
Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

Activity Diagram Inheritance1
Arnd Schnieders, Frank Puhlmann

Hasso-Plattner-Institute for IT Systems Engineering at the University of Potsdam
{schnieders, puhlmann}@hpi.uni-potsdam.de

Abstract

This paper outlines the ongoing work on the realization of a
flexible inheritance mechanism for Activity Diagrams that assures
the maintenance of syntactical correctness for the derived Activity
Diagrams. The objective is to support the reuse of process models
especially by applying Activity Diagram inheritance as a
variability mechanism in the context of product line oriented
software development.

Keywords: Activity Diagrams, domain engineering, process
inheritance, variability mechanism

1. Introduction
In industry similar products are frequently developed and produced as product

lines. One of the main advantages is a gain of efficiency in development and
production since parts, which are common for several product line members, can
be reused optimally. This approach has been transferred successfully to software
development and is also known by the name domain engineering. Variability
mechanisms are thereby important for the effectiveness of domain engineering.
A great number of variability mechanisms has already been published [5, 9, 11,
13, 18]. Unfortunately, existing variability mechanisms only refer to the static
aspects of a software system’s design while the impact of variability mechanisms
on the process view on the system has been strongly neglected. Therefore, the
first contribution of this paper is to contribute to closing this gap by making the
important variability mechanism inheritance available for process design models
in order to derive process model variants. The second contribution of this paper
is to show how the defined process inheritance mechanism is realized concretely
for UML 2.0 Activity Diagrams. UML Activity Diagrams are part of the Unified
Modeling Language standard [14], which is the most important standard for
describing software systems today. Activity Diagrams are suitable for the
description of different kinds of processes like for example technical processes.
Third, Activity Diagram inheritance is defined in a way that the preservation of

1 The work reported in this paper has been supported by the German Ministry of Research

and Education by the PESOA project [8]

4 BUSINESS INFORMATION SYSTEMS – BIS 2005

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

the syntactical correctness of a process diagram variant is assured upon
derivation from the original diagram. Thus using Activity Diagram inheritance,
process design diagrams can be reused for similar products assuring the
maintenance of syntactical correctness. Thereby development effort can be
saved. The classification of this work in our long-term research activities, where
a system-requirement driven reutilization of process design models is desired,
can be found in 6.1.

This paper is structured as follows: Section 2 gives a definition of inheritance

as used in this paper. Section 3 defines inheritance for Activity Diagrams,
narrows down the class of Activity Diagrams regarded here and describes what
will be considered as a syntactically correct Activity Diagram. Section 4 outlines
the syntax-maintaining inheritance transformations deduced from the Activity
Diagram inheritance definition and explains their application on the basis of a
real motor control unit process. Section 5 gives an overview of existing work on
process inheritance. Section 6 summarizes briefly this paper and gives an outlook
for further investigations. Since this is a work in progress paper, there are still
some important issues to be dealt with.

2. Clarification of the Inheritance Term
The first logical step in transferring an inheritance mechanism on Activity

Diagrams is to clarify what inheritance actually means. Doing so it turns out that
there is no unique normative definition of inheritance but that there are numerous
ones, which can be quite different like for example the inheritance definition in
[6] versus the inheritance definition in [12]. According to [20] there are actually
three different conceptions that are typically mixed up with the term inheritance:
subclassing, subtyping, and conceptual specialization. A definition of
specialization is given by [15].

Subclassing is the type of inheritance that allows for the arbitrary redefinition,
addition and cancellation of properties in subclasses. It is the type of inheritance
that will be taken as a basis for the definition of an Activity Diagram inheritance
mechanism because it offers the greatest flexibility in the reutilization of Activity
Diagrams, which is our main objective. According to [20] subclassing can be
formally defined as follows:

,RPR ∆⊕=

where R corresponds to the derived subclass, P denotes the ancestor class R
is derived from, R∆ designates the properties in which R differs from P and
⊕ denotes the operation that in some way combines P with R∆ yielding R .
The parts R∆ newly added to P may overlap with properties of P resulting in
these properties being overwritten or cancelled.

ACTIVITY DIAGRAM INHERITANCE 5

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

3. Inheritance in Activity Diagrams
The inheritance mechanism for Activity Diagrams presented here is a

mapping of the subclassing mechanism presented in Section 2 to processes. Thus
inheritance between Activity Diagrams shall be defined as follows: a subactivity
CA inherits from its superactivity PA according to the following schema:

CAPACA ∆⊕=

CA∆ comprises elements that shall be newly added or that are already
present in PA and shall be modified. By default modification of an element here
means its replacement by another component. The replacing component may
either be a single element or a subprocess, while the replaced element may only
be a single element. Since a single element can invoke a new subprocess on his
part, also entire subprocesses can be replaced. ⊕ designates the combination of
PA with CA∆ that adds the new elements and replaces existing ones which are
subject to modification.

3.1. Class of Activity Diagrams Regarded in this Paper
This paper will restrict itself on the IntermediateActivities compliance level of

the UML 2.0 Activity Diagram specification. Accordingly the regarded Activity
Diagrams consist of elements for modeling sequential, alternative, and
concurrent control and data flows. The reduction on Intermediate Activities aims
to achieve a reduction of the complexity of realizing inheritance rules for
Activity Diagrams while they comprise modeling elements, which are absolutely
sufficient for many applications.

3.2. Valid Activity Diagrams and Constraints for the
Derivation of Subactivities

For the Activity Diagrams considered here it is assumed that they are correct
according to the UML specification [14]. Nevertheless Activity Diagrams may
exhibit intolerable errors without violating the UML specification. It shall be
ensured that these kinds of errors are not introduced in accurate Activity
Diagrams by using the Activity Diagram inheritance mechansm introduced here,
i.e. the inheritance mechanisms shall be correctness-preserving. In this paper
Activity Diagrams will be considered to be syntactically correct if they are in
addition to the assumed correctness according to [14] free of:

– deadlocks
– livelocks, i.e. loops that don’t terminate
– dead nodes, i.e. nodes that can never be reached during process execution

These correctness criteria shall be defined formally in the context of further

investigations. In addition to the abovementioned syntactical constraints some
notational restrictions shall be imposed for the sake of simplicity and clearness.

6 BUSINESS INFORMATION SYSTEMS – BIS 2005

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

Act
InO OutO

Constructions like the following (multiple edges flowing into or leading from the
same Pin) shall be forbidden:

Figure 1. Multiple edges per pin are not allowed.

Instead the following semantically identical representation shall be used:

ActInO OutO

Figure 2. Construction to be used instead of multiple edges per pin

Incoming control flows are joined with the incoming data flows. If there is
more than one incoming data flow it doesn't matter with which one the control
flow is joined. Not allowed:

Act
)(InOF

)(InCF

Figure 3. Actions shall not have incoming data and control flow edges at the same time.

Semantically identical representation to be used instead:

Act
)(InOF

)(InCF

Figure 4. Construction to be used for Actions with incoming data and control flow

ACTIVITY DIAGRAM INHERITANCE 7

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

4. Realization of the Inheritance Mechanism
Table 1 and Table 2 summarize which process modifications are possible

during inheritance according to the Activity Diagram Inheritance definition in 3.

Table 1. Possible replacements for Activity Diagrams

replaces Simple Element Subprocess
Simple Element X X

Subprocess (X) (X)

Table 2. Possible additions for Activity Diagrams

is added
Simple Element ?

Subprocess ?

The third row in Table 1 indicates that Activity Diagram subprocesses may

theoretically be replaced by simple Activity Diagram elements or subprocesses
during inheritance. The crosses are thereby parenthesized because subprocesses
are in fact treated as simple elements. Therefore the subprocess to be replaced is
represented as a separate Activity and substituted by a Call Behavior Action
invoking the new Activity. So arbitrary subprocesses, which can be encapsulated
in a separate Activity can be replaced according to the rules for the substitution
of Actions during inheritance. The addition of simple elements and subprocesses
is still a matter of further investigations as indicated in Table 2.

4.1. Substitution of Simple Elements by Simple Elements
The tables below summarize, what types of simple Intermediate Activity

Diagram elements can be overwritten by what other simple element types. The
tables are to be read from left to right. An arrow pointing to the right means "can
replace", an arrow pointing to the left means "can be replaced by". The braces
indicate that a substitution is subject to certain constraints, which will not be
discussed here in detail for spatial reasons.

Table 3. Action Substitutions

 Action CentralBuffer
Node

DecisionNode/
MergeNode

ForkNode/
JoinNode

Action (↔) (↔) (→) (↔)

Table 4. ObjectNode substitutions

 Pin DecisionNode/
MergeNode

Pin (↔)
CentralBufferNode ←

8 BUSINESS INFORMATION SYSTEMS – BIS 2005

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

Table 5. ControlNode substitutions

 Initial
Node

Activity
FinalNode

Flow
FinalNode

Merge
Node

Fork
Node

Join
Node

InitialNode ↔
ActivityFinal

Node ↔ →

FlowFinal
Node ← ↔

MergeNode ↔
ForkNode ↔
JoinNode ↔

Table 6. ActivityPartition substitutions

 ActivityPartition
ActivityPartition (↔)

4.2. Substitution of Simple Elements by Subnets
Up to now the correctness-preserving substitution of Actions with arbitrary

numbers and types of input and output pins by structurally typical subprocesses
has been investigated. Also Activity Diagram elements replaceable by Actions
according to 4.1 can be subject to the same subprocess substitutions. Some of the
investigated substitutions are presented in 4.4.

In principle for substitution any subprocess can be used that has the same
input and output interface (i.e. the same numbers and types of Pins and incoming
and outgoing edges) as the substituted component, that follows the restrictions
for Activity Diagrams defined in 3.2 and that does not duplicate or delete any
tokens in comparison to the substituted node. Moreover for every replacing
subprocess it must be assumed that the execution time of the contained Actions
is always finite, that the contained Activity Edges never dispose of unsatisfiable
Guard-Expressions and that any Decision Node is constructed in a way that for
every incoming token always exactly one of the edges running out of the
Decision Node accepts the offered token.

4.3. Substitution of Subnets
Substitution of subnets shall be realized by reducing it to the substitution of

Call Behavior Actions, which invoke the subnet to be substituted and that has
been sourced out into a separate Activity. Therefore it has to be investigated
what kinds of subnets can be sourced out into a separate Activity and thus may
be replaced. This question is not trivial at all and will be subject to further
investigations. In order to avoid problems (deadlocks, syntax violations, etc.) the
subprocess encapsulation shall only be allowed according to the following rule
for the moment: in an Activity Diagram A a subnet B can be sourced out into
an Activity that is invoked by a Call Behavior Action t , if for any Activity Edge

ACTIVITY DIAGRAM INHERITANCE 9

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

Initialization

Ignition
Key

1 => 2

Ignition
Key

1 => 2

Initialize
Motor Control

Unit

Start
Relevant
Processes

Initiate Check of
Sensors and

Actors

Start Sensor
Independent

Actors

Ignition
Key

1 => 0

Ignition
Key

1 => 0

yx → from B to 'A (and for any Activity Edge yx ← from 'A to B) the
following applies:

– x is an Action in B and y is an Action in 'A
– any edge yx ← leading from 'A to B meets in the same Action sx
– any edge yx → leading from B to 'A runs out of the same Action xe

('A corresponds to net A without subnet B). Figure 5 illustrates the
abovementioned rule.

A
B

sx ex…

Figure 5. Allowed subprocess encapsulations

4.4. Example for the Application of Activity Diagram
Inheritance

Due to a lack of space mechanisms for the replacement of subprocesses by
other subprocesses will be introduced only by means of an example. The
example shows a cutout of a motor control unit initialization process from which
the process of a motor control unit with an integrated immobilizer system is
derived using Activity Diagram inheritance. The constraints which have to be
regarded for every substitution are omitted. Figure 6 shows the initial motor
control unit initialization process without immobilizer system.

Figure 6. Initial motor control unit process

10 BUSINESS INFORMATION SYSTEMS – BIS 2005

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

Initialization

Ignition
Key

1 => 2

Ignition
Key

1 => 2

Start
Relevant
Processes

Initiate Check of
Sensors and

Actors

Start Sensor
Independent

Actors

Initialize
Motor Control

Unit

Check
Immobilizer

Sensors

Ignition
Key

1 => 0

Ignition
Key

1 => 0

1)(InO

nInO)(

1)(InOF

nInOF)(

1)(OutO

mOutO)(

*
mAct

Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

1)(OutOF

mOutOF)(
*
1Act

replaced by

1)(InO

nInO)(

1)(InOF

nInOF)(

1)(OutO

mOutO)(

*
mAct

Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

1)(OutOF

mOutOF)(
*
1Act

replaced by

Figure 7 depicts the first inheritance step, where the Action “Initialize Motor
Control Unit” is replaced by an Action sequence adding the new Action “Check
Immobilizer Sensors”.

Figure 7. Motor control unit process after first inheritance step

This substitution follows the general schema for the substitution of an Action
(and therefore also subnets that can be encapsulated as a separate Activity) with
arbitrary numbers and types of input and output pins by an Action sequence as
shown in Figure 8.

Figure 8. General schema for first inheritance step: sequence

ACTIVITY DIAGRAM INHERITANCE 11

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

Initialization

Ignition
Key

1 => 2

Ignition
Key

1 => 2

Start
Relevant
Processes

Initiate Check of
Sensors and

Actors

Start Sensor
Independent

Actors

Initialize
Motor Control

Unit

Check
Immobilizer

Sensors

Initiate
Immobilizer

Check

Ignition
Key

1 => 0

Ignition
Key

1 => 0

*
1Act

1)(InO 1)(OutO

nInO)(mOutO)(

1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(

1
1*)(InOF

nInOF 1*)(

1
*)(mInOF

n
mInOF *)(

nOutOF 1*)(

1
*)(mOutOF

1
1*)(OutOF

n
mOutOF *)(

1)(OutOF

mOutOF)(

1FN

nFN

1JN

mJN

Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

*
mAct

replaced by

*
1Act

1)(InO 1)(OutO

nInO)(mOutO)(

1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(

1
1*)(InOF

nInOF 1*)(

1
*)(mInOF

n
mInOF *)(

nOutOF 1*)(

1
*)(mOutOF

1
1*)(OutOF

n
mOutOF *)(

1)(OutOF

mOutOF)(

1FN

nFN

1JN

mJN

Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

*
mAct

replaced by

In the next step shown in Figure 9 for the Action “Check Immobilizer Sensor”
a subprocess with two parallel Actions is inserted adding the Action “Initiate
Immobilizer Check”.

Figure 9. Motor control unit process after second inheritance step

The general substitution schema for the inheritance step shown in Figure 9 is
depicted in Figure 10.

Figure 10. General schema for second inheritance step: parallelism

12 BUSINESS INFORMATION SYSTEMS – BIS 2005

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

Initialization

Ignition
Key

1 => 2

Ignition
Key

1 => 2

Start
Relevant
Processes

Initiate Check of
Sensors and

Actors

Start Sensor
Independent

Actors

Initialize
Motor Control

Unit

Check
Immobilizer

Sensors

Initiate
Immobilizer

Check

[true]

[false]

Immobilizer
Deactivated?
Immobilizer

Deactivated?Ignition
Key

1 => 0

Ignition
Key

1 => 0

*Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

1DN

mDN

ItOutOF 1)(

It
mOutOF)(

1MN

nMN

Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

replaced by

*Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

1DN

mDN

ItOutOF 1)(

It
mOutOF)(

1MN

nMN

Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

replaced by

Figure 11 shows the final inheritance step, where the subprocess enclosed by
the Actions “Start Sensor Independent Actors” and “Initialize Motor Control
Unit” is replaced by the same process which will now be executed multiple times
depending on whether the immobilizer has been deactivated or not.

Figure 11. Motor control unit process after third inheritance step

The modification leading to the diagram in Figure 12 follows the general
schema as shown in Figure 11.

Figure 12. General schema for third inheritance step: iteration

5. Related Work
One approach for process inheritance has been presented in [2, 3, 1]. This

approach is closer related to specialization and is much more restrictive than the
inheritance approach introduced in this paper. The transformation rules it is
based on can also be expressed by the inheritance transformations introduced in
this paper. Another definition of process inheritance, which is much more
generic and which is similar to the inheritance definition given in this paper, is
introduced in [10]. However, this definition is given for arbitrary processes and it
is not discussed how it shall be realized for a concrete process modeling

ACTIVITY DIAGRAM INHERITANCE 13

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

language. Other process inheritance approaches known to the author have been
suggested for example by [19, 21] but since they are too specialized to a certain
process modeling language they will not be regarded here. An overview of
several process inheritance approaches can be found in [7].

Concerning the analysis of syntactical correctness of processes, one soundness
definition has been given in [1], which could be used as a starting point for the
definition of soundness for Activity Diagrams.

6. Conclusion
This paper has given a definition of Activity Diagram and has outlined

syntax-maintaining inheritance transformations deduced from the Activity
Diagram inheritance definition. What will be considered as a syntactically
correct Activity Diagram has been stated informally. The formal definition of
syntactical correctness for Activity Diagrams is an open issue of further
investigations. Therefore a formalization of the Activity Diagram semantics is
required. Moreover an example has been given in this paper of how Activity
Diagram inheritance can be applied to derive syntactically correct process
diagram variants. Concerning the syntax-maintaining inheritance transformations
outlined in section 4 a more general mechanism for the encapsulation of Activity
Diagram subprocesses has to be developed in the context of further
investigations in order to make Activity Diagram inheritance more powerful.
Also the syntax-preserving addition of Activity Diagram elements has to be
analyzed.

6.1. Outlook
The long-term goal of our research is to define various variability mechanisms

for the process design and to categorize them according to the relevant non-
functional characteristics of their modification like the maintenance of the
syntactical correctness of a process or the modifiability of the process according
to respective metrics [16]. The idea is that using the right variability mechanisms
the requirements of a system, which are realized by a corresponding system
design [17], can be maintained while deriving process design variants for similar
software products by means of the suitable variability mechanisms.

Figure 13 visualizes the abovementioned ideas. The upper ellipse shows

possible non-functional requirements for software products. Syntactical
correctness is the non-functional requirement relevant for software product A
and A’ whose process design model shall be derived from the process design
model of software product A. Therefore syntactical correctness is highlighted.
The lower ellipse contains various variability mechanisms with different non-
functional properties they preserve if being used for the derivation of process
variants. An inheritance mechanism shall for example have the property to be
correctness-preserving. Therefore it is selected to derive a process design model
for software product A’ from software product A as shown in the lowest part of

14 BUSINESS INFORMATION SYSTEMS – BIS 2005

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

Matching

Non-functional
Requirement for

SW-Product A + A‘

syntactically correctsyntactically correct

Correctness-
preserving

Performance

Non-Functional
System Requirements

Syntactical
Correctness

Modifiability

Process Design Model A Process Design Model A‘

Variability
Mechanisms for Process

Models
VM 1

VM 2
Inheritance

Matching

Non-functional
Requirement for

SW-Product A + A‘

syntactically correctsyntactically correct

Correctness-
preserving

Performance

Non-Functional
System Requirements

Syntactical
Correctness

Modifiability Performance

Non-Functional
System Requirements

Syntactical
Correctness

Modifiability

Process Design Model A Process Design Model A‘

Variability
Mechanisms for Process

Models
VM 1

VM 2
Inheritance

Variability
Mechanisms for Process

Models
VM 1

VM 2
Inheritance

the figure. This is possible, since inheritance shall be correctness-preserving and
because the process of A shall also be, according to the requirements of A,
syntactically correct.

Figure 13. Requirement driven derivation of process variants by means of appropriate
variability mechanisms

7. References
1. W.M.P. van der Aalst, K. M. van Hee. Workflow Management: Models, Methods,

and Systems. The MIT Press, Cambridge, etc., 2002.
2. W.M.P. van der Aalst and T. Basten. Life-cycle Inheritance: A Petri-net-based

approach. In P. Azema and G. Balbo, editors, Application and Theory of Petri Nets
1997, volume 1248, pages 62-81. Springer-Verlag, Berlin, 1997.

3. W.M.P. van der Aalst. Inheritance of business processes: Four problems – one
solution. In Weber, H., Ehrig, H., and Reisig, W., editors, Proceedings of the
Colloquium on Petri Net Technologies for Modelling Communication Based Systems,
pages 1-28, Berlin, Germany, 1999. Fraunhofer-Institute for Software and Systems
Engineering (ISST).

4. W.M.P. van der Aalst. Inheritance of Dynamic Behaviour in UML. In: D. Moldt (ed.),
Proceedings of the Second Workshop on Modelling of Objects, Components and
Agents (MOCA 2002), DAIMI 561, 105–120, Aarhus, Denmark, August 2002.

5. M. Anastasopoulos and C. Gacek. Implementing product line variabilities. IESE
Report No. 089.00/E, November 2000.

6. Helmut Balzert. Lehrbuch der Software-Technik: Software-Entwicklung. Spektrum
Akademischer Verlag, Heidelberg et al., 2. edition, 2000.

7. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic and
Algebraic Programming, 47(2): 47-145, 2001.

ACTIVITY DIAGRAM INHERITANCE 15

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland

8. BMBF-Project PESOA (Process Family Engineering in Service-Oriented
Applications) Homepage. Internet-URL: www.pesoa.de [last accessed in December
2004]

9. Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley, Harlow, England et al., 2000.

10. Christoph Bussler. Process Inheritance. Lecture Notes in Computer Science,
2348/2002:701, May 2002.

11. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, Upper Saddle River, NJ 07458, 2002.

12. Scott Danforth and Chris Tomlinson. Type Theories and Object-Oriented
Programming. ACM Computing Surveys 10(1): 29-72, 1988.

13. Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse: Architecture,
Process and Organization for Business Success. Addison-Wesley Longman, Harlow,
England et al., 1997.

14. OMG: Unified Modeling Language: superstructure. Version 2.0. 2003. Internet-URL:
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02 [last accessed in December 2004]

15. C. H. Pedersen. Extending ordinary inheritance schemas to include generalization. In
Conference proceedings on Object-oriented programming systems, languages and
applications, pages 407-417, 1989.

16. H.A. Reijers and I.T.P.Vanderfeesten. Cohesion and Coupling Metrics for Workflow
Process Design. In J. Desel, B. Pernici and M. Weske, editors, Proceedings of the 2nd
International Conference on Business Process Management (BPM 2004), Lecture
Notes in Computer Science 3080, 290-305. Springer Verlag, Berlin, 2004.

17. Software Engineering Standards Committee of the IEEE Computer Society. IEEE
Recommended Practice for Software Design Descriptions, Std 1016-1998

18. Mikael Svahnberg and Jan Bosch. Issues Concerning Variability in Software Product
Lines, volume June of 146. Lecture Notes in Computer Science, 2003.

19. Markus Stumptner and Michael Schrefl. Behavior consistent inheritance in UML.
Lecture Notes in Computer Science, 1920/2000:527-542, July 2003.

20. Antero Taivalsaari. On the notion of inheritance. ACM Comput. Surv., 28(3):438-
479, 1996.

21. Guangxin Yan. Process Inheritance and instance modification. In Proceedings of the
2003 international ACM SIGGROUP conference on Supporting group work, pages
229-238. ACM Press, 2003.

