
On the Application of
the Pi-Calculus to BPM

Formalizing & Simulating Interacting Processes

Frank Puhlmann
Business Process Technology Group

Hasso Plattner Institut
Potsdam, Germany

1

Lazy Soundness
A Prototypical Tool-Chain

Lazy Soundness is a new kind of soundness dealing with so called
left-behind or lazy activities. Since these activities can be active while
the final activity of the business process has already been reached,
processes containing these activities can never be sound. Lazy
soundness provides a criterion to prove business processes containing
these activities to be free of deadlocks and livelocks.

Prof. Dr. Mathias Weske
Frank Puhlmann
Business Process Technology Group
Hasso Plattner Institute
Campus Griebnitzsee
14482 Potsdam, Germany

http://bpt.hpi.uni-potsdam.de

A business process containing Discriminator, N-out-of-M, or Multiple
Instances without Synchronization patterns (called the critical patterns),
such as

A

B

C

2 D

Problem

Solution

Structural

Sound Process

Initial

Node

Final

Node

A, B, and C represent three web service
interactions.

After two of them have completed, D is
executed and thereafter the process is
finished.

However, one of the activities is still active, and clean-up
work like payment and documentation has to be done.

As the remaining activity contradicts the soundness definition, we can
not use existing tools to verify the sample business process. Still,
automated verification regarding deadlocks and livelocks is quite
important even if you employ one of the critical patterns in your
business process.

Lazy Soundness proves business processes
containing the critical patterns (and all others) to
be free of deadlocks and livelocks. Technically, it
abstracts from all internals of the process and
just considers the initial and final node. The
abstracted process is verified using bisimulation
techniques.

Demo Presentation:

Thursday, Sep 7 10:30am, Room EI10

Lazy soundness has been implemented in a prototypical tool chain at
our research group. We provide a graphical editing of business
processes using BPMN, automatically formalize BPM diagrams into pi-
calculus expressions, and use existing tools to decide lazy soundness
for a given business process.

The theoretical background of Lazy Soundness will be presented on
Tuesday, September 5 16:30am, Room EI9.

Motivation

Dynamic Systems
3

and offers interactive means to exert influence on their course of execution. The contents

of this paper is structured as follows. Firstly ... todo ... Thereafter the elaborated concepts

will be illustrated by an example and finally the paper concludes with a discussion of

related work and further developments.

2 Motivation

As already mentioned above, by using the π-calculus as a formal representation of business
processes, the dynamic linking behavior of processes within service oriented architectures

can be modeled. Other formal approaches for modeling business processes are provided

by Carl Adam Petris Petri nets[12] and notations based on them like workflow nets[1].

However the problem of these approaches is that they represent systems with static struc-

tures, which means that all links for communications and actors within the system have to

be known beforehand. Already a simple example, found in everyday life, illustrates the

problem.

Lets assume Steve wants to communicate with Mary using a telephone, but does not
know Marys telephone number. Without her number, no communication can be estab-
lished. To resolve this problem Steve calls the directory assistance, whose telephone
number is publicly known, and asks for Marys number. The directory assistance can
provide him with her telephone number, sinceMary has signed up in the telephone book.
The systems state is depicted in figure 1(a). After receiving the number, Steve is able
to call Mary. He thereby establishes a new communication link between himself and

Mary, which did not exist before. The new systems state of the linking structure is shown
in figure 1(b). Such evolution can not be modeled by Petri nets and approaches based on

them.

Directory

Assistance
MarySteve

(a) Initial state

Directory

Assistance

MarySteve

(b) New link established

Figure 1: Change of linking structure during evolution

Since the π-calculus also supports the formalization of the workflow patterns, shown in
[11, 14] and the formalization of the service interaction patterns [2][5], it provides a con-

siderable approach as a formal representation of business processes, especially regarding

the service oriented architectures, constantly gaining in importance these days. These ar-

guments are strongly speaking for using the π-calculus in the business process domain.
However, due to lacking tool support working with it, regarding modeling and simulation,

further development in this area is desired.

The issue of modeling π-calculus processes is currently targeted by the development of a

and offers interactive means to exert influence on their course of execution. The contents

of this paper is structured as follows. Firstly ... todo ... Thereafter the elaborated concepts

will be illustrated by an example and finally the paper concludes with a discussion of

related work and further developments.

2 Motivation

As already mentioned above, by using the π-calculus as a formal representation of business
processes, the dynamic linking behavior of processes within service oriented architectures

can be modeled. Other formal approaches for modeling business processes are provided

by Carl Adam Petris Petri nets[12] and notations based on them like workflow nets[1].

However the problem of these approaches is that they represent systems with static struc-

tures, which means that all links for communications and actors within the system have to

be known beforehand. Already a simple example, found in everyday life, illustrates the

problem.

Lets assume Steve wants to communicate with Mary using a telephone, but does not
know Marys telephone number. Without her number, no communication can be estab-
lished. To resolve this problem Steve calls the directory assistance, whose telephone
number is publicly known, and asks for Marys number. The directory assistance can
provide him with her telephone number, sinceMary has signed up in the telephone book.
The systems state is depicted in figure 1(a). After receiving the number, Steve is able
to call Mary. He thereby establishes a new communication link between himself and

Mary, which did not exist before. The new systems state of the linking structure is shown
in figure 1(b). Such evolution can not be modeled by Petri nets and approaches based on

them.

Directory

Assistance
MarySteve

(a) Initial state

Directory

Assistance

MarySteve

(b) New link established

Figure 1: Change of linking structure during evolution

Since the π-calculus also supports the formalization of the workflow patterns, shown in
[11, 14] and the formalization of the service interaction patterns [2][5], it provides a con-

siderable approach as a formal representation of business processes, especially regarding

the service oriented architectures, constantly gaining in importance these days. These ar-

guments are strongly speaking for using the π-calculus in the business process domain.
However, due to lacking tool support working with it, regarding modeling and simulation,

further development in this area is desired.

The issue of modeling π-calculus processes is currently targeted by the development of a

Pi-Calculus Link Passing Mobility
4

R S

S

S

S

S

S

B

Outline

• The Pi-Calculus

• Processes (based on patterns)

• Interactions (among processes)

• Tooling (incl. live demo)

The Pi-Calculus

Grammar

7

• The Pi-Calculus consists of agents that use
names for synchronization:

CHAPTER 2. THE PI-CALCULUS 24

2.2 Syntax and Semantics

The π-calculus consists of an infinite set of names and another infinite set of agent identifiers.1

As stated, names are a collective term for concepts like links, pointers, references, identifiers,
channels, and so on. They are used for interaction among concurrent agents, as well as repre-
senting data that is communicated in these interactions. N denotes the set of names ranged over
lowercase letters such as a, b, c and K denotes the set of agent identifiers ranged over uppercase
letters such as R,S, T .

The agents evolve by performing actions. The capabilities for action are divided into four
kinds. The first capability of an agent is sending a tuple of names, denoted as ỹ, synchronously
via another name used as a channel. The second capability represents the opposed functionality
of receiving a tuple of names synchronously via another name, again used as a channel. To avoid
confusion, the names of z̃ have to be pairwise-distinct. The third capability is the execution of an
unobservable action, a so called silent step. The last capability is performing a match between
two names. Capabilities of agents are represented as prefixes given by:

π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π . (2.1)

The output prefix x〈ỹ〉 consists of a subject x and objects ỹ. A name used as the subject of an
output prefix is called a co-name, it is represented with a bar above the name. The subject can
be thought of as an output port of an agent that contains it and it is able to send the objects. The
input prefix x(z̃) consists of the subject x and the objects z̃. Here, the subject x can be thought
of as an input port. The input prefix is able to receive arbitrary names and replace each further
occurrence of the names of z̃ in the agent containing the input prefix with the received names.
The unobservable prefix is denoted as τ , it represents an internal or silent step. The match prefix
is denoted as [x = y]π, it behaves like the prefix π if x and y are equal. The agents of the
π-calculus are given by:

P ::= M | P |P | νz P | K(x1, . . . , xn)
M ::= 0 | π.P | M + M .

(2.2)

The termination symbol is 0, denoting an agent that can do nothing. The current capabilities of
an agent are given by π.P . They state that the agent behaves as P after the action represented by
π has been done. For instance, a〈x〉.x(z).0 first sends the name x via a and thereafter receives
a name via x. M + M denotes a sum of capabilities, where the agent continues as either the
left or the right hand side. For instance, a(x).0 + b(y).0 can receive a name either via a or b.
P |P represents parallel composition. The left and the right hand side are called components
and are executed independently of each other. Two components can interact via shared names
on matching input and output prefixes. For instance, in a〈x〉.0 | a(y).0 the left hand component
can send x via a and the right hand component can receive x via a. The restriction operator νz P
restricts the scope of the name z to P . Components of P can interact via z, however external
components cannot. For instance, in (νa (a〈x〉.0 | a(y).0) | Q), the left hand component can

1To avoid a semantic mismatch between the concept process that will be introduced in chapter 3 and π-calculus
processes, we utilize the term agent to denote a π-calculus process as done in earlier work [96].

CHAPTER 2. THE PI-CALCULUS 24

2.2 Syntax and Semantics

The π-calculus consists of an infinite set of names and another infinite set of agent identifiers.1

As stated, names are a collective term for concepts like links, pointers, references, identifiers,
channels, and so on. They are used for interaction among concurrent agents, as well as repre-
senting data that is communicated in these interactions. N denotes the set of names ranged over
lowercase letters such as a, b, c and K denotes the set of agent identifiers ranged over uppercase
letters such as R,S, T .

The agents evolve by performing actions. The capabilities for action are divided into four
kinds. The first capability of an agent is sending a tuple of names, denoted as ỹ, synchronously
via another name used as a channel. The second capability represents the opposed functionality
of receiving a tuple of names synchronously via another name, again used as a channel. To avoid
confusion, the names of z̃ have to be pairwise-distinct. The third capability is the execution of an
unobservable action, a so called silent step. The last capability is performing a match between
two names. Capabilities of agents are represented as prefixes given by:

π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π . (2.1)

The output prefix x〈ỹ〉 consists of a subject x and objects ỹ. A name used as the subject of an
output prefix is called a co-name, it is represented with a bar above the name. The subject can
be thought of as an output port of an agent that contains it and it is able to send the objects. The
input prefix x(z̃) consists of the subject x and the objects z̃. Here, the subject x can be thought
of as an input port. The input prefix is able to receive arbitrary names and replace each further
occurrence of the names of z̃ in the agent containing the input prefix with the received names.
The unobservable prefix is denoted as τ , it represents an internal or silent step. The match prefix
is denoted as [x = y]π, it behaves like the prefix π if x and y are equal. The agents of the
π-calculus are given by:

P ::= M | P |P | νz P | K(x1, . . . , xn)
M ::= 0 | π.P | M + M .

(2.2)

The termination symbol is 0, denoting an agent that can do nothing. The current capabilities of
an agent are given by π.P . They state that the agent behaves as P after the action represented by
π has been done. For instance, a〈x〉.x(z).0 first sends the name x via a and thereafter receives
a name via x. M + M denotes a sum of capabilities, where the agent continues as either the
left or the right hand side. For instance, a(x).0 + b(y).0 can receive a name either via a or b.
P |P represents parallel composition. The left and the right hand side are called components
and are executed independently of each other. Two components can interact via shared names
on matching input and output prefixes. For instance, in a〈x〉.0 | a(y).0 the left hand component
can send x via a and the right hand component can receive x via a. The restriction operator νz P
restricts the scope of the name z to P . Components of P can interact via z, however external
components cannot. For instance, in (νa (a〈x〉.0 | a(y).0) | Q), the left hand component can

1To avoid a semantic mismatch between the concept process that will be introduced in chapter 3 and π-calculus
processes, we utilize the term agent to denote a π-calculus process as done in earlier work [96].

Link (Name) Passing

• Names can be sent via other names
representing channels:

• Received names can represent channels:

8

x〈a〉.a(y).0 | x(z).z〈c〉.0

x〈a〉.0 | x(z).0

x〈a〉
−→

a(y).0 | a〈c〉.0

Scope Extrusion

• The scope of restricted names can be
extruded (i.e. extended):

9

(νx a〈x〉.A) | a(y).B
a〈x〉
−→ νx (A | B{x/y})

Processes

Process Patterns

• Business processes can be divided into
patterns

• Common catalogue: Workflow Patterns

• We provide formal representations of
these patterns

• Can be used to formally represent business
processes

Basic Control Flow
Patterns

CHAPTER 5. PROCESSES 99

state given by its definition since it contains the complete behavior of the corresponding process
graph. A π-calculus agent might corresponds to the concept of a process instance (definition 25)
if its current state represents an evolution of a defined agent. An example for the former case is
given by

S
def= νb (τ.b.0 | b.τ.0) .

An example for the latter case is the first evolution of the agent given above:

S
τ−→ νb (b.0 | b.τ.0) .

Both definitions only hold for a system of agents representing a business process. However, due
to recursion inside agents, an agent representing currently a process instance can represent a
process again. Consider for instance,

A
def= τ.(b.0 | A) ,

that corresponds to an activity. After τ−→ it corresponds to an activity instance, but after b−→
and SC-COMP-INACT it corresponds again to an activity following the above definitions. Since
this subtle problem makes the distinction between processes and process instances as well as
between activities and activity instances in the π-calculus difficult, we avoid using these terms.
Instead, we talk about a prototypical representation that merges both concepts. If the structural
definition of a process according to definition 24 (Process) is required, we revert to a process
graph (definition 85). Each process graph gets a formal semantics according to algorithm 1
(Mapping Process Graphs to Agents). Due to the property that the agent representing the initial
node of the process graph can only be executed once, each π-calculus mapping of a process
graph is seen as a process instance according to definition 25 (Process Instance).

5.2 Process Patterns

This section introduces different process patterns as required by algorithm 1. The patterns pro-
posed are based on the workflow patterns, as well as an additional one that is especially suited
for interactions introduced in chapter 6. As done in chapter 4, we adapt the description of the
patterns to the terminology used throughout this thesis.

5.2.1 Basic Control Flow Patterns

The basic control flow patterns capture elementary aspects of control flow. A graphical repre-
sentation of these patterns is given in figure 5.4.

Pattern 28 (Sequence) Description: An activity in a business process is enabled after the
completion of another activity in the same process. (According to [7, p.6])
Implementation: A sequence is represented by an agent A waiting for a precondition via a,
thereafter executing the functional perspective of the activity the agent represents (i.e. 〈·〉), and
finally provides a postcondition via b:

A
def= a.〈·〉.b.0 .

CHAPTER 5. PROCESSES 100

A
a b

(a) Sequence.

a

b
1

b
i

...

(b) Parall. Split.

a
1

a
i

b
...

(c) Synchroniz.

a

b
1

b
i

...

(d) Excl. Choice.

a
1

a
i

b
...

(e) Simple Merge.

Figure 5.4: Basic Control Flow Patterns.

This pattern applies to a node N of a process graph that has at most one incoming and at most
one outgoing edge: |pre(N)| ≤ 1 and |post(N)| ≤ 1. If pre(N) = ∅, the name a is omitted,
and if post(N) = ∅, the name b is omitted from the pattern.

Pattern 29 (Parallel Split) Description: A point in the business process where a single thread
of control splits into multiple threads of control which can be executed in parallel, thus allowing
activities to be executed simultaneously or in any order. (According to [7, p.7])
Implementation: To achieve a parallel split from an agent A representing a node of a process
graph, n names b are emitted as a postcondition:

A
def= a.〈·〉.(

n∏

i=1

bi.0) .

This pattern applies to a node N of a process graph that has at most one incoming edge and at
least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If pre(N) = ∅, the name a is
omitted from the pattern.

Pattern 30 (Synchronization) Description: A point in the business process where multiple
parallel (complex) activities converge into one single thread of control, thus synchronizing mul-
tiple threads. It is an assumption of this pattern that each incoming branch of a synchronizer is
executed once. (According to [7, p.7])
Implementation: To achieve synchronization at an agent A representing a node of a process
graph, n names are received as a precondition:

A
def= {ai}n

i=1.〈·〉.b .

The sequential ordering of the names ai representing preconditions causes no problems, since
the π-calculus semantics applied is synchronous. The patterns applies to a node N of a process
graph that has at least two incoming edges and at most one outgoing edge: pre(N) ≥ 2 and
post(N) ≤ 1. If post(N) = ∅, the name b is omitted from the pattern.

The parallel split and the synchronization patterns can be combined into one node of a pro-
cess graph. The pattern is then given accordingly:

A
def= {ai}n

i=1.〈·〉.(
m∏

i=1

bi.0) .

CHAPTER 5. PROCESSES 100

A
a b

(a) Sequence.

a

b
1

b
i

...

(b) Parall. Split.

a
1

a
i

b
...

(c) Synchroniz.

a

b
1

b
i

...

(d) Excl. Choice.

a
1

a
i

b
...

(e) Simple Merge.

Figure 5.4: Basic Control Flow Patterns.

This pattern applies to a node N of a process graph that has at most one incoming and at most
one outgoing edge: |pre(N)| ≤ 1 and |post(N)| ≤ 1. If pre(N) = ∅, the name a is omitted,
and if post(N) = ∅, the name b is omitted from the pattern.

Pattern 29 (Parallel Split) Description: A point in the business process where a single thread
of control splits into multiple threads of control which can be executed in parallel, thus allowing
activities to be executed simultaneously or in any order. (According to [7, p.7])
Implementation: To achieve a parallel split from an agent A representing a node of a process
graph, n names b are emitted as a postcondition:

A
def= a.〈·〉.(

n∏

i=1

bi.0) .

This pattern applies to a node N of a process graph that has at most one incoming edge and at
least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If pre(N) = ∅, the name a is
omitted from the pattern.

Pattern 30 (Synchronization) Description: A point in the business process where multiple
parallel (complex) activities converge into one single thread of control, thus synchronizing mul-
tiple threads. It is an assumption of this pattern that each incoming branch of a synchronizer is
executed once. (According to [7, p.7])
Implementation: To achieve synchronization at an agent A representing a node of a process
graph, n names are received as a precondition:

A
def= {ai}n

i=1.〈·〉.b .

The sequential ordering of the names ai representing preconditions causes no problems, since
the π-calculus semantics applied is synchronous. The patterns applies to a node N of a process
graph that has at least two incoming edges and at most one outgoing edge: pre(N) ≥ 2 and
post(N) ≤ 1. If post(N) = ∅, the name b is omitted from the pattern.

The parallel split and the synchronization patterns can be combined into one node of a pro-
cess graph. The pattern is then given accordingly:

A
def= {ai}n

i=1.〈·〉.(
m∏

i=1

bi.0) .

CHAPTER 5. PROCESSES 100

A
a b

(a) Sequence.

a

b
1

b
i

...

(b) Parall. Split.

a
1

a
i

b
...

(c) Synchroniz.

a

b
1

b
i

...

(d) Excl. Choice.

a
1

a
i

b
...

(e) Simple Merge.

Figure 5.4: Basic Control Flow Patterns.

This pattern applies to a node N of a process graph that has at most one incoming and at most
one outgoing edge: |pre(N)| ≤ 1 and |post(N)| ≤ 1. If pre(N) = ∅, the name a is omitted,
and if post(N) = ∅, the name b is omitted from the pattern.

Pattern 29 (Parallel Split) Description: A point in the business process where a single thread
of control splits into multiple threads of control which can be executed in parallel, thus allowing
activities to be executed simultaneously or in any order. (According to [7, p.7])
Implementation: To achieve a parallel split from an agent A representing a node of a process
graph, n names b are emitted as a postcondition:

A
def= a.〈·〉.(

n∏

i=1

bi.0) .

This pattern applies to a node N of a process graph that has at most one incoming edge and at
least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If pre(N) = ∅, the name a is
omitted from the pattern.

Pattern 30 (Synchronization) Description: A point in the business process where multiple
parallel (complex) activities converge into one single thread of control, thus synchronizing mul-
tiple threads. It is an assumption of this pattern that each incoming branch of a synchronizer is
executed once. (According to [7, p.7])
Implementation: To achieve synchronization at an agent A representing a node of a process
graph, n names are received as a precondition:

A
def= {ai}n

i=1.〈·〉.b .

The sequential ordering of the names ai representing preconditions causes no problems, since
the π-calculus semantics applied is synchronous. The patterns applies to a node N of a process
graph that has at least two incoming edges and at most one outgoing edge: pre(N) ≥ 2 and
post(N) ≤ 1. If post(N) = ∅, the name b is omitted from the pattern.

The parallel split and the synchronization patterns can be combined into one node of a pro-
cess graph. The pattern is then given accordingly:

A
def= {ai}n

i=1.〈·〉.(
m∏

i=1

bi.0) .

CHAPTER 5. PROCESSES 100

A
a b

(a) Sequence.

a

b
1

b
i

...

(b) Parall. Split.

a
1

a
i

b
...

(c) Synchroniz.

a

b
1

b
i

...

(d) Excl. Choice.

a
1

a
i

b
...

(e) Simple Merge.

Figure 5.4: Basic Control Flow Patterns.

This pattern applies to a node N of a process graph that has at most one incoming and at most
one outgoing edge: |pre(N)| ≤ 1 and |post(N)| ≤ 1. If pre(N) = ∅, the name a is omitted,
and if post(N) = ∅, the name b is omitted from the pattern.

Pattern 29 (Parallel Split) Description: A point in the business process where a single thread
of control splits into multiple threads of control which can be executed in parallel, thus allowing
activities to be executed simultaneously or in any order. (According to [7, p.7])
Implementation: To achieve a parallel split from an agent A representing a node of a process
graph, n names b are emitted as a postcondition:

A
def= a.〈·〉.(

n∏

i=1

bi.0) .

This pattern applies to a node N of a process graph that has at most one incoming edge and at
least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If pre(N) = ∅, the name a is
omitted from the pattern.

Pattern 30 (Synchronization) Description: A point in the business process where multiple
parallel (complex) activities converge into one single thread of control, thus synchronizing mul-
tiple threads. It is an assumption of this pattern that each incoming branch of a synchronizer is
executed once. (According to [7, p.7])
Implementation: To achieve synchronization at an agent A representing a node of a process
graph, n names are received as a precondition:

A
def= {ai}n

i=1.〈·〉.b .

The sequential ordering of the names ai representing preconditions causes no problems, since
the π-calculus semantics applied is synchronous. The patterns applies to a node N of a process
graph that has at least two incoming edges and at most one outgoing edge: pre(N) ≥ 2 and
post(N) ≤ 1. If post(N) = ∅, the name b is omitted from the pattern.

The parallel split and the synchronization patterns can be combined into one node of a pro-
cess graph. The pattern is then given accordingly:

A
def= {ai}n

i=1.〈·〉.(
m∏

i=1

bi.0) .

CHAPTER 5. PROCESSES 101

Pattern 31 (Exclusive Choice) Description: A point in the business process where, based on
a decision or data, one of several branches is chosen. (According to [7, p.8])
Implementation: An exclusive choice from an agent A representing a node of a process graph
is achieved by emitting one name bi out of a set with size n:

A
def= a.〈·〉.(

n∑

i=1

bi.0) .

The pattern given makes a non–deterministic choice. It applies to a node N of a process
graph that has at most one incoming edge and at least two outgoing edges: |pre(N)| ≤ 1
and |post(N)| ≥ 2. If pre(N) = ∅, the name a is omitted from the pattern. A data–based
choice according to pattern 27 (Data-based Routing) is represented by using either the match
operator of the π-calculus (for comparing π-calculus names) or higher level abstractions like
natural number comparators. Consider for instance,

A
def= a.〈·〉.if value < 100 then b1.0 else b2.0 ,

where the name value represents a natural number generated in 〈·〉.
Pattern 32 (Simple Merge) Description: A point in the business process where two or more
alternative branches come together without synchronization. It is an assumption of this pattern
that none of the alternative branches is ever executed in parallel. (According to [7, p.9])
Implementation: A simple merge at an agent A representing a node of a process graph is
achieved by receiving one name ai out of a set with size n:

A
def=

n∑

i=1

ai.〈·〉.b.0 .

The patterns applies to a node N of a process graph that has at least two incoming edges and
at most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is
omitted from the pattern. If more then one name should be used as a precondition, pattern 34
(Synchronizing Merge) applies.

Just as the parallel split and synchronization patterns can be combined into one node of a
process graph, the same holds for the exclusive choice and simple merge patterns. The corre-
sponding pattern is given by:

A
def=

n∑

i=1

ai.〈·〉.(
m∑

i=1

bi.0) .

Example 8 (Basic Control Flow Patters) We illustrate the application of the basic control
flow patterns by a process graph containing them all. Figure 5.5 depicts the process graph. We
already annotated the corresponding π-calculus agent identifiers inside the nodes as well as the
π-calculus names beside the edges. The types of the nodes are attached next to the nodes and
correspond directly to the patterns introduced so far. The nodes that are executed sequentially
are given by

N2 def= e1 .〈·〉.e3 .0,N3 def= e2 .〈·〉.e4 .0,N6 def= e6 .〈·〉.e8 .0, and N7 def= e7 .〈·〉.e9 .0 .

CHAPTER 5. PROCESSES 100

A
a b

(a) Sequence.

a

b
1

b
i

...

(b) Parall. Split.

a
1

a
i

b
...

(c) Synchroniz.

a

b
1

b
i

...

(d) Excl. Choice.

a
1

a
i

b
...

(e) Simple Merge.

Figure 5.4: Basic Control Flow Patterns.

This pattern applies to a node N of a process graph that has at most one incoming and at most
one outgoing edge: |pre(N)| ≤ 1 and |post(N)| ≤ 1. If pre(N) = ∅, the name a is omitted,
and if post(N) = ∅, the name b is omitted from the pattern.

Pattern 29 (Parallel Split) Description: A point in the business process where a single thread
of control splits into multiple threads of control which can be executed in parallel, thus allowing
activities to be executed simultaneously or in any order. (According to [7, p.7])
Implementation: To achieve a parallel split from an agent A representing a node of a process
graph, n names b are emitted as a postcondition:

A
def= a.〈·〉.(

n∏

i=1

bi.0) .

This pattern applies to a node N of a process graph that has at most one incoming edge and at
least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If pre(N) = ∅, the name a is
omitted from the pattern.

Pattern 30 (Synchronization) Description: A point in the business process where multiple
parallel (complex) activities converge into one single thread of control, thus synchronizing mul-
tiple threads. It is an assumption of this pattern that each incoming branch of a synchronizer is
executed once. (According to [7, p.7])
Implementation: To achieve synchronization at an agent A representing a node of a process
graph, n names are received as a precondition:

A
def= {ai}n

i=1.〈·〉.b .

The sequential ordering of the names ai representing preconditions causes no problems, since
the π-calculus semantics applied is synchronous. The patterns applies to a node N of a process
graph that has at least two incoming edges and at most one outgoing edge: pre(N) ≥ 2 and
post(N) ≤ 1. If post(N) = ∅, the name b is omitted from the pattern.

The parallel split and the synchronization patterns can be combined into one node of a pro-
cess graph. The pattern is then given accordingly:

A
def= {ai}n

i=1.〈·〉.(
m∏

i=1

bi.0) .

CHAPTER 5. PROCESSES 101

Pattern 31 (Exclusive Choice) Description: A point in the business process where, based on
a decision or data, one of several branches is chosen. (According to [7, p.8])
Implementation: An exclusive choice from an agent A representing a node of a process graph
is achieved by emitting one name bi out of a set with size n:

A
def= a.〈·〉.(

n∑

i=1

bi.0) .

The pattern given makes a non–deterministic choice. It applies to a node N of a process
graph that has at most one incoming edge and at least two outgoing edges: |pre(N)| ≤ 1
and |post(N)| ≥ 2. If pre(N) = ∅, the name a is omitted from the pattern. A data–based
choice according to pattern 27 (Data-based Routing) is represented by using either the match
operator of the π-calculus (for comparing π-calculus names) or higher level abstractions like
natural number comparators. Consider for instance,

A
def= a.〈·〉.if value < 100 then b1.0 else b2.0 ,

where the name value represents a natural number generated in 〈·〉.
Pattern 32 (Simple Merge) Description: A point in the business process where two or more
alternative branches come together without synchronization. It is an assumption of this pattern
that none of the alternative branches is ever executed in parallel. (According to [7, p.9])
Implementation: A simple merge at an agent A representing a node of a process graph is
achieved by receiving one name ai out of a set with size n:

A
def=

n∑

i=1

ai.〈·〉.b.0 .

The patterns applies to a node N of a process graph that has at least two incoming edges and
at most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is
omitted from the pattern. If more then one name should be used as a precondition, pattern 34
(Synchronizing Merge) applies.

Just as the parallel split and synchronization patterns can be combined into one node of a
process graph, the same holds for the exclusive choice and simple merge patterns. The corre-
sponding pattern is given by:

A
def=

n∑

i=1

ai.〈·〉.(
m∑

i=1

bi.0) .

Example 8 (Basic Control Flow Patters) We illustrate the application of the basic control
flow patterns by a process graph containing them all. Figure 5.5 depicts the process graph. We
already annotated the corresponding π-calculus agent identifiers inside the nodes as well as the
π-calculus names beside the edges. The types of the nodes are attached next to the nodes and
correspond directly to the patterns introduced so far. The nodes that are executed sequentially
are given by

N2 def= e1 .〈·〉.e3 .0,N3 def= e2 .〈·〉.e4 .0,N6 def= e6 .〈·〉.e8 .0, and N7 def= e7 .〈·〉.e9 .0 .

CHAPTER 5. PROCESSES 100

A
a b

(a) Sequence.

a

b
1

b
i

...

(b) Parall. Split.

a
1

a
i

b
...

(c) Synchroniz.

a

b
1

b
i

...

(d) Excl. Choice.

a
1

a
i

b
...

(e) Simple Merge.

Figure 5.4: Basic Control Flow Patterns.

This pattern applies to a node N of a process graph that has at most one incoming and at most
one outgoing edge: |pre(N)| ≤ 1 and |post(N)| ≤ 1. If pre(N) = ∅, the name a is omitted,
and if post(N) = ∅, the name b is omitted from the pattern.

Pattern 29 (Parallel Split) Description: A point in the business process where a single thread
of control splits into multiple threads of control which can be executed in parallel, thus allowing
activities to be executed simultaneously or in any order. (According to [7, p.7])
Implementation: To achieve a parallel split from an agent A representing a node of a process
graph, n names b are emitted as a postcondition:

A
def= a.〈·〉.(

n∏

i=1

bi.0) .

This pattern applies to a node N of a process graph that has at most one incoming edge and at
least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If pre(N) = ∅, the name a is
omitted from the pattern.

Pattern 30 (Synchronization) Description: A point in the business process where multiple
parallel (complex) activities converge into one single thread of control, thus synchronizing mul-
tiple threads. It is an assumption of this pattern that each incoming branch of a synchronizer is
executed once. (According to [7, p.7])
Implementation: To achieve synchronization at an agent A representing a node of a process
graph, n names are received as a precondition:

A
def= {ai}n

i=1.〈·〉.b .

The sequential ordering of the names ai representing preconditions causes no problems, since
the π-calculus semantics applied is synchronous. The patterns applies to a node N of a process
graph that has at least two incoming edges and at most one outgoing edge: pre(N) ≥ 2 and
post(N) ≤ 1. If post(N) = ∅, the name b is omitted from the pattern.

The parallel split and the synchronization patterns can be combined into one node of a pro-
cess graph. The pattern is then given accordingly:

A
def= {ai}n

i=1.〈·〉.(
m∏

i=1

bi.0) .

CHAPTER 5. PROCESSES 100

A
a b

(a) Sequence.

a

b
1

b
i

...

(b) Parall. Split.

a
1

a
i

b
...

(c) Synchroniz.

a

b
1

b
i

...

(d) Excl. Choice.

a
1

a
i

b
...

(e) Simple Merge.

Figure 5.4: Basic Control Flow Patterns.

This pattern applies to a node N of a process graph that has at most one incoming and at most
one outgoing edge: |pre(N)| ≤ 1 and |post(N)| ≤ 1. If pre(N) = ∅, the name a is omitted,
and if post(N) = ∅, the name b is omitted from the pattern.

Pattern 29 (Parallel Split) Description: A point in the business process where a single thread
of control splits into multiple threads of control which can be executed in parallel, thus allowing
activities to be executed simultaneously or in any order. (According to [7, p.7])
Implementation: To achieve a parallel split from an agent A representing a node of a process
graph, n names b are emitted as a postcondition:

A
def= a.〈·〉.(

n∏

i=1

bi.0) .

This pattern applies to a node N of a process graph that has at most one incoming edge and at
least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If pre(N) = ∅, the name a is
omitted from the pattern.

Pattern 30 (Synchronization) Description: A point in the business process where multiple
parallel (complex) activities converge into one single thread of control, thus synchronizing mul-
tiple threads. It is an assumption of this pattern that each incoming branch of a synchronizer is
executed once. (According to [7, p.7])
Implementation: To achieve synchronization at an agent A representing a node of a process
graph, n names are received as a precondition:

A
def= {ai}n

i=1.〈·〉.b.0 .

The sequential ordering of the names ai representing preconditions causes no problems, since
the π-calculus semantics applied is synchronous. The patterns applies to a node N of a process
graph that has at least two incoming edges and at most one outgoing edge: pre(N) ≥ 2 and
post(N) ≤ 1. If post(N) = ∅, the name b is omitted from the pattern.

The parallel split and the synchronization patterns can be combined into one node of a pro-
cess graph. The pattern is then given accordingly:

A
def= {ai}n

i=1.〈·〉.(
m∏

i=1

bi.0) .

Advanced Control Flow
Patterns (subset)CHAPTER 5. PROCESSES 103

a

b
1

b
i

...

(a) Mult. Choice.

a
1

a
i

b
...

(b) Synch. Merge.

a
1

a
i

b
...

(c) Multi. Merge.

a
1

a
i

b
... 1

(d) Discriminator.

a
1

a
i

b
... n

(e) N-out-of-M.

Figure 5.6: Advanced Control Flow Patterns.

where the name b1 and b2 are sent based on the evaluation of native π-calculus names. Care has
to be taken that SC-MAT can be applied at least once.

Pattern 34 (Synchronizing Merge) Description: A point in the business process where
multiple paths converge into one single thread. If more than one path is taken, synchronization
of the active threads needs to take place. If only one path is taken, the alternative branches
should reconverge without synchronization. It is an assumption of this pattern that a branch that
has already been activated, cannot be activated again while the merge is still waiting for other
branches to complete. (According to [7, p.11])
Implementation: A synchronizing merge at an agent A representing a node of a process graph
is achieved by receiving a number of names out of a set with size n:

A
def= νc νw νd (

n∏

i=1

(

accept︷ ︸︸ ︷
ai.(d.0︸︷︷︸

final

+w.c.0︸ ︷︷ ︸
more

) +
cancel︷︸︸︷
c.0) | d.{c}n−1

i=1 .〈·〉.b.0 | {w}n−1
i=1 .0)

The pattern implementation makes a non–deterministic choice between executing the functional
abstraction 〈·〉 or waiting for further names. The three restricted names c, w, and d represent
either cancel, wait, or done triggers. After an name has been received via ai, the component can
decide between waiting for further names if this is possible (i.e. an interaction via w can occur)
or signaling d, which leads to the cancellation of all remaining parallel components via c. Only
after all components waiting for further names are canceled, the functional part is executed. The
patterns applies to a node N of a process graph that has at least two incoming edges and at most
one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is omitted from
the pattern.

Pattern 35 (Multiple Merge) Description: A point in a business process where two or more
branches reconverge without synchronization. If more than one branch gets activated, possibly
concurrently, the activity following the merge is started for every activation of every incoming
branch. (According to [7, p.13])
Implementation: A multiple merge at an agent A representing a node of a process graph is
achieved by receiving arbitrary names out of a set with size n:

A
def=

n∑

i=1

ai.(〈·〉.b.0 | A) .

The patterns applies to a node N of a process graph that has at least two incoming edges and
at most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is

CHAPTER 5. PROCESSES 102

e1

e2

e3

e4

e5

e6

e7

e8

e9

N1

N2

N3

N4 N5

N6

N7

N8
Parallel
Split

Sync.

Sequence Sequence

SequenceSequence

Excl.
Choice

Simple
Merge

Figure 5.5: Basic control flow pattern example.

The parallel split and synchronization patterns are implemented as

N1 def= 〈·〉.(e1 .0 | e2 .0) and N4 def= e3 .e4 .〈·〉.e5 .0 .

Finally, the exclusive choice and simple merge patterns are implemented by

N5 def= e5 .〈·〉.(e6 .0 + e7 .0) and N8 def= e8 .〈·〉.0 + e9 .〈·〉.0 .

We did not use recursion inside the agent definitions, since the process graph is acyclic. The
global agent representing the complete process graph is given by:

N
def= νe1 · · · e9 (

8∏

i=1

Ni) .

5.2.2 Advanced Branching and Synchronization Patterns

The advanced branching and synchronization patterns cover more elaborate control flow splits
and merges. A graphical representation of these patterns is given in figure 5.6.

Pattern 33 (Multiple Choice) Description: A point in the workflow process where, based on
a decision or data, a number of branches are chosen. (According to [7, p.9])
Implementation: A multiple choice from an agent A representing a node of a process graph is
achieved by emitting a number of names bi out of a set with size n:

A
def= νc a.〈·〉.(

n∏

i=1

(

enable︷︸︸︷
bi.0 +

cancel︷︸︸︷
c.0) | {c}n−1

i=1 .0) .

The pattern given makes a non–deterministic choice where at least one name out of bi is emitted.
The last constraint is achieved by the right hand component of A, that only emits n − 1 restricted
names c. It applies to a node N of a process graph that has at most one incoming edge and at
least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If pre(N) = ∅, the name a is
omitted from the pattern. A data–based choice according to pattern 27 (Data-based Routing)
is represented by using either the match operator of the π-calculus (for comparing π-calculus
names) or higher level abstractions like natural number comparators. Consider for instance,

A
def= a.〈·〉.([x = y]b1.0 | [x = z]b2.0) ,

CHAPTER 5. PROCESSES 103

a

b
1

b
i

...

(a) Mult. Choice.

a
1

a
i

b
...

(b) Synch. Merge.

a
1

a
i

b
...

(c) Multi. Merge.

a
1

a
i

b
... 1

(d) Discriminator.

a
1

a
i

b
... n

(e) N-out-of-M.

Figure 5.6: Advanced Control Flow Patterns.

where the name b1 and b2 are sent based on the evaluation of native π-calculus names. Care has
to be taken that SC-MAT can be applied at least once.

Pattern 34 (Synchronizing Merge) Description: A point in the business process where
multiple paths converge into one single thread. If more than one path is taken, synchronization
of the active threads needs to take place. If only one path is taken, the alternative branches
should reconverge without synchronization. It is an assumption of this pattern that a branch that
has already been activated, cannot be activated again while the merge is still waiting for other
branches to complete. (According to [7, p.11])
Implementation: A synchronizing merge at an agent A representing a node of a process graph
is achieved by receiving a number of names out of a set with size n:

A
def= νc νw νd (

n∏

i=1

(

accept︷ ︸︸ ︷
ai.(d.0︸︷︷︸

final

+w.c.0︸ ︷︷ ︸
more

) +
cancel︷︸︸︷
c.0) | d.{c}n−1

i=1 .〈·〉.b.0 | {w}n−1
i=1 .0) .

The pattern implementation makes a non–deterministic choice between executing the functional
abstraction 〈·〉 or waiting for further names. The three restricted names c, w, and d represent
either cancel, wait, or done triggers. After an name has been received via ai, the component can
decide between waiting for further names if this is possible (i.e. an interaction via w can occur)
or signaling d, which leads to the cancellation of all remaining parallel components via c. Only
after all components waiting for further names are canceled, the functional part is executed. The
patterns applies to a node N of a process graph that has at least two incoming edges and at most
one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is omitted from
the pattern.

Pattern 35 (Multiple Merge) Description: A point in a business process where two or more
branches reconverge without synchronization. If more than one branch gets activated, possibly
concurrently, the activity following the merge is started for every activation of every incoming
branch. (According to [7, p.13])
Implementation: A multiple merge at an agent A representing a node of a process graph is
achieved by receiving arbitrary names out of a set with size n:

A
def=

n∑

i=1

ai.(〈·〉.b.0 | A) .

The patterns applies to a node N of a process graph that has at least two incoming edges and
at most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is

CHAPTER 5. PROCESSES 104

B

A

C

D

d1

d2

d3
Discriminator

Sequence

Sequence

Sequence

Figure 5.7: Discriminator example.

omitted from the pattern. Note that subsequent nodes of the process graph must support pattern
38 (Arbitrary Cycles).

Pattern 36 (Discriminator) Description: The discriminator is a point in a business process
that waits for one of the incoming branches to complete before activating the subsequent activity.
From that moment on it waits for all remaining branches to complete and ”ignores” them. Once
all incoming branches have been triggered, it resets itself so that it can be triggered again.
(According to [7, p.14])
Implementation: A discriminator at an agent A representing a node of a process graph is
achieved by receiving a name out of a set with size m and thereafter executing the functional
abstraction 〈·〉 while waiting for the remaining names of the set:

A
def= νh νe (A1 | A2), A1

def=
m∏

i=1

ai.h.0, and A2
def= h.e.{h}m−1

1 .A | e.〈·〉.b.0 .

The patterns applies to a node N of a process graph that has at least two incoming edges and
at most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is
omitted from the pattern. Note that subsequent nodes of the process graph must support pattern
38 (Arbitrary Cycles).

Example 9 (Discriminator) We illustrate a possible evolution of the discriminator by an
example consisting of four agents A, B, C, and D. The first three agents represent nodes of a
process graph prior to the discriminator that is represented as D:

DISC def= νd1 νd2 νd3 (A | B | C | νh νe (D1 | D2)) .

The agents A, B, and C are defined according to pattern 28 (Sequence), whereas D is given by
pattern 36 (Discriminator). The names used as pre- and postconditions between the agents can
be found in figure 5.7. The sequential nodes are given by:

A
def= τ.d1 .0, B

def= τ.d2 .0, and C
def= τ.d3 .0 .

Since we would like to evolve through the system, we replaced 〈·〉 of the pattern definitions by
τ . The agent representing a discriminator with the matching names is given by:

D
def= νh νe (D1 | D2), D1

def=
3∏

i=1

di .h.0, and A2
def= h.e.h.h.A | e.τ.0 .

CHAPTER 5. PROCESSES 104

B

A

C

D

d1

d2

d3
Discriminator

Sequence

Sequence

Sequence

Figure 5.7: Discriminator example.

omitted from the pattern. Note that subsequent nodes of the process graph must support pattern
38 (Arbitrary Cycles).

Pattern 36 (Discriminator) Description: The discriminator is a point in a business process
that waits for one of the incoming branches to complete before activating the subsequent activity.
From that moment on it waits for all remaining branches to complete and ”ignores” them. Once
all incoming branches have been triggered, it resets itself so that it can be triggered again.
(According to [7, p.14])
Implementation: A discriminator at an agent A representing a node of a process graph is
achieved by receiving a name out of a set with size m and thereafter executing the functional
abstraction 〈·〉 while waiting for the remaining names of the set:

A
def= νh νe (A1 | A2), A1

def=
m∏

i=1

ai.h.0, and A2
def= h.e.{h}m−1

1 .A | e.〈·〉.b.0 .

The patterns applies to a node N of a process graph that has at least two incoming edges and
at most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is
omitted from the pattern. Note that subsequent nodes of the process graph must support pattern
38 (Arbitrary Cycles).

Example 9 (Discriminator) We illustrate a possible evolution of the discriminator by an
example consisting of four agents A, B, C, and D. The first three agents represent nodes of a
process graph prior to the discriminator that is represented as D:

DISC def= νd1 νd2 νd3 (A | B | C | νh νe (D1 | D2)) .

The agents A, B, and C are defined according to pattern 28 (Sequence), whereas D is given by
pattern 36 (Discriminator). The names used as pre- and postconditions between the agents can
be found in figure 5.7. The sequential nodes are given by:

A
def= τ.d1 .0, B

def= τ.d2 .0, and C
def= τ.d3 .0 .

Since we would like to evolve through the system, we replaced 〈·〉 of the pattern definitions by
τ . The agent representing a discriminator with the matching names is given by:

D
def= νh νe (D1 | D2), D1

def=
3∏

i=1

di .h.0, and A2
def= h.e.h.h.A | e.τ.0 .

CHAPTER 5. PROCESSES 104

B

A

C

D

d1

d2

d3
Discriminator

Sequence

Sequence

Sequence

Figure 5.7: Discriminator example.

omitted from the pattern. Note that subsequent nodes of the process graph must support pattern
38 (Arbitrary Cycles).

Pattern 36 (Discriminator) Description: The discriminator is a point in a business process
that waits for one of the incoming branches to complete before activating the subsequent activity.
From that moment on it waits for all remaining branches to complete and ”ignores” them. Once
all incoming branches have been triggered, it resets itself so that it can be triggered again.
(According to [7, p.14])
Implementation: A discriminator at an agent A representing a node of a process graph is
achieved by receiving a name out of a set with size m and thereafter executing the functional
abstraction 〈·〉 while waiting for the remaining names of the set:

A
def= νh νe (A1 | A2), A1

def=
m∏

i=1

ai.h.0, and A2
def= h.e.{h}m−1

1 .A | e.〈·〉.b.0 .

The patterns applies to a node N of a process graph that has at least two incoming edges and
at most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is
omitted from the pattern. Note that subsequent nodes of the process graph must support pattern
38 (Arbitrary Cycles).

Example 9 (Discriminator) We illustrate a possible evolution of the discriminator by an
example consisting of four agents A, B, C, and D. The first three agents represent nodes of a
process graph prior to the discriminator that is represented as D:

DISC def= νd1 νd2 νd3 (A | B | C | νh νe (D1 | D2)) .

The agents A, B, and C are defined according to pattern 28 (Sequence), whereas D is given by
pattern 36 (Discriminator). The names used as pre- and postconditions between the agents can
be found in figure 5.7. The sequential nodes are given by:

A
def= τ.d1 .0, B

def= τ.d2 .0, and C
def= τ.d3 .0 .

Since we would like to evolve through the system, we replaced 〈·〉 of the pattern definitions by
τ . The agent representing a discriminator with the matching names is given by:

D
def= νh νe (D1 | D2), D1

def=
3∏

i=1

di .h.0, and A2
def= h.e.h.h.A | e.τ.0 .

More Patterns

• Arbitrary Cycles

• Deferred Choice

• Milestone

• ...

CHAPTER 5. PROCESSES 106

a b
A

n

(a) Without Sync.

a b
A

n

(b) Design Knowl.

a b
A

D

(c) Runtime K.

a b
A

min,max, t

(d) No priori K.

Figure 5.8: Multiple Instance Patterns.

5.2.3 Structural Patterns

Structural patterns describe routing situations regarding the structure of a process. These patterns
do not have an explicit graphical representation.

Pattern 38 (Arbitrary Cycles) Description: A point in a business process where one or more
activities can be done repeatedly. (According to [7, p.17])
Implementation: Arbitrary cycles are inherently given by the pre- and postcondition based ap-
proach. A postcondition, i.e. the name generated by an agent representing a node, can fulfill
the precondition of and trigger an arbitrary other agent. However, agents that represent nodes
contained inside a cycle must support multiple executions by recursion. This is achieved by in-
troducing a recursion in parallel to the functional part represented by 〈·〉. We show the principle
for agents representing a node of a process graph matching pattern 28 (Sequence):

A
def= a.〈·〉.b.0 becomes A

def= a.(〈·〉.b.0 | A) .

This pattern applies to all nodes of a process graph P that are contained inside a cycle of P .

Pattern 39 (Implicit Termination) Description: A given complex activity should be termi-
nated when there is nothing else to be done. In other words, there are no active activities in the
business process and no other activity can be made active (and at the same time the business
process is not in deadlock). (According to [7, p.19])
Implementation: The implicit termination pattern terminates a complex activity if no other ac-
tivities can be made active. The π-calculus contains the special symbol 0 for this purpose. This
pattern applies to all nodes N of a process graph that have zero outgoing edges: post(N) = 0.

5.2.4 Multiple Instance Patterns

Multiple instance patterns create multiple activity instances. A graphical representation of these
patterns is given in figure 5.8.

Pattern 40 (Multiple Instances without Synchronization) Description: Within the context
of a single process instance multiple instances of an activity are created, i.e., there is a facility
to spawn off new threads of control. Each of these threads is independent of other threads.
Moreover, there is no need to synchronize these threads. (According to [7, p.20])
Implementation: An agent representing a node of a process graph that can spawn of n static

Algorithm

• Mapping BPDs to Pi-Calculus (sketch):

• Each flow object is represented by an agent
identifier according to the semantics of the pattern
it represents

• Each sequence flow is represented by a restricted
name used as pre- and postcondition for the flow
objects

• A global agent for the whole system is defined

Ex
am

pl
e

Order

Receive

Invoice

Receive

Product

C
U

S
T

O
M

E
R

C1 C2 C3

C4

C5

C6
C7

c1 c2

c3

c4

c5

c6

c7

C7
def
= c7 .〈·〉.0

C6
def
= c5 .c6 .〈·〉.c7 .0

C5
def
= c4 .〈·〉.c6 .0

C4
def
= c3 .〈·〉.c5 .0

C3
def
= c2 .〈·〉.(c3 .0 | c4 .0)

C2
def
= c1 .〈·〉.c2 .0

C1
def
= 〈·〉.c1 .0

N
def
= (νc1 , . . . , c7)

7∏

i=1

Ci

Interactions

Interactions

• Formalized business processes can be
enhanced for interactions

• Questions:

• How to represent message flows?

• How to represent dynamic binding?

• How to represent correlations?

19

Ex
am

pl
e

Order

Receive
Invoice

Receive
Product

Place
Invoice

Request

Place
Product
Request

Send
Invoice

Send
Product

C
U

S
T

O
M

E
R

R
E

S
E

L
L

E
R

P
A

Y
M

E
N

T
 O

R
G

.
M

A
N

U
F

A
C

T
U

R
E

R

r(order,ch1,ch2)

m(order,ch1)

ch1(product) ch2(invoice)

p(order,ch2)

Dynamic Binding and
Correlations

• Idea:

• Pi-Calculus names are used to represent
message flows between a number of
processes

• A combination of link passing mobility and
scope extrusions realizes dynamic binding
directly

Correlations

• A can invoke B several times

• Correlations managed by the restricted
name ch:

Chapter 6

Interactions

In this chapter we discuss how a set of distributed business processes can synchronize and com-
municate based on interaction flows. Therefore all participating process graphs are placed inside
an interaction graph that is complemented with interaction flow. Due to link passing mobility
of the π-calculus not all interaction flows have to be statically pre-defined, but furthermore can
be created dynamically. Possible patterns given by the service interaction patterns for realizing
interactions between process graphs are discussed. Finally, we introduce reasoning on interac-
tion soundness for a given process graph and a set of services, as well as interaction equivalence
between services.

6.1 Representation

This section describes how distributed, interacting business processes are formally represented
in the π-calculus.

6.1.1 Correlations and Dynamic Binding

A common task between processes invoking other processes is matching the response. This
matchmaking is done using correlations that relate a response with a request. Usually, some
kind of correlation identifier is placed inside each request and response. The invoking as well as
the responding process have to take care of correlating the requests based on the identifiers. In
the π-calculus, the unique identifier of a request is represented by a restricted name. Since names
are unique and can be used as interaction channels, a clear representation of the correlations is
straightforward. Consider for instance the interacting business processes represented by the
agents A and B:

A
def= νch b〈ch〉.(ch(r).A′ | A) and B

def= νr b(ch).(τ.ch〈r〉.0 | B) .

Agent A is able to invoke B several times via b, even before a first response is received. B in
turn is able to process multiple request initiated via b at the same time. Hence, matching requests
and responses have to be correlated. This is done by utilizing ch in A as a correlation identifier.
Since ch is unique for each recursive execution of A, the matchmaking is done implicitly via ch .

126

Chapter 6

Interactions

In this chapter we discuss how a set of distributed business processes can synchronize and com-
municate based on interaction flows. Therefore all participating process graphs are placed inside
an interaction graph that is complemented with interaction flow. Due to link passing mobility
of the π-calculus not all interaction flows have to be statically pre-defined, but furthermore can
be created dynamically. Possible patterns given by the service interaction patterns for realizing
interactions between process graphs are discussed. Finally, we introduce reasoning on interac-
tion soundness for a given process graph and a set of services, as well as interaction equivalence
between services.

6.1 Representation

This section describes how distributed, interacting business processes are formally represented
in the π-calculus.

6.1.1 Correlations and Dynamic Binding

A common task between processes invoking other processes is matching the response. This
matchmaking is done using correlations that relate a response with a request. Usually, some
kind of correlation identifier is placed inside each request and response. The invoking as well as
the responding process have to take care of correlating the requests based on the identifiers. In
the π-calculus, the unique identifier of a request is represented by a restricted name. Since names
are unique and can be used as interaction channels, a clear representation of the correlations is
straightforward. Consider for instance the interacting business processes represented by the
agents A and B:

A
def= νch b〈ch〉.(ch(r).A′ | A) and B

def= νr b(ch).(τ.ch〈r〉.0 | B) .

Agent A is able to invoke B several times via b, even before a first response is received. B in
turn is able to process multiple request initiated via b at the same time. Hence, matching requests
and responses have to be correlated. This is done by utilizing ch in A as a correlation identifier.
Since ch is unique for each recursive execution of A, the matchmaking is done implicitly via ch .

126

Send Interaction
Pattern

• Send:

• Static binding:

• Dynamic binding:

CHAPTER 6. INTERACTIONS 135

AX

ch(msg)

(a) Send.

AX

ch(msg)

(b) Receive.

AX

ch1(ch2,msg)

B

ch2(resp)

QY R

(c) Send/Receive.

Figure 6.3: Single transmission bilateral interaction patterns.

The definition of an environment agent E for a certain agent S representing a service graph
states that S might have the possibility to interact with E. According to definition 103 (Envi-
ronment), this means that at least one interaction edge of S represented by the set of free names
of S is utilized. We can now state how S is formally unified with E, i.e. S ! E:

SYS def= ν(fn(S) ∪ fn(E)) (S | E) . (6.1)

The unification of a agent S representing a service graph and an environment agent E is given
by the parallel composition of S and E as well as restricting the free names of S and E.

6.2 Interaction Patterns

After having introduced the principles of interactions in the π-calculus, we investigate how
common patterns of interaction can be represented in different process, interaction, or service
graph structures. In particular, we investigate the service interaction patterns as described in
[24]. To give a more elaborate presentation of the patterns, we utilize the BPMN notation as
introduced in chapter 3.3.1. Example 5 (Partly Mapping of a BPD to a Process Graph) shows
how this notation can be mapped to process graphs. The description of the service interaction
patterns has been adapted to match the terminology used throughout this thesis.

6.2.1 Single Transmission Bilateral Interaction Patterns

The single transmission bilateral interaction patterns represent basic interaction behavior. Graph-
ical representations are shown in figure 6.3.

Pattern 50 (Send) Description: A process sends a message to another process. (According
to [24, p.4])
Implementation: A graphical representation of this pattern is shown in figure 6.3(a). The π-
calculus mapping implements a reliable delivery with a blocking semantics as follows:

A
def= 〈·〉.ch〈msg〉.0 .

CHAPTER 6. INTERACTIONS 136

The implementation of pattern 50 (Send) does not show how A actually acquires the name
ch . If an interaction between A and a composition of other agents E is defined as

I
def= νch (A | E) ,

a static binding is described. If it is defined as

I
def= νlookup (lookup(ch).A | E) ,

with E being able to communicate a name used for interaction with a certain component of
itself via lookup, a dynamic binding is described. If an unreliable message transmission should
be modeled, an agent acting as a proxy between A and the environment has to be added (here
with static binding):

I
def= νch (A | B | E) ,

with B given by B
def= ch(x).B. Due to the non-determinisms contained in I , interactions

via ch can now be captured by B, thus providing an unreliable delivery. These considerations
on static vs. dynamic and reliable vs. unreliable message transmission hold for the remaining
interaction patterns as well.

Pattern 51 (Receive) Description: A process receives a message from another process.
(According to [24, p.5])
Implementation: A graphical representation of this pattern is shown in figure 6.3(b). The π-
calculus mapping implements a reliable reception with a blocking semantics as follows:

A
def= ch(msg).〈·〉.0 .

Pattern 52 (Send/Receive) Description: A process X engages in two causally related inter-
actions. In the first interaction X sends a message to another process Y (the request), while in
the second one X receives a message from Y (the response). (According to [24, p.7])
Implementation: A graphical representation of this pattern is shown in figure 6.3(c). The π-
calculus mapping implements a reliable interaction with a blocking semantics as follows:

I
def= νch1 (X | Y) with X

def= νx1 (A | B), and Y
def= νy1 (Q | R) .

The components of X are given by:

A
def= νch2 νmsg 〈·〉.ch1 〈ch2 ,msg〉.x1 〈ch2 ,msg〉.0

and
B

def= x1 (ch2 ,msg).ch2 (resp).〈·〉.0 .

The components of Y are given by:

Q
def= ch1 (ch2 ,msg).〈·〉.y1 〈ch2 ,msg〉

CHAPTER 6. INTERACTIONS 136

The implementation of pattern 50 (Send) does not show how A actually acquires the name
ch . If an interaction between A and a composition of other agents E is defined as

I
def= νch (A | E) ,

a static binding is described. If it is defined as

I
def= νlookup (lookup(ch).A | E) ,

with E being able to communicate a name used for interaction with a certain component of
itself via lookup, a dynamic binding is described. If an unreliable message transmission should
be modeled, an agent acting as a proxy between A and the environment has to be added (here
with static binding):

I
def= νch (A | B | E) ,

with B given by B
def= ch(x).B. Due to the non-determinisms contained in I , interactions

via ch can now be captured by B, thus providing an unreliable delivery. These considerations
on static vs. dynamic and reliable vs. unreliable message transmission hold for the remaining
interaction patterns as well.

Pattern 51 (Receive) Description: A process receives a message from another process.
(According to [24, p.5])
Implementation: A graphical representation of this pattern is shown in figure 6.3(b). The π-
calculus mapping implements a reliable reception with a blocking semantics as follows:

A
def= ch(msg).〈·〉.0 .

Pattern 52 (Send/Receive) Description: A process X engages in two causally related inter-
actions. In the first interaction X sends a message to another process Y (the request), while in
the second one X receives a message from Y (the response). (According to [24, p.7])
Implementation: A graphical representation of this pattern is shown in figure 6.3(c). The π-
calculus mapping implements a reliable interaction with a blocking semantics as follows:

I
def= νch1 (X | Y) with X

def= νx1 (A | B), and Y
def= νy1 (Q | R) .

The components of X are given by:

A
def= νch2 νmsg 〈·〉.ch1 〈ch2 ,msg〉.x1 〈ch2 ,msg〉.0

and
B

def= x1 (ch2 ,msg).ch2 (resp).〈·〉.0 .

The components of Y are given by:

Q
def= ch1 (ch2 ,msg).〈·〉.y1 〈ch2 ,msg〉

Tooling

Tool Chain

XML
Graphical

Editor
XML

Exporter

Struct. Sound.
Checker

Pi-Calculus
Converter

Pi

Advanced
Bisimulation

Checker

BPMN Stencils

Mobility
Workbench

PiVizTool

tool chain, further described in [13]. This tool chain exports business processes modeled

in BPMN[3] to an intermediate XML format, checks the business process diagram (BPD)

for structural soundness and converts the diagram to π-calculus agents. The algorithm
used for the conversion can be found in [15].

Solving the second problem of lacking tool support for π-calculus simulation is the aim
of the tool presented in this paper. To ease the modeling of π-systems for simulation as
input for this tool, the ASCII output produced by the converter tool mentioned above, can

be used.

3 π-Calculus Simulation

Besides the functionalities provided by the MWB and ABC tools, a functionality for ad-

vanced simulation of the evolution of π-calculus systems is desirable. Advanced simula-
tion in this context means to be presented with a visual representation of the π-calculus
system, being able to interactively select reductions of the monitored π-calculus system
to take place in the next step and being presented with an updated snapshot of the linking

structure of the system after each step with the possibility to select the next one. Such

simulation functionality is implemented by the PiVizTool. Its architecture is depicted as

a block diagram of the Fundamental Modeling Concepts (FMC)[7] notation in figure 2.

Rectangle shapes in this notation represent actors, being able to communicate with each

other and rounded shapes represent storages, that can be read or written to by actors.

!"#"$%&&'

()*+,-"&./(.0".*

!"1!2&+*33

45-5/6-2,+-,2*

!"1()*+,-&2

7"'*/683-*9

!"1!2&+*33/

4*:"."-"&.

7"'*

!"1!2&+*33/

4*:"."-"&.

7"'*

;25<="+5'/>3*2/?.-*2:5+*

@;>?A

B&.-2&''*2

!523*2

!"1#"3,5'"$*2

Figure 2: Architecture of the PiVizTool

PiVizTool
25

26

Ex
am

pl
e

Order

Receive
Invoice

Receive
Product

Place
Invoice

Request

Place
Product
Request

Send
Invoice

Send
Product

C
U

S
T

O
M

E
R

R
E

S
E

L
L

E
R

P
A

Y
M

E
N

T
 O

R
G

.
M

A
N

U
F

A
C

T
U

R
E

R

r(order,ch1,ch2)

m(order,ch1)

ch1(product) ch2(invoice)

p(order,ch2)

Conclusion

Summary

• We introduced how the pi-calculus can be
applied to BPM

• Processes based on formalized patterns

• Interaction among them, incl. dynamic
binding

• Tooling

Further Readings

Publications based on this Thesis

During the writing of this thesis, early ideas have been published and presented at national and
international conferences to provide a sound foundation for this work. A starting point was
a conference paper at the third conference on business process management (BPM) in Nancy
(France).1 It showed how the π-calculus can be utilized to represent the workflow patterns. In
this paper, a first draft of the pattern formalizations contained in chapter 5 (Processes) has been
brought to a larger audience. While the formalizations of the workflow patterns in most cases
did not require advanced features of the π-calculus, such as link passing mobility, a subsequent
paper revealed the strengths of the π-calculus for representing dynamic binding and correlation
handling in service oriented architectures.2 It laid the foundations for section 6.1.1 (Correla-
tions and Dynamic Binding). This paper has been presented at a workshop covering dynamic
web processes alongside the third international conference on service oriented computing (IC-
SOC) held in Amsterdam (The Netherlands). The investigation of the π-calculus continued with
a conference paper discussing shifting requirements for BPM.3 Beside the investigation of state-
of-the-art, new requirements regarding technical and theoretical foundation have been found.
Refined versions of these requirements are used to motivate the thesis in chapter 1 (The Shifting
Focus). The results have been presented at the ninth conference on business information systems
(BIS) in Klagenfurt (Austria). Thereafter the research focused on soundness properties of busi-
ness processes formalized in the π-calculus. In contrast to existing properties, the application of
bisimulation for reasoning on deadlock and livelock freedom has been investigated. Based on
an extensive study of the workflow pattern formalization, it turned out that several of them con-
stitute problems regarding soundness. The problems have been overcome by proposing a new
property based on bisimulation equivalence that was named lazy soundness. A refined version
is contained in section 5.3 (Properties) of chapter 5 (Processes). The new soundness property
has been presented to the scientific community at the fourth conference on business process
management (BPM) in Vienna (Austria), where it has been published as part of the conference

1Frank Puhlmann, Mathias Weske: Using the Pi-Calculus for Formalizing Workflow Patterns. In W.M.P. van der
Aalst, B. Benatallah, F. Casati, and F. Curbera (Eds.): Proceedings of the 3rd International Conference on Business
Process Management (BPM 2005), volume 3649 of LNCS, Nancy, France, Springer-Verlag (2005) 153-168

2Hagen Overdick, Frank Puhlmann, Mathias Weske: Towards a Formal Model for Agile Service Discovery and
Integration. In K. Verma, A. Sheth, M. Zaremba, and C. Bussler (Eds.): Proceedings of the International Workshop
in Dynamic Web Processes (DWP 2005), Amsterdam, The Netherlands, IBM technical report RC23822 (2005)

3Frank Puhlmann: Why do we actually need the Pi-Calculus for Business Process Management? In W.
Abramowicz and H. Mayr (Eds.): Proceedings of the 9th International Conference on Business Information Sys-
tems (BIS 2006), volume P-85 of LNI, Klagenfurt, Austria, Gesellschaft fuer Informatik (2006) 77-89

4

5

proceedings.4 In an additional presentation, the practical feasibility of lazy soundness has been
shown. A corresponding paper has been published as part of the demo session proceedings.5 At
the same conference, a short paper written together with a student of mine, Gero Decker, gave
an insight on how the service interaction patterns can be formalized in the π-calculus.6 While
chapter 6 (Interactions) contains a different approach for representing these patterns, the paper
nevertheless provided valuable ideas. The publication series continued with a paper presented
at a national conference on service oriented information systems (EMISA) that took place in
Hamburg (Germany).7 It covered the unification of data, processes, and interactions to pro-
vide a unified formal representation of service oriented architectures. The discussion has been
based on an example that can be found in an extended version in chapter 7 (Unification). In the
meantime, a book chapter on the suitability of the π-calculus for BPM has been published.8 It
basically contains an extended and updated version of the BIS paper published earlier. A recent
publication covers an extension of lazy soundness to prove compatibility in interactions.9 The
new compatibility property, denoted as interaction soundness, supports dynamic binding. To
the knowledge of the author, this was the first paper that introduced compatibility with dynamic
binding. The updated results can be found in section 6.3 (Interaction Soundness) of chapter 6
(Interactions). The paper has been presented at the fourth international conference on service
oriented computing (ICSOC) in Chicago (USA). Furthermore, during the writing of this thesis,
the author supervised a Master thesis that developed a graphical environment for the simulation
of business processes with dynamic binding based on the ideas found in the second and third part
of this work. The tool has been presented at the open.BPM workshop in Hamburg (Germany).10

4Frank Puhlmann, Mathias Weske: Investigations on Soundness Regarding Lazy Activities. In S. Dustdar, J.L.
Fiadeiro and A. Sheth (Eds.): Proceedings of the 4th International Conference on Business Process Management
(BPM 2006), volume 4102 of LNCS, Vienna, Austria, Springer-Verlag (2006) 145-160

5Frank Puhlmann: A Tool Chain for Lazy Soundness. Demo Session of the 4th International Conference on
Business Process Management, CEUR Workshop Proceedings Vol. 203, Vienna, Austria (2006) 9-16

6Gero Decker, Frank Puhlmann, Mathias Weske: Formalizing Service Interactions. In S. Dustdar, J.L. Fiadeiro
and A. Sheth (Eds.): Proceedings of the 4th International Conference on Business Process Management (BPM 2006),
volume 4102 of LNCS, Vienna, Austria, Springer-Verlag (2006) 414-419

7Frank Puhlmann: A Unified Formal Foundation for Service Oriented Architectures. In M. Weske and M.
Nuettgens (Eds.): EMISA 2006, volume P-95 of LNI, Hamburg, Germany (2006) 7-19

8Frank Puhlmann: On the Suitability of the Pi-Calculus for Business Process Management. In Technologies for
Business Information Systems. Springer-Verlag (2007) 51-62

9Frank Puhlmann, Mathias Weske: Interaction Soundness for Service Orchestrations. In A. Dan and W. Lamers-
dorf (Eds.): Proceedings of the 4th International Conference on Service Oriented Computing (ICSOC 2006), volume
4294 of LNCS, Chicago, USA, Springer-Verlag (2006) 302-313

10Anja Bog, Frank Puhlmann: A Tool for the Simulation of Pi-Calculus Systems. Available at Online.

Thank You!

