. Perera et.al. introduce a privacy-by-
design framework for IoT applications in [14], which focuses on adapting best

15

practices for privacy design into the IoT domain. A framework for provisioning
large scale, scalable IoT deployments, such as in Smart Cities, is introduced by
Voegler et.al. in [20]. This work, however, focuses on a concrete architecture,
whereas our methodology is architecture agnostic.

7 Conclusions

This paper introduced a novel IoT methodology based on a meta-model that
brings together the different aspects typically found in IoT projects. The IoT
methodology is based on a visual template for the high level structure, denoted
as Solution Draft, as well as for detailed discussions. The templates follow ex-
isting notations wherever possible. The outcome of the analysis is captured in a
concrete decision proposal (Project Sketch) for a project.

From our evaluations and practical experience, this methodology unfolds its
value especially in a Plan-Build-Run environment. After having done the Planing
via the different refinements discussed in section 4, multiple Build options can
be derived. A common implementation might be cloud-based with a Node.js
template, while some on-premise implementations might generate traditional
Java2EE code. In general, the IoT methodology is architecture agnostic.

Future work focuses on enhancing the methodology regarding and on build-
ing different implementation-support tools. These tools will be based on the
meta-model introduced in section 3. Focusing especially on the Processes and
the Domain Model, rapid-prototypes can be build. Using agile implementation
practices, these prototypes will enable early user feedback and support UX pro-
cesses.

Acknowledgements. The authors would like to thank Amro Al-Akkad for
his valuable feedback on the methodology.

References

1. Business Process Model and Notation (BPMN) version 2.0. OMG Specification,
Object Management Group (2011)

2. Decision Model and Notation (DMN) version 1.2. OMG Specification, Object Man-
agement Group (2016)

3. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A Survey. Computer
networks 54(15), 2787–2805 (2010)

4. Da Xu, L., He, W., Li, S.: Internet of Things in Industries: A Survey. IEEE Trans-
actions on industrial informatics 10(4), 2233–2243 (2014)

5. Fleisch, E., Weinberger, M., Wortmann, F.: Business Models and The Internet of
Things. In: Interoperability and Open-Source Solutions for the Internet of Things,
pp. 6–10. Springer (2015)

6. Ip, C.: The IoT opportunity: Are you ready to capture a once-in-a lifetime value
pool? Hong Kong IoT Conference (2016)

7. Jensen, K.: Coloured Petri Nets. Springer Verlag, Berlin, 2nd edn. (1997)
8. Keller, G., Nüttgens, M., Scheer, A.: Semantische Prozessmodellierung auf der

Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Tech. Rep. 89, Institut für
Wirtschaftsinformatik, Saarbrücken (1992)

16

9. Lucero, S.: IoT platforms: enabling the Internet of Things. IHS Technology
Whitepaper (2016)

10. Meyer, A., Herzberg, N., Puhlmann, F., Weske, M.: Implementation framework
for production case management: Modeling and execution. In: 18th IEEE Inter-
national Enterprise Distributed Object Computing Conference, EDOC 2014, Ulm,
Germany, September 1-5, 2014. pp. 190–199 (2014)

11. Nelius, R., Slama, D.: Enterprise BPM: Erfolgsrezepte für unternehmensweites
Prozessmanagement. dpunkt. verlag (2011)

12. Pelino, M., Gillet, F.: The Internet of Things Heat Map, 2016. Forrester Research
(2016)

13. Perera, C., Liu, C.H., Jayawardena, S., Chen, M.: A survey on internet of things
from industrial market perspective. IEEE Access 2, 1660–1679 (2014)

14. Perera, C., McCormick, C., Bandara, A.K., Price, B.A., Nuseibeh, B.: Privacy-
by-design framework for assessing internet of things applications and platforms.
In: Proceedings of the 6th International Conference on the Internet of Things. pp.
83–92. ACM (2016)

15. Rifkin, J.: The zero marginal cost society: The Internet of Things, the collaborative
commons, and the eclipse of capitalism. Palgrave Macmillan (2014)

16. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley, Boston, 2nd edn. (2005)

17. Sharma, V., Das, S., Kewaley, S.: Design thing’ing: methodology for understanding
and discovering use cases in iot scenarios. In: Proceedings of the 7th International
Conference on HCI, IndiaHCI 2015. pp. 113–115. ACM (2015)

18. Slama, D., Puhlmann, F., Morrish, J., Bhatnagar, R.M.: Enterprise IoT: Strategies
and Best Practices for Connected Products and Services. O’Reilly Media, Inc.
(2015)

19. Van Der Aalst, W.M., Ter Hofstede, A.H., Weske, M.: Business process manage-
ment: A survey. In: International conference on business process management. pp.
1–12. Springer (2003)

20. Vögler, M., Schleicher, J.M., Inzinger, C., Dustdar, S.: A scalable framework for
provisioning large-scale iot deployments. ACM Transactions on Internet Technol-
ogy (TOIT) 16(2), 11 (2016)

21. Wohed, P., Aalst, W., Dumas, M., Hofstede, A., Russell, N.: On the Suitability
of BPMN for Business Process Modelling. In: Dustdar, S., Fiadeiro, J., Sheth, A.
(eds.) Business Process Management, volume 4102 of LNCS. pp. 161–176. Springer
Verlag, Berlin (2006)

