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Abstract 

This paper outlines the ongoing work on the realization of a 
flexible inheritance mechanism for Activity Diagrams that assures 
the maintenance of syntactical correctness for the derived Activity 
Diagrams. The objective is to support the reuse of process models 
especially by applying Activity Diagram inheritance as a 
variability mechanism in the context of product line oriented 
software development.  
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1. Introduction 
In industry similar products are frequently developed and produced as product 

lines. One of the main advantages is a gain of efficiency in development and 
production since parts, which are common for several product line members, can 
be reused optimally. This approach has been transferred successfully to software 
development and is also known by the name domain engineering. Variability 
mechanisms are thereby important for the effectiveness of domain engineering. 
A great number of variability mechanisms has already been published [5, 9, 11, 
13, 18]. Unfortunately, existing variability mechanisms only refer to the static 
aspects of a software system’s design while the impact of variability mechanisms 
on the process view on the system has been strongly neglected. Therefore, the 
first contribution of this paper is to contribute to closing this gap by making the 
important variability mechanism inheritance available for process design models 
in order to derive process model variants. The second contribution of this paper 
is to show how the defined process inheritance mechanism is realized concretely 
for UML 2.0 Activity Diagrams. UML Activity Diagrams are part of the Unified 
Modeling Language standard [14], which is the most important standard for 
describing software systems today. Activity Diagrams are suitable for the 
description of different kinds of processes like for example technical processes. 
Third, Activity Diagram inheritance is defined in a way that the preservation of 

             
1 The work reported in this paper has been supported by the German Ministry of Research 

and Education by the PESOA project [8] 
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the syntactical correctness of a process diagram variant is assured upon 
derivation from the original diagram. Thus using Activity Diagram inheritance, 
process design diagrams can be reused for similar products assuring the 
maintenance of syntactical correctness. Thereby development effort can be 
saved. The classification of this work in our long-term research activities, where 
a system-requirement driven reutilization of process design models is desired, 
can be found in 6.1. 

 
This paper is structured as follows: Section 2 gives a definition of inheritance 

as used in this paper. Section 3 defines inheritance for Activity Diagrams, 
narrows down the class of Activity Diagrams regarded here and describes what 
will be considered as a syntactically correct Activity Diagram. Section 4 outlines 
the syntax-maintaining inheritance transformations deduced from the Activity 
Diagram inheritance definition and explains their application on the basis of a 
real motor control unit process. Section 5 gives an overview of existing work on 
process inheritance. Section 6 summarizes briefly this paper and gives an outlook 
for further investigations. Since this is a work in progress paper, there are still 
some important issues to be dealt with. 

2. Clarification of the Inheritance Term 
The first logical step in transferring an inheritance mechanism on Activity 

Diagrams is to clarify what inheritance actually means. Doing so it turns out that 
there is no unique normative definition of inheritance but that there are numerous 
ones, which can be quite different like for example the inheritance definition in 
[6] versus the inheritance definition in [12]. According to [20] there are actually 
three different conceptions that are typically mixed up with the term inheritance: 
subclassing, subtyping, and conceptual specialization. A definition of 
specialization is given by [15]. 

Subclassing is the type of inheritance that allows for the arbitrary redefinition, 
addition and cancellation of properties in subclasses. It is the type of inheritance 
that will be taken as a basis for the definition of an Activity Diagram inheritance 
mechanism because it offers the greatest flexibility in the reutilization of Activity 
Diagrams, which is our main objective. According to [20] subclassing can be 
formally defined as follows:  

,RPR ∆⊕=  

where R  corresponds to the derived subclass, P  denotes the ancestor class R  
is derived from, R∆  designates the properties in which R  differs from P  and 
⊕  denotes the operation that in some way combines P  with R∆  yielding R . 
The parts R∆  newly added to P  may overlap with properties of P  resulting in 
these properties being overwritten or cancelled.  



ACTIVITY DIAGRAM INHERITANCE 5 

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2005, Poznań, Poland 

3. Inheritance in Activity Diagrams 
The inheritance mechanism for Activity Diagrams presented here is a 

mapping of the subclassing mechanism presented in Section 2 to processes. Thus 
inheritance between Activity Diagrams shall be defined as follows: a subactivity 
CA  inherits from its superactivity PA  according to the following schema: 

CAPACA ∆⊕=  
 

CA∆  comprises elements that shall be newly added or that are already 
present in PA  and shall be modified. By default modification of an element here 
means its replacement by another component. The replacing component may 
either be a single element or a subprocess, while the replaced element may only 
be a single element. Since a single element can invoke a new subprocess on his 
part, also entire subprocesses can be replaced. ⊕  designates the combination of 
PA  with CA∆  that adds the new elements and replaces existing ones which are 
subject to modification.  

3.1. Class of Activity Diagrams Regarded in this Paper 
This paper will restrict itself on the IntermediateActivities compliance level of 

the UML 2.0 Activity Diagram specification. Accordingly the regarded Activity 
Diagrams consist of elements for modeling sequential, alternative, and 
concurrent control and data flows. The reduction on Intermediate Activities aims 
to achieve a reduction of the complexity of realizing inheritance rules for 
Activity Diagrams while they comprise modeling elements, which are absolutely 
sufficient for many applications. 

3.2. Valid Activity Diagrams and Constraints for the 
Derivation of Subactivities 

For the Activity Diagrams considered here it is assumed that they are correct 
according to the UML specification [14]. Nevertheless Activity Diagrams may 
exhibit intolerable errors without violating the UML specification. It shall be 
ensured that these kinds of errors are not introduced in accurate Activity 
Diagrams by using the Activity Diagram inheritance mechansm introduced here, 
i.e. the inheritance mechanisms shall be correctness-preserving. In this paper 
Activity Diagrams will be considered to be syntactically correct if they are in 
addition to the assumed correctness according to [14] free of: 

 
– deadlocks 
– livelocks, i.e. loops that don’t terminate 
– dead nodes, i.e. nodes that can never be reached during process execution 

 
These correctness criteria shall be defined formally in the context of further 

investigations. In addition to the abovementioned syntactical constraints some 
notational restrictions shall be imposed for the sake of simplicity and clearness. 
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Act
InO OutO

Constructions like the following (multiple edges flowing into or leading from the 
same Pin) shall be forbidden: 

 

Figure 1. Multiple edges per pin are not allowed. 

Instead the following semantically identical representation shall be used: 

ActInO OutO

 

Figure 2. Construction to be used instead of multiple edges per pin 

Incoming control flows are joined with the incoming data flows. If there is 
more than one incoming data flow it doesn't matter with which one the control 
flow is joined. Not allowed: 

Act
)(InOF

)(InCF  

Figure 3. Actions shall not have incoming data and control flow edges at the same time. 

Semantically identical representation to be used instead: 

Act
)(InOF

)(InCF  

Figure 4. Construction to be used for Actions with incoming data and control flow 
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4. Realization of the Inheritance Mechanism 
Table 1 and Table 2 summarize which process modifications are possible 

during inheritance according to the Activity Diagram Inheritance definition in 3. 

Table 1. Possible replacements for Activity Diagrams 

replaces Simple Element Subprocess 
Simple Element X X 

Subprocess (X) (X) 

Table 2. Possible additions for Activity Diagrams 

is added  
Simple Element ? 

Subprocess ? 
 
The third row in Table 1 indicates that Activity Diagram subprocesses may 

theoretically be replaced by simple Activity Diagram elements or subprocesses 
during inheritance. The crosses are thereby parenthesized because subprocesses 
are in fact treated as simple elements. Therefore the subprocess to be replaced is 
represented as a separate Activity and substituted by a Call Behavior Action 
invoking the new Activity. So arbitrary subprocesses, which can be encapsulated 
in a separate Activity can be replaced according to the rules for the substitution 
of Actions during inheritance. The addition of simple elements and subprocesses 
is still a matter of further investigations as indicated in Table 2. 

4.1. Substitution of Simple Elements by Simple Elements 
The tables below summarize, what types of simple Intermediate Activity 

Diagram elements can be overwritten by what other simple element types. The 
tables are to be read from left to right. An arrow pointing to the right means "can 
replace", an arrow pointing to the left means "can be replaced by". The braces 
indicate that a substitution is subject to certain constraints, which will not be 
discussed here in detail for spatial reasons. 

Table 3. Action Substitutions 

 Action CentralBuffer
Node 

DecisionNode/
MergeNode 

ForkNode/ 
JoinNode 

Action (↔ ) (↔ ) (→ ) (↔ ) 

Table 4. ObjectNode substitutions 

 Pin DecisionNode/
MergeNode 

Pin (↔ )  
CentralBufferNode  ←  
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Table 5. ControlNode substitutions 

 Initial 
Node 

Activity 
FinalNode 

Flow 
FinalNode 

Merge
Node 

Fork
Node 

Join 
Node 

InitialNode ↔       
ActivityFinal 

Node  ↔  →     

FlowFinal 
Node  ←  ↔     

MergeNode    ↔    
ForkNode     ↔   
JoinNode      ↔  

Table 6. ActivityPartition substitutions 

 ActivityPartition 
ActivityPartition (↔ ) 

4.2. Substitution of Simple Elements by Subnets 
Up to now the correctness-preserving substitution of Actions with arbitrary 

numbers and types of input and output pins by structurally typical subprocesses 
has been investigated. Also Activity Diagram elements replaceable by Actions 
according to 4.1 can be subject to the same subprocess substitutions. Some of the 
investigated substitutions are presented in 4.4. 

In principle for substitution any subprocess can be used that has the same 
input and output interface (i.e. the same numbers and types of Pins and incoming 
and outgoing edges) as the substituted component, that follows the restrictions 
for Activity Diagrams defined in 3.2 and that does not duplicate or delete any 
tokens in comparison to the substituted node. Moreover for every replacing 
subprocess it must be assumed that the execution time of the contained Actions 
is always finite, that the contained Activity Edges never dispose of unsatisfiable 
Guard-Expressions and that any Decision Node is constructed in a way that for 
every incoming token always exactly one of the edges running out of the 
Decision Node accepts the offered token. 

4.3. Substitution of Subnets 
Substitution of subnets shall be realized by reducing it to the substitution of 

Call Behavior Actions, which invoke the subnet to be substituted and that has 
been sourced out into a separate Activity. Therefore it has to be investigated 
what kinds of subnets can be sourced out into a separate Activity and thus may 
be replaced. This question is not trivial at all and will be subject to further 
investigations. In order to avoid problems (deadlocks, syntax violations, etc.) the 
subprocess encapsulation shall only be allowed according to the following rule 
for the moment: in an Activity Diagram A  a subnet B  can be sourced out into 
an Activity that is invoked by a Call Behavior Action t , if for any Activity Edge 
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Key
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yx →  from B  to 'A  (and for any Activity Edge yx ←  from 'A  to B ) the 
following applies: 

 
– x  is an Action in B  and y  is an Action in 'A  
– any edge yx ←  leading from 'A  to B  meets in the same Action sx  
– any edge yx →  leading from B  to 'A  runs out of the same Action xe  
 

( 'A  corresponds to net A  without subnet B ). Figure 5 illustrates the 
abovementioned rule. 

A
B

sx ex…

 

Figure 5. Allowed subprocess encapsulations 

4.4. Example for the Application of Activity Diagram 
Inheritance 

Due to a lack of space mechanisms for the replacement of subprocesses by 
other subprocesses will be introduced only by means of an example. The 
example shows a cutout of a motor control unit initialization process from which 
the process of a motor control unit with an integrated immobilizer system is 
derived using Activity Diagram inheritance. The constraints which have to be 
regarded for every substitution are omitted. Figure 6 shows the initial motor 
control unit initialization process without immobilizer system. 

 
 

Figure 6. Initial motor control unit process 
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Figure 7 depicts the first inheritance step, where the Action “Initialize Motor 
Control Unit” is replaced by an Action sequence adding the new Action “Check 
Immobilizer Sensors”. 

 
 

Figure 7. Motor control unit process after first inheritance step 

This substitution follows the general schema for the substitution of an Action 
(and therefore also subnets that can be encapsulated as a separate Activity) with 
arbitrary numbers and types of input and output pins by an Action sequence as 
shown in Figure 8. 

 
 

Figure 8. General schema for first inheritance step: sequence 
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In the next step shown in Figure 9 for the Action “Check Immobilizer Sensor” 
a subprocess with two parallel Actions is inserted adding the Action “Initiate 
Immobilizer Check”. 

 
 

Figure 9. Motor control unit process after second inheritance step 

The general substitution schema for the inheritance step shown in Figure 9 is 
depicted in Figure 10. 

 
 

Figure 10. General schema for second inheritance step: parallelism 
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Figure 11 shows the final inheritance step, where the subprocess enclosed by 
the Actions “Start Sensor Independent Actors” and “Initialize Motor Control 
Unit” is replaced by the same process which will now be executed multiple times 
depending on whether the immobilizer has been deactivated or not. 

 
 

Figure 11. Motor control unit process after third inheritance step 

The modification leading to the diagram in Figure 12 follows the general 
schema as shown in Figure 11. 

 
 

Figure 12. General schema for third inheritance step: iteration 

5. Related Work 
One approach for process inheritance has been presented in [2, 3, 1]. This 

approach is closer related to specialization and is much more restrictive than the 
inheritance approach introduced in this paper. The transformation rules it is 
based on can also be expressed by the inheritance transformations introduced in 
this paper. Another definition of process inheritance, which is much more 
generic and which is similar to the inheritance definition given in this paper, is 
introduced in [10]. However, this definition is given for arbitrary processes and it 
is not discussed how it shall be realized for a concrete process modeling 
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language. Other process inheritance approaches known to the author have been 
suggested for example by [19, 21] but since they are too specialized to a certain 
process modeling language they will not be regarded here. An overview of 
several process inheritance approaches can be found in [7]. 

Concerning the analysis of syntactical correctness of processes, one soundness 
definition has been given in [1], which could be used as a starting point for the 
definition of soundness for Activity Diagrams. 

6. Conclusion 
This paper has given a definition of Activity Diagram and has outlined 

syntax-maintaining inheritance transformations deduced from the Activity 
Diagram inheritance definition. What will be considered as a syntactically 
correct Activity Diagram has been stated informally. The formal definition of 
syntactical correctness for Activity Diagrams is an open issue of further 
investigations. Therefore a formalization of the Activity Diagram semantics is 
required. Moreover an example has been given in this paper of how Activity 
Diagram inheritance can be applied to derive syntactically correct process 
diagram variants. Concerning the syntax-maintaining inheritance transformations 
outlined in section 4 a more general mechanism for the encapsulation of Activity 
Diagram subprocesses has to be developed in the context of further 
investigations in order to make Activity Diagram inheritance more powerful. 
Also the syntax-preserving addition of Activity Diagram elements has to be 
analyzed. 

6.1. Outlook 
The long-term goal of our research is to define various variability mechanisms 

for the process design and to categorize them according to the relevant non-
functional characteristics of their modification like the maintenance of the 
syntactical correctness of a process or the modifiability of the process according 
to respective metrics [16]. The idea is that using the right variability mechanisms 
the requirements of a system, which are realized by a corresponding system 
design [17], can be maintained while deriving process design variants for similar 
software products by means of the suitable variability mechanisms. 

 
Figure 13 visualizes the abovementioned ideas. The upper ellipse shows 

possible non-functional requirements for software products. Syntactical 
correctness is the non-functional requirement relevant for software product A 
and A’ whose process design model shall be derived from the process design 
model of software product A. Therefore syntactical correctness is highlighted. 
The lower ellipse contains various variability mechanisms with different non-
functional properties they preserve if being used for the derivation of process 
variants. An inheritance mechanism shall for example have the property to be 
correctness-preserving. Therefore it is selected to derive a process design model 
for software product A’ from software product A as shown in the lowest part of 
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the figure. This is possible, since inheritance shall be correctness-preserving and 
because the process of A shall also be, according to the requirements of A, 
syntactically correct. 

 

 

Figure 13. Requirement driven derivation of process variants by means of appropriate 
variability mechanisms 
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