Using the Pi-Calculus for Formalizing Workflow Patterns

Frank Puhlmann
Hasso-Plattner-Institute at the University of Potsdam http://bpt.hpi.uni-potsdam.de
(Joint work with Mathias Weske)

Outline

- Motivation
- The Pi-Calculus
- Pattern Representation
- ECA Mapping
- Basic Control Flow Patterns
- Advanced Workflow Pattern:
- Discriminator
- Conclusion
- The pi-calculus, a process algebra, has been discussed as the formal foundation for workflow (The Third Wave, PiHype)
- However, no formal investigations on the capabilities of the pi-calculus regarding the workflow domain have been made so far
- Task: Show the capabilities of the pi-calculus to describe the behavioral perspective of workflow
- Solution: Investigate the representation of Workflow Patterns in the pi-calculus

The Pi-Calculus

- The pi-calculus consists of names and processes:
- Names represent existing concepts like links, pointers, references, identifiers, etc.
- Each name has a scope
- Processes are defined as:

$$
P::=M|P| P^{\prime}|\mathbf{v} z P|!P
$$

- The summations:

$$
M::=\mathbf{0}|\pi . P| M+M^{\prime}
$$

- And the prefixes:

$$
\pi::=\bar{x}\langle y\rangle|x(z)| \tau \mid[x=y] \pi
$$

(A) B $A=\bar{b}\langle x\rangle .0 \quad B=b(x) . \tau_{B} .0 \quad P=A \mid B$

ECA Mapping

- Each workflow activity is mapped to a picalculus process with pre- and postconditions
- Based on the ECA approach:

EA-rule

Sequence

Precondition

$$
=\quad x .[a=b] \tau . \bar{y} .0
$$

Event and Condition

Parallel

Action

Basic Control Flow Patterns

Sequence

Parallel Split

Synchronization

$$
\begin{aligned}
& B=\tau_{B} \cdot \overline{d_{1}} \cdot \mathbf{0} \\
& C=\tau_{C} \cdot \overline{d_{2}} \cdot \mathbf{0} \\
& D=d_{1} \cdot d_{2} \cdot \tau_{D} \cdot D^{\prime}
\end{aligned}
$$

Basic Control Flow Patterns 2

Exclusive Choice

Simple Merge

Discriminator

$$
\text { (A) } \begin{aligned}
A & =\tau_{A} \cdot \overline{d 1} . \mathbf{0} \quad B=\tau_{B} \cdot \overline{d 2} \cdot \mathbf{0} \quad C=\tau_{C} \cdot \overline{d 3} \cdot \mathbf{0} \\
D & =(\mathbf{v} h, \text { exec })\left(D_{1} \mid D_{2}\right) \\
D_{1} & =d_{1} \cdot \bar{h} \cdot \mathbf{0}\left|d_{2} \cdot \bar{h} \cdot \mathbf{0}\right| d_{3} \cdot \bar{h} \cdot \mathbf{0} \\
D_{2} & =h \cdot \overline{e x e c} \cdot h \cdot h \cdot D \mid \text { exec. } \tau_{D} \cdot D^{\prime}
\end{aligned}
$$

Generic Discriminator (I-out-of-M-join):

$$
D=(\mathbf{v} h, \text { exec })\left(\left(\prod_{i=1}^{m} d_{i} \cdot \bar{h} \cdot \mathbf{0}\right)\left|h \cdot \overline{e x e c} \cdot\{h\}_{1}^{m-1} \cdot D\right| \text { exec. } \tau_{D} \cdot D^{\prime}\right)
$$

N-out-of-M-join:

$$
D=(\mathbf{v} h, e x e c)\left(\left(\prod_{i=1}^{m} d_{i} \cdot \bar{h} \cdot \mathbf{0}\right)\left|\{h\}_{1}^{n} \cdot \overline{e x e c} \cdot\{h\}_{n+1}^{m} \cdot D\right| \text { exec. } \tau_{D} \cdot D^{\prime}\right)
$$

Conclusion

- Our work shows that all Workflow Patterns are directly representable in the pi-calculus
- Advanced features of the pi-calculus are required for the more complex patterns
- However, no new patterns have been found this time
- The results additionally provide a formal semantics for the Workflow Patterns, making them concise and unambiguous
- Future research can be based upon these results, e.g.
- Formal foundation for (graphical) workflow notations
- Tools for executing pi-calculus workflows

Further Information

- The interactive Pi-Workflow Website at:
http://pi-workflow.org
- Based on SnipSnap, a Wiki and Weblog software
- Everyone is invited to register and comment the content of the site
- The weblog will contain news about the research progress

Thank you!

Questions?

Multiple Choice

- How does the Multi-Choice Pattern work?

$$
\begin{aligned}
A & =(\mathbf{v e x e c}) \tau_{A} \cdot\left(A_{1} \mid A_{2}\right) \\
A_{1}= & \overline{e x e c}\langle b\rangle \cdot \mathbf{0 +} \\
& \overline{e x e c}\langle c\rangle \cdot \mathbf{0 +} \\
& \overline{e x e c}\langle b\rangle \cdot \overline{e x e c}\langle c\rangle \cdot \mathbf{0} \\
A_{2}= & !e x e c(x) \cdot \bar{x} \cdot \mathbf{0} \\
B & =b \cdot \tau_{B} \cdot B^{\prime} \\
C= & =c \cdot \tau_{C} \cdot C^{\prime}
\end{aligned}
$$

OR-Joins

- How is the synchronizing merge handled?
- Pattern representation:

$$
\begin{aligned}
& B=\tau_{B} \cdot \overline{d_{1}} \cdot \mathbf{0} \\
& C=\tau_{C} \cdot \overline{d_{2}} \cdot \mathbf{0}
\end{aligned}
$$

$D=d_{1} \cdot \tau_{D} \cdot D^{\prime}+d_{2} \cdot \tau_{D} \cdot D^{\prime}+d_{1} \cdot d_{2} \cdot \tau_{D} \cdot D^{\prime}$

- This pattern does not define how a runtime actually selects a summation; it just denotes all possibilities!
- A runtime could use different strategies, e.g.:
- True/False token passing
- Postphoned OR-join (YAWL like)

Multiple Merge

- How does the Multiple Merge Pattern work?

$$
\begin{aligned}
& B=\tau_{B} \cdot \bar{d} \cdot \mathbf{0} \\
& C=\tau_{C} \cdot \bar{d} \cdot \mathbf{0} \\
& D=!d \cdot \tau_{D} \cdot D^{\prime}
\end{aligned}
$$

Arbitrary Cycles

- How do arbitrary cycles work?

$$
\begin{aligned}
& A=!a \cdot \tau_{A} \cdot \bar{b} \cdot \mathbf{0} \\
& B=!b \cdot \tau_{B} \cdot \bar{c} \cdot \mathbf{0} \\
& C=!c \cdot \tau_{C} \cdot(\bar{a} \cdot \mathbf{0}+\bar{d} \cdot \mathbf{0}) \\
& D=d \cdot \tau_{D} \cdot D^{\prime}
\end{aligned}
$$

MI without Synchronization

- Process A can spawn of any amount of multiple instances of a process B. No synchronization is required:

MI with a priori Design Time Knowledge

- Process A spawns of a design time known number of instances of B that have to be synchronized afterwards:

- For n design time copies the pattern is:

$$
A|B| C \equiv \tau_{A} \cdot\{\bar{b}\}_{1}^{n} \cdot \mathbf{0}\left|!b \cdot \tau_{B} \cdot \bar{c} \cdot \mathbf{0}\right|\{c\}_{1}^{n} \cdot \tau_{C} \cdot C^{\prime}
$$

MI with a priori Runtime Knowledge

- A process A can spawn of a runtime known number of instances of B that are started after all copies have been created. The copies of B have to be synchronized before another process C is activated:

$$
\begin{aligned}
A & =(\mathbf{v} r u n) \tau_{A} \cdot A_{1}(c) \mid \text { run }!\overline{\text { start }} \mathbf{0} \\
A_{1}(x) & =(\mathbf{v} y) \bar{b}\langle y\rangle \cdot y\langle x\rangle \cdot A_{1}(y)+\overline{\text { run }} \cdot \bar{x} \cdot \mathbf{0} \\
B & =!b(y) \cdot y(x) \cdot \text { start. } \tau_{B} \cdot y \cdot \bar{x} \cdot \mathbf{0} \\
C & =\text { c. } \tau_{C} \cdot C^{\prime}
\end{aligned}
$$

MI with no priori knowledge

- Process A spawns multiple instances of another process B that have to be synchronized before the execution of C :

$$
\begin{aligned}
& \\
A & =\tau_{A} \cdot A_{1}(c) \\
A_{1}(x) & =(\mathbf{v} y) \bar{b}\langle y\rangle \cdot y\langle x\rangle \cdot A_{1}(y)+\bar{x} \cdot \mathbf{0} \\
B & =!b(y) \cdot y(x) \cdot \tau_{B} \cdot y \cdot \bar{x} \cdot \mathbf{0} \\
C & =c \cdot \tau_{C} \cdot C^{\prime}
\end{aligned}
$$

The pattern works like a dynamic linked-list:

Deferred Choice

- How does the Deferred Choice Pattern work?

Interleaved Parallel Routing

- How does the Interleaved Parallel Routing Pattern work?

Milestone

- One possible representation of the

 Milestone Pattern:$$
\begin{aligned}
A & =\operatorname{check}(x) \cdot\left([x=\top] \tau_{A 1} \cdot A^{\prime}+[x=\perp] \tau_{A 2} \cdot A^{\prime \prime}\right) \\
B & =M(\perp) \mid b \cdot \bar{m}\langle\top\rangle \cdot \tau_{B} \cdot \bar{m}\langle\perp\rangle \cdot B^{\prime} \\
M(x) & =m(x) \cdot M(x)+\overline{\operatorname{check}}\langle x\rangle \cdot M(x)
\end{aligned}
$$

Cancel Patterns

- How does the Cancel Activity Pattern work?

$$
A \mid \mathcal{E} \equiv a \cdot \tau_{A} \cdot A^{\prime}+\text { cancel. } \mathbf{0} \mid!\tau_{\mathcal{E}} \cdot \overline{\text { cancel }} . \mathbf{0}
$$

