
Soundness Verification of Business Processes
Specified in the Pi-Calculus

Frank Puhlmann

Business Process Technology Group
Hasso Plattner Institut for IT Systems Engineering

University of Potsdam
D-14482 Potsdam, Germany

frank.puhlmann@hpi.uni-potsdam.de

Abstract. Recent research in the area of business process management
(BPM) introduced the application of a process algebra—the π-calculus—
for the formal description of business processes and interactions among
them. Especially in the area of service-oriented architectures, the key ar-
chitecture for today’s BPM systems, the π-calculus—as well as other
process algebras—have shown their benefits in representing dynamic
topologies. What is missing, however, are investigations regarding the
correctness, i.e. soundness, of process algebraic formalizations of busi-
ness processes. Due to the fact that most existing soundness properties
are given for Petri nets, these cannot be applied. This paper closes the
gap by giving characterizations of invariants on the behavior of busi-
ness processes in terms of bisimulation equivalence. Since bisimulation
equivalence is a well known concept in the world of process algebras, the
characterizations can directly be applied to π-calculus formalizations of
business processes. In particular, we investigate the characterization of
five major soundness properties, i.e. easy, lazy, weak, relaxed, and clas-
sical soundness.

1 Introduction

Process algebras, which are algebraic frameworks for the study of concurrent
processes, recently gained extended attention in the area of business process
management (BPM), e.g. [1,2,3,4,5,6,7]. This is especially true within the area
of service-oriented architecture (SOA) [8], which is today’s standard architec-
tural style for realizing BPM solutions [9,10]. What the existing approaches
lack, however, is a distinguished investigation on correctness properties for the
business processes they describe. By correctness properties, we refer to the differ-
ent kinds of soundness that have been introduced in the workflow management
domain and later on refined. In particular, these are the original soundness def-
inition by van der Aalst [11], nowadays denoted as classical soundness, relaxed
soundness by Dehnert [12], and weak soundness by Martens [13]. Noteworthy, all
these properties cannot directly be applied to process algebraic formalizations of
business processes, since they are characterized using Petri nets. Furthermore,

2 Frank Puhlmann

Easy Lazy Weak Relaxed Classical

Possibility of termination + + + + +

Support for lazy activities + + - + -

Deadlock freedom - + + - +

Participation of all activities - - - + +

Table 1. Comparison of the different kinds of soundness.

liveness and boundedness are used to prove business processes formalized with
Petri nets to be sound; both techniques which are not available for process alge-
braic verification.

The focus of our research is on the application of a special kind of process
algebra—the π-calculus—to the domain of business process management [14,15].
This calculus is of special interest, since it supports a direct representation of dy-
namic binding as found in service-oriented architectures [16]. In this paper, how-
ever, we do not tackle dynamic binding but instead investigate the correctness
of the ”inner workings” of the different services found in a SOA. The behavior
of the ”inner workings” of a service is described as a business process composed
out of common patterns [17]. During our research on the formal representation
of these patterns, we developed a new soundness property, that proves a business
process to be lazy sound if it always provides a result [18]. While lazy soundness
provides one way of proving an invariant of a business process represented in a
process algebraic formalization, there exists no investigation that discusses the
verification of business processes according to existing soundness properties. In a
practical setting, however, different properties might be required. A comparison
of the different kinds of soundness is shown in table 1.

Since the availability of correctness properties is a fundamental constraint for
any formalization of business processes [19], we close the gap for π-calculus map-
pings by providing means to characterize soundness using bisimulation equiva-
lence. Stated simply, a bisimulation is an equivalence relation between two pro-
cesses, where the actions of both processes are matched, i.e. if one process can
do an action, there exists a matching action in the other process and vice versa.
Beyond providing characterizations for existing soundness properties, we discuss
the declaration and reasoning on arbitrary invariants for the behavior of busi-
ness processes using bisimulation equivalence. The discussion provides the reader
with the theoretical equipment to his or her tailored soundness property.

The paper is organized as follows. We start with a short introduction to the
π-calculus in section 2, followed by a discussion of how invariants for the be-
havior of business processes can be represented and proved. Section 3 provides
characterizations of five major soundness properties in the π-calculus. The prac-
tical applicability of bisimulation equivalence is shown in section 4. Finally, we
conclude with a discussion of related work in section 5.

Soundness Verification of Business Processes Specified in the Pi-Calculus 3

2 Preliminaries

We start with an introduction to the π-calculus and introduce how business
processes can be formalized using this algebra. Thereafter we discuss the rep-
resentation of weak invariants, i.e. properties that have to be fulfilled by some
instances of a business process, and strong invariants, i.e. properties that have
to be fulfilled by all instances.

2.1 The Pi-Calculus

The π-calculus is a process algebra for the formal description and analysis of
concurrent, interacting processes, denoted as agents. The calculus is based on
names, that represent the unification of channels and data, used by agents defined
according to [20].

Definition 1 (Pi-Calculus). The syntax of the π-calculus is given by:

P ::= M | P |P | νz P | A(y1, . . . , yn)
M ::= 0 | π.P | M + M

π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π .

P and M denote the agents and summations of the calculus. The informal se-
mantics is as follows: P |P is the concurrent execution of P and P , νz P is the
restriction of the scope of the name z to P , i.e. z is only visible in P and distinct
from all other names, and A(y1, · · · , yn) denotes parametric recursion over the
set of agent identifiers. 0 is inaction, a process that can do nothing, and M +M is
the exclusive choice between M and M . The prefixes of the calculus are given by
π. The output prefix x〈ỹ〉.P sends a tuple of names ỹ via the co-name x and then
continues as P . The input prefix x(z̃) receives a tuple of names via the name
x and then continues as P with z̃ replaced by the received names. Matching
input and output prefixes of different components might communicate, leading
to an intraaction that is unobservable (τ). An explicit representation of an un-
observable action is given by the prefix τ.P and the match prefix [x = y]π.P
behaves as π.P if x is equal to y. Throughout this paper, upper case letters are
used for agent identifiers and lower case letters for names. We abbreviate a set
of components as

∏n
i=1 Pi, i.e.

∏3
i=1 Pi = P1 | P2 | P3.

2.2 Business Process Formalizations

Informally, a business process can be seen as a a special process that creates a
value or a result for a customer. A business process is characterized by activities
and control flow relations between them. Additional ingredients are the types
of the activities, if they route the control flow, or additional attributes, mostly
related to control flow decisions. For reasoning on soundness, we abstract from
other perspectives. Formally, a business process can be represented by a process
graph given by:

4 Frank Puhlmann

Receive
Order

Send Flowers
3

Reject Order

N1 N2
N3

N4

N5 N6

N7
e1 e2

e3

e4

e5

e6

e7

Fig. 1. A sample business process in BPMN notation.

Definition 2 (Process Graph). A process graph is a four-tuple consisting of
nodes, directed edges, types, and attributes. Formally: P = (N,E, T, A) with

– N as a finite, non-empty set of nodes,
– E ⊆ (N ×N) as a set of directed edges between nodes,
– T : N → TYPE as a function from nodes to types, and
– A ⊆ (N × (KEY ×VALUE)) as a relation from nodes to key/value pairs.�

N represents activities, incl. those responsible for routing the control flow given
by E. T relates nodes with workflow patterns [21], where we assume simple activ-
ities or tasks to match the sequence pattern. A maps additional key/value pairs
to nodes. Notable, a process graph only describes the static structure, i.e. the
schema, of a business process. A process graph can easily be related to graphical
notations such as EPCs [22], UML activity diagrams [23], or BPMN [24]. To
give a process algebraic semantics to a process graph, the following, sketched
algorithm is used (details can be found in [18]):

Algorithm 1 (Mapping Process Graphs to Agents). A process graph
P = (PN , PE , PT , PA) is mapped to π-calculus agents as follows:

1. All nodes of P are assigned a unique π-calculus agent identifier N1 . . . N |PN |.
2. All edges of P are assigned a unique π-calculus name e1 . . . e|PE |.
3. The π-calculus agents are defined according to the process patterns found

in [17]. The functional perspective is represented by 〈·〉. If the process graph
is cyclic, recursion has to be used to allow multiple instances of activities.

4. An agent N
def
= (νe1 , . . . , e|PE |)(

∏|PN |
i=1 Ni) representing a process instance

is defined. This agent might contain further components or restricted names
according to the contained patterns. �

The given mapping of a process graph represents a single instance (case) of
a business process. During the evolution of the agent terms, their structure is
reduced to future states, whereas all (possible) past states are lost. We showcase
the formalization of an example given in figure 1, where we provide a graphical
representation of the process graph using BPMN. Contained is a simple business
process of a flower shipper. The shipper receives an order and either accepts the
order, and sends flowers to three participants given in the order, or the order
is rejected. The flowers are sent asynchronously via a multiple instance task
without synchronization (denoted by the arrow at the bottom of the activity).

Soundness Verification of Business Processes Specified in the Pi-Calculus 5

The formalization of the business process starts by assigning unique agent
identifiers and names to the nodes and edges. These are already shown in the
figure. The corresponding agents are given according to step three of algorithm 1
as follows:

N1
def
= 〈·〉.e1 .0 and N7

def
= e7 .〈·〉.0

represent the start and the end event. The functional perspective is abstracted
by 〈·〉, which will be filled later on. The nodes of the type task are given by the
sequence workflow pattern:

N2
def
= e1 .〈·〉.e2 .0 and N5

def
= e4 .〈·〉.e6 .0 .

The exclusive split and join gateways are given by

N3
def
= e2 .〈·〉.(e3 .0 + e4 .0) and N6

def
= e5 .〈·〉.e7 .0 + e6 .〈·〉.e7 .0 .

The multiple instance task with three static instances is given by

N4
def
= e3 .(〈·〉.0 | 〈·〉.0 | 〈·〉.0 | e5 .0) .

Finally, an agent

N
def
= (νe1 , . . . , e7)(

7∏
i=1

Ni) .

represents a fresh process instance. An extended discussion of the semantics and
the mapping can be found in [17,18].

2.3 Simulation

To specify that a process instance given by π-calculus agents can fulfill an invari-
ant, we need the concept of simulation from the process algebraic toolbox. Infor-
mally, a simulation relates an agent P with another agent Q, if Q can follow every
action of P . We say that Q can simulate P . The actions of the agents are given by
the input, output, and unobservable prefixes, denoted as Act = {x〈ỹ〉, x(z̃), τ}.
The evolution of the state of an agent to a succeeding state is denoted by a

transition bearing the corresponding action, i.e. a〈w〉.A a〈w〉−→ A.

Definition 3 (Simulation). A simulation is a binary relation R on agents
such that ∀α ∈ Act:

PRQ ∧ P
α−→ P ′ ⇒ ∃Q ′ : Q

α−→ Q ′ ∧ P ′RQ ′ .

Q is similar to P , denoted as P - Q, if they are related by a simulation.

Simulation considers a strong relation between interactions and unobservable
actions. Two agents

P
def
= a(x).τ.τ.b〈z〉.0 and Q

def
= a(x).τ.b〈z〉.0

6 Frank Puhlmann

cannot simulate each other, since they differ in the number of their unobservable
actions (τ transitions). A simulation that abstracts from these unobservable
actions is called weak simulation. Weak simulations are of particular interest,
since they abstract from the internal behavior of agents and instead only consider
the external visible behavior. A weak simulation is obtained by defining =⇒ to
represent zero or more τ transitions, i.e. τ−→

∗
, α=⇒ as =⇒ α−→=⇒, and α̂=⇒ as

α=⇒ if α 6= τ and =⇒ if α = τ .

Definition 4 (Weak Simulation). A weak simulation is a binary relation R
on agents such that ∀α ∈ Act:

PRQ ∧ P
α−→ P ′ ⇒ ∃Q ′ : Q

α̂=⇒ Q ′ ∧ P ′RQ ′ .

Q is weak similar to P , denoted as P w Q, if they are related by a weak simula-
tion.

By using weak simulation, we can match π-calculus mappings of process graphs
for the potential fulfillment of arbitrary invariants. Therefore we specify the
invariant by a π-calculus agent that trivially fulfills them. Consider for instance

I1
def
= s.0 ,

that denotes that an activity can occur during the execution of a process instance
via an emission of s. To enhance the agent that represents the activity under
investigation in the π-calculus mapping, we need to replace 〈·〉 by s. Let’s assume
we want to prove that the reject order task from figure 1 can be executed. Hence,
we change agent N5 accordingly:

N5
def
= e4 .s.e6 .0 .

We assume all other functional abstractions to be filled with unobservable actions
(τ). Now we can decide if I1 w N holds by finding a relation R that relates both
agents. If we are able to find such a relation, we proved that the reject order task
can indeed be executed. If we found a counterexample, i.e. something that I1
can do but N is unable to simulate, we disproved the invariant for the business
process. The magic of weak simulation lies in the fact that all internal interactions
between components, i.e. between N1 and N2 via e1 are unobservable from the
outside, meaning they resemble τ . Since all names e∗ are restricted inside N ,
only s has to be considered in the simulation. Regarding this semantics, the
agent N breaks down to a number of τ actions, a possible emission via s, and

another number of τ actions. Hence, it resembles ŝ=⇒. According to definition 4,
R is given by {(I1 , N), (0,0)} and I1 w N holds. Thus, the business process
from figure 1 fulfills the invariant that the reject order task can be executed.

We can also disprove invariants for business processes, i.e. show that the
reject order activity will never be executed twice per instance. Therefore we
modify the agent representing the invariant to

I2
def
= s.s.0 .

Soundness Verification of Business Processes Specified in the Pi-Calculus 7

Due to the fact that I2 s−→ s.0, and correspondingly N
ŝ=⇒ 0, the remainder of

I2 can do another action s that the remainder 0 of N cannot simulate. Hence,
I2 6w N disproves the supposed invariant.

2.4 Bisimulation

By using weak simulation we are able to show an optional behavior. This is
due to the fact that a simulation only investigates one direction. If the agent
mapping of a process graph contains additional actions, it is not investigated if
the agent representing the invariant can mimic them. To enforce that two agents
are able to mimic all their actions in arbitrary directions, i.e. the first agent does
something, the second agent corresponds, and thereafter the second agent does
something else that the first agent needs to mimic, etc., we require the relation R
to be symmetric. Helpful is again the weak variant, yielding weak bisimulation:

Definition 5 (Weak Bisimulation). A weak bisimulation is a symmetric, bi-
nary relation R on agents such that ∀α ∈ Act:

PRQ ∧ P
α−→ P ′ ⇒ ∃Q ′ : Q

α̂=⇒ αQ ′ ∧ P ′RQ ′ .

P and Q are weak bisimilar, denoted as P ≈ Q, if they are related by a weak
bisimulation.

According to this definition, weak bisimulation equivalence, or weak bisimilarity,
between two agents P and Q is stronger than mutual simulation, i.e. from P ≈
Q ⇒ P w Q ∧Q w P , but the converse does not necessarily hold. Consider for
instance once again I1 and N as given in the previous section. While I1 w N
holds (as shown), also N w I1 holds (proof left for the reader). However, this does
not mean that the reject order task is executed in every instance, as can be easily
checked in figure 1. The technical difference lies in the fact that bisimulation
is symmetric, a property that allows switching the direction after every step
instead assuming a fixed order. According to bisimulation, we need to find a
counterexample to prove I1 6≈ N and thereby disprove the proposition that
reject order is executed in every instance. Since this is a quite complex task,
we refer the reader to section 4, where we introduce tool-supported reasoning
(indeed, a counterexample can be found).

The last application of bisimulation that we will consider is proving invariants
that hold for all instances. Regarding figure 1, it seems obvious that receive order
is executed in every instance. We can prove this proposition by returning to the
original definition of N and modify its component N2 , representing the receive
order task, accordingly:

N2
def
= e1 .s.e2 .0 .

By finding a relation R between I1 and the modified N according to definition 5
we can prove that receive order is executed in each instance. Since such an
relation exists, I1 ≈ N holds (for the modified N). As the relation contains 29
tuples, we once again refer to section 4 for tool-supported reasoning.

8 Frank Puhlmann

3 Characterizations of Soundness

After having shown how can properties of business processes are proved using
simulation and must properties are proved using bisimulation, we discuss exist-
ing soundness properties. Since most existing properties are given for workflow
nets [25], a subclass of Petri nets, we define a subset of process graphs that fulfills
the same structural properties. We denote this property as structural soundness.
Informally, structural soundness is given by:

A process graph is structural sound if it has exactly one initial node,
exactly one final node, and all other nodes lie on a path between the
initial and the final node.

Structural sound process graphs resemble placeholders for business processes
with the denoted structural properties. We omit the (obvious) formal definition
due to space limits.

3.1 Easy Soundness

The least soundness property a business process should fulfill is given by easy
soundness, informally given by:

A structural sound process graph representing a business process is easy
sound if a result can be provided.

As indicated by the word can, we have to use simulation to prove this property
for process algebraic formalizations of business processes. In particular, we have
to be able to observe the occurrence of the initial and the final node. The idea
is depicted in figure 2. A structural sound process graph is fed into a black box.
Each time we press the start button, an instance of the process graph is executed.
Each time the final node of process graph is executed, the done bulb flashes.
Regarding easy soundness, we have to find at least one process instance where
the done bulb flashes, denoting the delivery of the result. An agent fulfilling this
invariant is given by:

SEASY
def
= i.τ.o.0 . (1)

The input prefix i denotes the pushbutton, whereas the output prefix o resembles
the done bulb. Both are in a fixed sequence, i.e. o follows always after i. The
τ in-between denotes the abstraction from complex actions. Since we use weak
(bi)-simulations, however, it could also be omitted. To be able to decide whether
a business process given by π-calculus agents is weak similar to SEASY , we have
to enhance the agents representing the business process:

Algorithm 2 (Easy Soundness Annotated Pi-Calculus Mapping). The
π-calculus mapping of a process graph according to algorithm 1 is enhanced for
reasoning on easy soundness as follows. The functional abstraction 〈·〉 of (1)
the agent that represents the initial node is replaced by i.τ ; (2) the agent that
represents the final node is replaced by τ.o; (3) all other agents are replaced by

Soundness Verification of Business Processes Specified in the Pi-Calculus 9

Black Box

Start Done

Structural
Sound Process

Graph

Fig. 2. Black box investigation of a structural sound process graph.

τ . Obviously, i and o are not permitted to appear anywhere else in the agent
terms. �
A formal definition of easy soundness using weak similarity is now given by:

Definition 6 (Easy Sound Process Graph). A structural sound process
graph P with a semantics given by the easy soundness annotated π-calculus map-
ping D of P is easy sound if SEASY w D holds.

We can prove the sample business process from figure 1 to be easy sound by
finding a relation for SEASY w NEASY , with NEASY being syntactically equal
to N with 〈·〉 replaced by τ and:

N1
def
= i.τ.e1 .0 and N7

def
= e7 .τ.o.0 .

Since such a relation exists (4 tuples), the business process of the flower shipper
is easy sound. The relation can be reconstructed by the reader as will be shown
in section 4.

3.2 Lazy Soundness

One obvious extension to easy soundness is given by enforcing that all instances
of a process graph provide a result:

A structural sound process graph representing a business process is lazy
sound if in any case a result is provided exactly once.

This property can be proved using weak bisimilarity. Furthermore, all assump-
tions from easy soundness also hold. In particular, we need to be able to observe
the occurrence of the final node after each occurrence of the initial node. Re-
garding the black box from figure 2, this means that each time the start button
is pressed, we need to be able to observe exactly one flash of the done bulb. In
contrast to easy soundness, we cannot try until we observe a flash of the done
bulb, but have to consider all possibilities instead. This supplies two problems:
(1) How can we be sure that all path of the process graph have been traversed,
i.e. we do not need to press the start button anymore; (2) How do we know if
we do not need to wait any longer for the done bulb to flash, i.e. a deadlock has
occurred? If we are able to find a bisimulation between an invariant given by

SLAZY
def
= i.τ.o.0 (2)

10 Frank Puhlmann

and an annotated agent mapping of a process graph, both problems have been
overcome. The former due to the fact that a bisimulation enumerates all possible
states and the latter by the fact that a bisimulation is finite. Since SLAZY exactly
resembles SEASY , the same annotation for the agents has to be used:

Algorithm 3 (Lazy Soundness Annotated Pi-Calculus Mapping). The
same as given by algorithm 2. �
A formal definition of lazy soundness using weak bisimilarity is now given by:

Definition 7 (Lazy Sound Process Graph). A structural sound process
graph P with a semantics given by the lazy soundness annotated π-calculus map-
ping D of P is lazy sound if D ≈ SLAZY holds.

The business process from figure 1 can be checked for satisfying lazy soundness;
i.e. we need to prove that SLAZY ≈ NEASY holds.

3.3 Weak Soundness

Lazy soundness only considers the return of a result, whereas the termination of
the process graph, i.e. all nodes are terminated, is not considered. This is due to
the fact that deferred, so called lazy, activities can remain active after the result
has been provided (an extended discussion can be found in [18]). Nevertheless,
in some cases it has to be guaranteed that the termination of a business process
occurs the very moment the result is provided:

A structural sound process graph representing a business process is weak
sound if in any case a result is provided and the process instance is
terminated the moment the result is provided.

Since once again all cases need to be considered, weak bisimilarity is the tech-
nique of choice. What has to be changed, however, is the black box we use for
investigation. In addition to be able to observe the occurrence of the initial and
the final node, we also need to be able to observe the occurrence of each other
node. This enhancement is depicted in figure 3. A business process placed inside
the enhanced black box is weak sound if we are unable to observe a flash of the
step bulb after a flash of the done bulb. Furthermore, a flash of the done bulb
has to be observed exactly once for each push on the start button. Deriving the
invariant is not this easy, however. A naive version given by

I
def
= i.I1 and I1

def
= s.I1 + τ.o.0

will not work with an annotated π-calculus mapping given below (the proof is
left to the reader; hint: I1 can send an unlimited times via s). The problem can
be overcome by allowing each instance of a process graph to emit via s only once.
The choice which node will emit via s has to be made non-deterministically. This
is done via an activity observation agent that will be included in the π-calculus
mapping of a process graph later on:

X(x, s)
def
= x(ack).(τ.ack .0 | X(x, s)) + x(ack).(τ.s.ack .0 | X1 (x))

X1 (x)
def
= x(ack).(τ.ack .0 | X1 (x)) .

(3)

Soundness Verification of Business Processes Specified in the Pi-Calculus 11

Agent X is triggered via x and thereafter has the non-deterministic choice be-
tween acknowledging via ack or emitting via s and thereafter acknowledging. If
the former happened, X behaves again as X. If the latter happened, X behaves
as X1 that is only capable of acknowledging. Due the activity observation agent,
each node of a process graph has the capability of signaling its execution. As
this explicitly includes nodes of a process graph that are active after the final
node has signaled its execution, weak soundness can be proved by an invariant
given as

SWEAK
def
= i.(τ.o.0 + τ.s.o.0) . (4)

SWEAK is the same as SLAZY regarding i and o. After the observation of the
initial node via i, a choice between observing o or s is made. If o is observed,
no other observations are possible (due to SWEAK becomes inaction). If s is
observed, the next observation has to be o. Thereafter, no other observations
are possible. This behavior resembles the enhanced black box with the exception
that the step bulb might flash only once before/after the done bulb flashed. The
agents that represent the business process have to be enhanced as given by the
following algorithm:

Algorithm 4 (Weak Soundness Annotated Pi-Calculus Mapping). The
π-calculus mapping D of a process graph P = (N,E, T, A) according to algo-
rithm 1 is enhanced for reasoning on weak soundness as follows. The functional
abstraction 〈·〉 of (1) the agent that represents the initial node is replaced by
νack i.x〈ack〉.ack ; (2) the agent that represents the final node is replaced by
νack x〈ack〉.ack .o.τ ; (3) all other agents are replaced by νack x〈ack〉.ack . Fur-
thermore, the agent from equation 3 has to be included in D:

D
def
= (νe1 , . . . , e|E|, x)(

|N |∏
i=1

(Di) | X) .

The names i, o, and s are not permitted to appear anywhere else in the agent
terms. �
A formal definition of weak soundness for a process graph is now given by:

Definition 8 (Weak Sound Process Graph). A structural sound process
graph P with a semantics given by the weak soundness annotated π-calculus
mapping D of P is weak sound if D ≈ SWEAK holds.

The business process from figure 1 is not fulfilling weak soundness. This is due
to the fact that the flowers are sent asynchronously; i.e. the send flowers activity
is lazy.

3.4 Relaxed Soundness

All preceding soundness properties neglect an investigation regarding the par-
ticipation of activities in a business process. Sometimes this is an important
property, due to the fact that unused activities can be removed from a business
process. Similar to [12], our interpretation of relaxed soundness also supports
the synchronizing merge pattern:

12 Frank Puhlmann

Enhanced Black Box

Start DoneStep

Structural
Sound Process

Graph

Fig. 3. Enhanced black box investigation of a structural sound process graph.

A structural sound process graph representing a business process is re-
laxed sound if each node of the process graph has the possibility of being
executed in between the execution of the initial and the final node.

Since we talk about a possibility, weak similarity has to be used this time. We
can reuse the enhanced black box from figure 3 with a special preparation of
the π-calculus mapping. In particular, we need to prepare as much copies of
the π-calculus mapping as there are nodes in the process graph. In each copy we
need to give another node the possibility of emitting via s to signal its execution.
Hence, for each enhanced mapping of a process graph feed into the enhanced
black box, we should be able to observe a flash of the step and done bulb in
sequence in at least one pass. The invariant is given by:

SRELAXED
def
= i.s.o.0 .

The agent SRELAXED simply resembles the execution order. However, special
care has to be taken if the node under observation is always executed more than
once (the next action of SRELAXED after s, o, cannot be simulated by a mapping
that emits s once again!). This problem can be solved by including an activity
loop observation agent that only emits s for the first execution of a node:

Y (y, s)
def
= y(ack).s.ack .Y1 (y) and Y1 (y)

def
= y(ack).τ.ack .Y1 (y) .

The agent is integrated in the mapping of a process graph as follows:

Algorithm 5 (Relaxed Soundness Annotated Pi-Calculus Mapping).
To annotate a π-calculus mapping D of a process graph P = (N,E, T, A) for
a certain node n ∈ N \ {x, y} with T (x) = InitialNode, T (y) = FinalNode for
reasoning on relaxed soundness regarding the node n, the following steps have
to be made. The functional abstraction 〈·〉 of (1) the agent that represents the
initial node is replaced by i.τ ; (2) the agent that represents the final node is
replaced by τ.o; (3) the agent that represents n is replaced by νack y〈ack〉.ack ;
(4) all other agent is replaced by τ . Furthermore, the agent from equation 3.4
has to be included in D:

D
def
= (νe1 , . . . , e|E|, y)(

|N |∏
i=1

(Di) | Y) .

The names i, o, and s are not permitted to appear anywhere else in the agent
terms. �
Relaxed soundness is formally given by:

Soundness Verification of Business Processes Specified in the Pi-Calculus 13

Definition 9 (Relaxed Sound Process Graph). A structural sound process
graph P = (N,E, T, A) is relaxed sound if for each relaxed soundness annotated
π-calculus mapping D considering n ∈ N\{x, y} with T (x) = InitialNode, T (y) =
FinalNode it holds that SRELAXED w D.

Regarding the example from figure 1, it can be shown that each node has the
possibility to participate in the business process by calculating the corresponding
weak simulations.

3.5 Classical Soundness

A strong soundness property, known as (classical) soundness [11], is given infor-
mally by:

A structural sound process graph representing a business process is sound
if (1) in any case a result is provided; (2) the process instance is termi-
nated the moment the result is provided; and (3) each node of the process
graph has the possibility of being executed after the initial node.

The first two criteria coincidence with weak soundness. The last criterion is given
by a modified version of relaxed soundness, where the activity loop observation
agent and o are omitted from the π-calculus mapping. The relaxed invariant is
given by:

SPART
def
= i.s.0 (5)

We can omit the activity loop observation agent due to the fact that multi-
ple emissions via s from the π-calculus mapping of the process graph are not
disturbing the similarity because o is omitted.

Algorithm 6 (Participating Annotated Pi-Calculus Mapping). To
annotate a π-calculus mapping of a process graph P = (N,E, T, A) for a certain
node n ∈ N \ {x, y} with T (x) = InitialNode, T (y) = FinalNode for reasoning
on the participation of n in the business process, the following steps have to be
made. The functional abstraction 〈·〉 of (1) the agent that represents the initial
node is replaced by i.τ ; (2) the agent that represents the node n is replaced by
s; (3) all other agents is replaced by τ . The names i and s are not permitted to
appear anywhere else in the agent terms. �
The definition of classical soundness using weak similarity and bisimilarity is
formally given by:

Definition 10 (Classical Sound Process Graph). A structural sound pro-
cess graph P = (N,E, T, A) with a semantics given by (1) the weak soundness
annotated π-calculus mapping D1 of P and (2) a set of participating annotated
π-calculus mappings D2 for each n ∈ N \{x, y} with T (x) = InitialNode, T (y) =
FinalNode is classical sound if it holds that (a) D1 ≈ SWEAK and (b) SPART w
D for each D ∈ D2.

14 Frank Puhlmann

4 Tool Support and Efforts

This first part of this section shows the practical applicability of the different
soundness characterization using an existing tool. The second part discusses an
important criterion: The efforts required for deciding bisimulation equivalence
for the different kinds of soundness.

4.1 Tool-supported Reasoning

Reasoning on similarity and bisimilarity of π-calculus agents can be done using
the Advanced Bisimulation Checker (ABC).1 The reasoner accepts agents in
an ASCII syntax described in the corresponding documentation. In a nutshell,
’x<y> represents an output prefix, x(y) an input prefix, t an unobservable
action, and (^z) the restriction operator. Regarding the easy/lazy soundness
annotated mapping from figure 1, the following input is appropriate:

agent N1(e1,i)=i.t.’e1.0
agent N2(e1,e2)=e1.t.’e2.0
agent N3(e2,e3,e4)=e2.t.(’e3.0 + ’e4.0)
agent N4(e3,e5)=e3.(t.0 | t.0 | t.0 | ’e5.0)
agent N5(e4,e6)=e4.t.’e6.0
agent N6(e5,e6,e7)=e5.t.’e7.0 + e6.t.’e7.0
agent N7(e7,o)=e7.t.’o.0
agent N(i,o)=(^e1,e2,e3,e4,e5,e6,e7)(N1(e1,i) | N2(e1,e2) | N3(e2,e3,e4) | N4(e3,e5) |

N5(e4,e6) | N6(e5,e6,e7) | N7(e7,o))
agent S_EASY(i,o)=i.t.’o.0
agent S_LAZY(i,o)=i.t.’o.0

Easy soundness can be decided by asking ABC for proving similarity between
SEASY and N using the wlt command:

abc > wlt S_EASY(i,o) N(i,o)
The two agents are weakly related (4).

Since a simulation exists, easy soundness for the business process from figure 1
has been proved. Lazy soundness can be decided by proving bisimilarity between
SLAZY and N using the weq command:

abc > weq S_LAZY(i,o) N(i,o)
The two agents are weakly related (70).

Both agents are bisimilar due to the fact that a bisimulation has been found. A
session disproving weak soundness for the example is given by:

agent N1(e1,i,x)=i.(^ack)’x<ack>.ack.’e1.0
agent N2(e1,e2,x)=e1.(^ack)’x<ack>.ack.’e2.0
agent N3(e2,e3,e4,x)=e2.(^ack)’x<ack>.ack.(’e3.0 + ’e4.0)
agent N4(e3,e5,x)=e3.((^ack)’x<ack>.ack.0 | (^ack)’x<ack>.ack.0 | (^ack)’x<ack>.ack.0 | ’e5.0)
agent N5(e4,e6,x)=e4.(^ack)’x<ack>.ack.’e6.0
agent N6(e5,e6,e7,x)=e5.(^ack)’x<ack>.ack.’e7.0 + e6.(^ack)’x<ack>.ack.’e7.0
agent N7(e7,o,x)=e7.(^ack)’x<ack>.ack.’o.0
agent X(x,s)=x(ack).(t.’ack.0 | X(x,s)) + x(ack).(’s.’ack.0 | X_1(x))
agent X_1(x)=x(ack).(t.’ack.0 | X_1(x))

1 Available at http://lampwww.epfl.ch/∼sbriais/abc/abc.html.

http://lampwww.epfl.ch/~sbriais/abc/abc.html

Soundness Verification of Business Processes Specified in the Pi-Calculus 15

agent N(i,o,s)=(^e1,e2,e3,e4,e5,e6,e7,x)(N1(e1,i,x) | N2(e1,e2,x) | N3(e2,e3,e4,x) |
N4(e3,e5,x) | N5(e4,e6,x) | N6(e5,e6,e7,x) | N7(e7,o,x) | X(x,s))

agent S_WEAK(i,o,s)=i.(t.’o.0 + t.’s.’o.0)

abc > weq S_WEAK(i,o,s) N(i,o,s)
The two agents are not weakly related (30).

Further examples are omitted due to a lack of space.

4.2 Efforts

This subsection takes a closer look at the complexity of deciding bisimulation. In
the general case, bisimulation equivalence on π-calculus agents is undecidable.
This is due to the Turing-completeness of the calculus, e.g. shown in [20]. What
can be decided, however, is non-equivalence of agents, since after finite number
of transitions, a counterexample has to be found. Nevertheless, our aim is to
prove that a π-calculus mapping of a business process fulfills a certain property,
hence it is equivalent.

The problems can partly be overcome by restricting the grammar of the π-
calculus variant applied. For the following discussion, we consider a business
process with a number of nodes, given by the following agent:

N
def
= (e1 , e2 , . . .)(

∏
i=1

Ni) .

Agents with Simple Sequences. Simple sequences, such as

N1
def
= 〈·〉.e1 .0 , N2

def
= e1 .〈·〉.e2 .0 and N3

def
= n2 .〈·〉.0 ,

can be enforced by removing recursion via defined agent identifiers from the
calculus. As a result, loops are prohibited. This significantly drops the effort for
most practical problem sizes. However, we also loose Turing-completeness.

Agents Mappings with Loops in the Business Processes. Agents that represent
business processes with loops, such as

N1
def
= 〈·〉.e1 .0 , N2

def
= e1 .〈·〉.((e1 .0 + e2 .0) | N2) and N3

def
= n2 .〈·〉.0 ,

can in most cases efficiently be checked, because the same state(s) appears over
and over again. However, we do not allow the creation of restricted names in
recursive passages, since this would lead to the next problem class.

Arbitrary Recursion and Restrictions. Agents such as

A
def
= a.(A1 (b) | A2)

A1 (prev)
def
= νnext create i〈next , prev〉.A1 (next) + prev .0

A2
def
= create i(next , prev).(〈·〉.next .prev .0 | A2) .

16 Frank Puhlmann

where arbitrary restricted names can be created in recursive passages are hard to
verify, because new states are created all the way. However, this kind of problem
is only to be found in the multiple instances workflow patterns (as shown), which
can be abstracted by τ for verification.

Agents with massive non-determinism. Agents such as X and Y according to
weak and relaxed soundness contain massive amounts of non-determinism. This
has an exponential influence on the state space that needs to be checked. Con-
sequently, the most promising property regarding computational complexity is
lazy soundness.

Solutions. Our current efforts go into the direction of implementing a domain-
specific bisimulation checker for BPM. The already restricted input set given
by process graphs is further stripped down by applying the asynchronous π-
calculus [20], which is also able to represent all workflow patterns. The goal of our
research is not limiting the input further, e.g. by only allowing block structures
or prohibiting loops. Instead, we are working on a simplification of the workflow
pattern formalization, the normalization and optimization of the generated agent
term, as well as including heuristics via external data (e.g. process graphs). In
this paper, we laid the formal foundations behind bisimulation-based soundness
verification.

5 Conclusion and Related Work

In this paper we have shown how invariants for π-calculus mappings of business
processes can be declared and proved. Besides introducing the general concepts in
section 2, we also investigated easy, lazy, weak, relaxed, and classical soundness in
section 3. The practical feasibility of our findings has been sketched afterwards in
section 4, where we sketched the question of computational complexity. However,
future research in this area is crucial for the practical applicability. In particular,
we will investigate different classes of inputs vs. different soundness properties.
While weak, relaxed, and classical soundness rely on link passing mobility, that
is not available in all process algebras, the general concepts can also be applied
to other algebras like CCS [26]. We already presented a tool chain for lazy
soundness as part of earlier research [18,27]. This paper goes one step further by
discussing the general concepts as well as missing soundness properties. To the
knowledge of the authors, no other approach using similarity and bisimilarity
for deciding different kinds of soundness has been published. Nevertheless, as we
already sketched in [27], also projection inheritance [28] for Petri nets can be
used.

Regarding foundational work, the different soundness definitions from van
der Aalst [11], Dehnert [12], and Martens [13] directly inspired our definitions.
Since these are given for Petri nets, we could only informally resemble them. For
instance, the black box verification of lazy soundness closely resembles the first
criterion of soundness for workflow nets:

∀M (i ∗−→ M) ⇒ (M ∗−→ o) .

Soundness Verification of Business Processes Specified in the Pi-Calculus 17

It states that a workflow net has the option to always complete, i.e. deliver a
result from our perspective. The second criterion,

∀M (i ∗−→ M ∧M ≥ o) ⇒ (M = o) ,

is resembled by weak soundness and the enhanced black box observation. It
states that a workflow net terminates the moment a token is in the final place,
i.e. the result is provided the moment the process instance is terminated. The
third criterion,

∀t∈T∃M,M ′i
∗−→ M

t−→ M ′ ,

states that each task of a workflow net can participate in the workflow. It is
resembled by a subset of relaxed soundness as described in section 3.5.

Remarks. The definition of weak bisimulation has been simplified, since other-
wise more elaborate foundations for the π-calculus would be required (e.g. bound
and free names). The reader is refered to [14].

References

1. Brogi, A., Canal, C., E.Pimentel, Vallecillo, A.: Formalizing Web Service Chore-
ographies. In: Proceedings of First International Workshop on Web Services
and Formal Methods. Electronic Notes in Theoretical Computer Science, Elsevier
(2004)

2. Laneve, C., Zavattaro, G.: Foundations of Web Transactions. In Sassone, V., ed.:
Foundations of Software Science and Computational Structures, volume 3441 of
LNCS, Berlin, Springer Verlag (2005) 282–298

3. Bordeaux, L., Salaün, G.: Using Process Algebra for Web Services: Early Results
and Perspectives. In Shan, M., Dayal, U., Hsu, M., eds.: Technologies for E-
Services, volume 3324 of LNCS, Berlin, Springer Verlag (2005) 54–68

4. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus for
Service Oriented Computing. In Dam, A., Lamersdorf, W., eds.: Service-Oriented
Computing – ICSOC 2006, volume 4294 of LNCS, Berlin, Springer Verlag (2006)
327–338

5. Mazzara, M., Lanese, I.: Towards a Unifying Theory for Web Service Composition.
In Bravetti, M., Núñez, M., Zavattaro, G., eds.: Web Services and Formal Methods,
volume 4184 of LNCS, Berlin, Springer Verlag (2006) 257–272

6. Ferrara, A.: Web Services: A Process Algebra Approach. In: ICSOC ’04: Proceed-
ings of the 2nd international conference on Service oriented computing, New York,
NY, USA, ACM Press (2004) 242–251

7. Decker, G., Zaha, J., Dumas, M.: Execution Semantics for Service Choreographies.
In Bravetti, M., Núñez, M., Zavattaro, G., eds.: Web Services and Formal Methods,
volume 4184 of LNCS, Berlin, Springer Verlag (2006) 163–177

8. Burbeck, S.: The Tao of E-Business Services (2000)
9. Woodley, T., Gagnon, S.: BPM and SOA: Synergies and Challenges. In Ngu,

A., Kitsuregawa, M., Neuhold, E., Chung, J., Sheng, Q., eds.: Web Information
Systems Engineering – WISE 2005: 6th International Conference on Web Informa-
tion Systems Engineering, volume 3806 of LNCS, Berlin, Springer Verlag (2005)
679–688

18 Frank Puhlmann

10. Newcomer, E., Lomov, G.: Understanding SOA with Web Services. Addison–
Wesley (2005)

11. Aalst, W.: Verification of Workflow Nets. In Azéma, P., Balbo, G., eds.: Application
and Theory of Petri Nets 1997, volume 1248 of LNCS, Berlin, Springer Verlag
(1997) 407–426

12. Dehnert, J., Rittgen, P.: Relaxed Soundness of Business Processes. In Dittrich,
K., Geppert, A., Norrie, M., eds.: anced Information Systems Engineering: 13th
International Conference (CAiSE 2001), volume 2068 of LNCS, Berlin, Springer
Verlag (2001) 157–170

13. Martens, A.: Analyzing Web Service based Business Processes. In Cerioli, M.,
ed.: Fundamental Approaches to Software Engineering (FASE’05), volume 3442 of
LNCS, Springer Verlag (2005) 19–33

14. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I/II.
Information and Computation 100 (1992) 1–77

15. Puhlmann, F.: Why do we actually need the Pi-Calculus for Business Process
Management? In Abramowicz, W., Mayr, H., eds.: 9th International Conference on
Business Information Systems (BIS 2006), volume P-85 of LNI, Bonn, Gesellschaft
für Informatik (2006) 77–89

16. Overdick, H., Puhlmann, F., Weske, M.: Towards a Formal Model for Agile Ser-
vice Discovery and Integration. In: Proceedings of the International Workshop on
Dynamic Web Processes (DWP 2005). IBM technical report RC23822, Amsterdam
(2005)

17. Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Pat-
terns. In: Business Process Management, volume 3649 of LNCS, Berlin, Springer
Verlag (2005) 153–168

18. Puhlmann, F., Weske, M.: Investigations on Soundness Regarding Lazy Activities.
In Dustdar, S., Fiadeiro, J., Sheth, A., eds.: Business Process Management, volume
4102 of LNCS, Berlin, Springer Verlag (2006) 145–160

19. Aalst, W., Hofstede, A., Weske, M.: Business Process Management: A Survey. In
Aalst, W., Hofstede, A., Weske, M., eds.: Business Process Management, volume
2678 of LNCS, Berlin, Springer Verlag (2003) 1–12

20. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Paper-
back edn. Cambridge University Press, Cambridge (2003)

21. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns. Dis-
tributed and Parallel Databases 14 (2003) 5–51

22. Keller, G., Nüttgens, M., Scheer, A.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89, In-
stitut für Wirtschaftsinformatik, Saarbrücken (1992)

23. OMG: UML 2.0 Superstructure Final Adopted specification. (2003)
24. OMG.org: Business Process Modeling Notation. 1.0 edn. (2006)
25. Aalst, W., Hee, K.: Workflow Management. MIT Press (2002)
26. Milner, R.: A Calculus of Communicating Systems. Volume 94 of LNCS. Springer

Verlag (1980)
27. Puhlmann, F.: A Tool Chain for Lazy Soundness. In: Demo Session of the 4th

International Conference on Business Process Management, CEUR Workshop Pro-
ceedings. Volume 203., Vienna (2006) 9–16

28. Basten, T.: In Terms of Nets: System Design with Petri Nets and Process Alge-
bra. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands
(1998)

	Soundness Verification of Business Processes Specified in the Pi-Calculus
	Frank Puhlmann

