
ON THE APPLICATION OF A THEORY FOR MOBILE

SYSTEMS TO BUSINESS PROCESS MANAGEMENT

FRANK PUHLMANN

BUSINESS PROCESS TECHNOLOGY GROUP
HASSO PLATTNER INSTITUT, UNIVERSITY OF POTSDAM

POTSDAM, GERMANY

—DOCTORAL THESIS—

JULY, 2007

ii On the Application of a Theory for Mobile Systems to Business Process Management

Zusammenfassung

Diese Arbeit untersucht die Anwendung einer Theorie für mobile Systeme – das π-Kalkül –
auf den Bereich Geschäftsprozessmanagement. Dieser stellt Konzepte und Technologien zur
Erfassung, Analyse, Ausrollung, Überwachung und Auswertung von Geschäftsprozessen zur
Verfügung. Mit der fortschreitenden Verbreitung von dienstbasierten Architekturen als eine
zentrale Realisierungsstrategie für Geschäftsprozessmanagement verschiebt sich der Fokus von
statischen Prozessbeschreibungen, welche durch einen zentralen Abwickler in geschlossenen
Umgebungen ausgeführt werden, hin zu agilen Interaktionen welche in verteilten Umgebungen
wie dem Internet ausgeführt werden. Das π-Kalkül stellt eine Theorie zur Beschreibung solcher
Systeme zur Verfügung.

Im Kontrast zu etablierten, formalen Grundlagen des Geschäftsprozessmanagements bietet
das π-Kalkül eine direkte Unterstützung von Verbindungsübergabemobilität. Verbindungsüber-
gabemobilität stellt die Bewegung von Verbindungen in einem abstrakten Raum von verbun-
denen Prozessen dar. Angewandt auf das Internet repräsentieren Verbindungen einheitliche
Quellenanzeiger welche zwischen verschiedenen Entitäten übergeben werden. Aufgrund dieser
Fähigkeit kann eine Kernfunktion von dienstbasierten Architekturen, dynamisches Binden, for-
mal dargestellt werden. Dynamisches Binden ist ein Schlüsselkonzept welches zur Darstellung
von agilen Interaktionen, in denen Geschäftsprozesse dynamisch aus gegebenen Diensten kom-
poniert werden, benötigt wird. Neben der Unterstützung von dynamischem Binden muss eine
formale Grundlage für Geschäftsprozessmanagement Möglichkeiten zur Unterstützung von ex-
istierenden Techniken bieten. Dazu werden die Fähigkeiten des π-Kalküls zur Darstellung von
Daten, Prozessen und Interaktionen basierend auf bekannten Mustern untersucht. Durch die
Bereitstellung einer formalen Interpretation dieser Muster können Modelle von Prozessen und
Interaktionen zwischen diesen erstellt werden. Aufgrund der eindeutigen Beschreibungen der
Modelle können diese zur Spezifikation und Analyse benutzt werden. Im Rahmen der Analyse
werden Techniken zur Korrektheitsprüfung der erstellten Modelle entwickelt. Weiterhin wird
eine Verbindung zu grafischen Darstellungen gegeben, wobei eine Notation zur Darstellung von
dynamischem Binden eingeführt wird.

iii

iv On the Application of a Theory for Mobile Systems to Business Process Management

Abstract

This thesis investigates the application of a theory for mobile systems—the π-calculus—to busi-
ness process management (BPM). BPM provides concepts and technologies for capturing, an-
alyzing, deploying, running, monitoring, and mining business processes. With the arrival of
service-oriented architectures (SOA), a core realization strategy for BPM, the focus shifts from
static process descriptions enacted by central engines within closed environments to agile inter-
actions that are executed in distributed environments like the Internet. The π-calculus provides
a theory for describing these kinds of systems.

In contrast to established formal foundations for BPM, the π-calculus inherently supports
link passing mobility. Link passing mobility denotes the movement of links in an abstract space
of linked processes. Brought forward to the Internet, links denote uniform resource locators
(URL) that are passed between different entities. Due to this capability, a core feature of SOAs,
dynamic binding, can be represented formally. Dynamic binding is a key concept required to
represent agile interactions, where business processes are dynamically composed out of given
services. Besides supporting dynamic binding, a formal foundation for BPM has to provide
means to support state-of-the-art techniques of BPM. Therefore we investigate the capabilities of
the π-calculus for representing data, processes, and interactions based on common patterns. By
providing formal interpretations of these patterns, models of processes and interactions among
them can be created. Since the models provide an unambiguous semantics, they can be used
for specification and analysis. Regarding analysis, we develop techniques using bisimulation
equivalences for proving the correctness of the models. Furthermore, a link to graphical repre-
sentations is given, where a notation for representing dynamic binding in a graphical manner is
introduced.

v

vi On the Application of a Theory for Mobile Systems to Business Process Management

Publications based on this Thesis

Early ideas have been published and presented at national and international conferences during
the writing of this thesis. A starting point was a conference paper at the third conference on
business process management (BPM) in Nancy (France).1 It showed how the π-calculus might
be used to represent the workflow patterns. With this paper, a first draft of the pattern formal-
izations contained in chapter 5 (Processes) has been brought to a larger audience. While the
formalizations in most cases did not required advanced features of the π-calculus, such as link
passing mobility, a subsequent paper revealed the strengths of the π-calculus for representing
dynamic binding and correlation handling in service-oriented architectures.2 It laid the foun-
dations for section 6.1.1 (Correlations and Dynamic Binding). This paper has been presented
at a workshop covering dynamic web processes alongside the third international conference on
service-oriented computing (ICSOC) held in Amsterdam (The Netherlands). The investigation
continued with a conference paper that discussed shifting requirements for BPM.3 Beside the
investigation of state-of-the-art, new requirements regarding technical and theoretical founda-
tions have been found. Refined versions of these requirements are used to motivate the thesis
in chapter 1 (The Shifting Focus). The results have been presented at the ninth conference on
business information systems (BIS) in Klagenfurt (Austria). Thereafter the research focused
on soundness properties of business processes formalized in the π-calculus. In contrast to ex-
isting properties, the application of bisimulation equivalence for reasoning on deadlock and
livelock freedom has been investigated. Based on an extensive study of the workflow pattern
formalizations, it turned out that several of them constitute problems regarding soundness. The
problems have been overcome by a new soundness property that was named lazy soundness.
A refined version is contained in section 5.3 (Properties) of chapter 5 (Processes). The new
soundness property has been presented to the scientific community at the fourth conference on
business process management (BPM) in Vienna (Austria), where it has been published as part

1 Frank Puhlmann, Mathias Weske: Using the Pi-Calculus for Formalizing Workflow Patterns. In W.M.P. van der
Aalst, B. Benatallah, F. Casati, and F. Curbera (Eds.): Business Process Management, volume 3649 of LNCS,
Nancy, France, Springer-Verlag (2005) 153–168

2 Hagen Overdick, Frank Puhlmann, Mathias Weske: Towards a Formal Model for Agile Service Discovery and
Integration. In K. Verma, A. Sheth, M. Zaremba, and C. Bussler (Eds.): Proceedings of the International Work-
shop in Dynamic Web Processes (DWP 2005), Amsterdam, The Netherlands, IBM technical report RC23822
(2005)

3 Frank Puhlmann: Why do we actually need the Pi-Calculus for Business Process Management? In W.
Abramowicz and H. Mayr (Eds.): BIS 2006—Business Information Systems, volume P-85 of LNI, Klagenfurt,
Austria, Gesellschaft fuer Informatik (2006) 77–89

vii

viii On the Application of a Theory for Mobile Systems to Business Process Management

of the conference proceedings.4 The practical feasibility of lazy soundness has been shown
in an additional presentation, published as part of the demo session proceedings.5 At the same
conference, a short paper, written together with a student of mine, gave an insight on how the ser-
vice interaction patterns might be formalized in the π-calculus.6 While chapter 6 (Interactions)
contains a different approach for representing these patterns, the paper nevertheless provided
valuable ideas. The publication series continued with a paper presented at a national conference
on service-oriented information systems (EMISA) that took place in Hamburg (Germany).7 It
covered the unification of data, processes, and interactions to provide a unified formal represen-
tation of service-oriented architectures. The discussion has been based on an example that can
be found in an extended version in chapter 7 (Unification). In the meantime, a book chapter on
the suitability of the π-calculus for BPM has been published.8 It basically contains an extended
and updated version of the BIS paper published earlier. Another publication covers an exten-
sion of lazy soundness to prove compatibility in interactions.9 The new compatibility property,
denoted as interaction soundness, supports dynamic binding. To the knowledge of the author,
this was the first paper that introduced compatibility with dynamic binding. The updated results
can be found in section 6.3 (Interaction Soundness) of chapter 6 (Interactions). The paper has
been presented at the fourth international conference on service-oriented computing (ICSOC)
in Chicago (USA). Furthermore, during the writing of this thesis, the author supervised a mas-
ter thesis where a graphical environment for the simulation of business processes with dynamic
binding—based on the ideas found in the second and third part of this work—has been imple-
mented. The corresponding tool has been presented at the open.BPM workshop in Hamburg
(Germany).10

4 Frank Puhlmann, Mathias Weske: Investigations on Soundness Regarding Lazy Activities. In S. Dustdar, J.L.
Fiadeiro and A. Sheth (Eds.): Business Process Management, volume 4102 of LNCS, Vienna, Austria, Springer-
Verlag (2006) 145–160

5 Frank Puhlmann: A Tool Chain for Lazy Soundness. Demo Session of the 4th International Conference on
Business Process Management, CEUR Workshop Proceedings Vol. 203, Vienna, Austria (2006) 9–16

6 Gero Decker, Frank Puhlmann, Mathias Weske: Formalizing Service Interactions. In S. Dustdar, J.L. Fiadeiro
and A. Sheth (Eds.): Business Process Management, volume 4102 of LNCS, Vienna, Austria, Springer-Verlag
(2006) 414–419

7 Frank Puhlmann: A Unified Formal Foundation for Service Oriented Architectures. In M. Weske and M.
Nuettgens (Eds.): EMISA 2006, volume P-95 of LNI, Hamburg, Germany (2006) 7–19

8 Frank Puhlmann: On the Suitability of the Pi-Calculus for Business Process Management. In Technologies for
Business Information Systems. Springer-Verlag (2007) 51–62

9 Frank Puhlmann, Mathias Weske: Interaction Soundness for Service Orchestrations. In A. Dan and W. Lamers-
dorf (Eds.): Service-Oriented Computing, volume 4294 of LNCS, Chicago, USA, Springer-Verlag (2006) 302–
313

10 Anja Bog, Frank Puhlmann: A Tool for the Simulation of Pi-Calculus Systems. In 1. GI-Workshop OpenBPM
2006: Geschäftsprozessmanagement mit Open Source-Technologien, Hamburg, Germany (2006)

Acknowledgements

This thesis would not have been written without the support of many people—I’d like to thank
them all. Mathias Weske for being my doctoral adviser and giving me the freedom for my
research. Uwe Nestmann for spending many friday afternoons discussing the technical foun-
dations of this work. Wil van der Aalst for providing the seven challenges as well as tons of
related work—without him I would still seek for my topic. Anja Bog for writing a Master the-
sis about—and implementing—the PiVizTool. Gero Decker and Hagen Overdick for countless
hours of discussion about the π-calculus, BPM, and all the REST. Arnd Schnieders for being my
office mate who always listened to my ideas and critically questioned them. My colleagues Jens
Huendling, Dominik Kuropka, Guido Laures, Harald Meyer, and Hilmar Schuschel for always
excitingly listening and commenting my talks. All the people that provided interesting papers,
discussions, or talks at conferences and mailing lists—way too many to name them all. The
anonymous reviewers who always rejected my submissions but provided excellent comments.
And finally—my family. My parents for supporting years of study. My wife for giving me the
love and support for realizing this work. And—my little daughter who always reminds me that
there is something else to live for...

Potsdam, July 2007

ix

x On the Application of a Theory for Mobile Systems to Business Process Management

Contents

Abstract v

Publications vii

Acknowledgements ix

I Foundations 1
Introduction to Part I . 3

1 The Shifting Focus 5
1.1 Shifting Requirements . 5

1.1.1 From Static to Dynamic Systems . 5
1.1.2 From Central Engines to Distributed Services 7
1.1.3 From Closed to Open Environments 8

1.2 Advancing Theories . 9
1.2.1 Sequential Systems . 9
1.2.2 Parallel Systems . 9
1.2.3 Mobile Systems . 11

1.3 Scope and Scientific Contribution . 11
1.3.1 Scoping . 12
1.3.2 Contribution . 12
1.3.3 Structure . 13

2 The Pi-Calculus 15
2.1 Classification . 15
2.2 Syntax and Semantics . 17

2.2.1 Bindings . 18
2.2.2 Structural Congruence . 20
2.2.3 Reduction Semantics . 21
2.2.4 Flow Graphs . 23

2.3 Bisimulation . 23
2.3.1 LTS Semantics . 24
2.3.2 Ground Bisimulation . 27

xi

xii On the Application of a Theory for Mobile Systems to Business Process Management

2.3.3 Open Bisimulation . 29

3 Business Process Management 33
3.1 Workflow . 36

3.1.1 Workflow Perspectives . 37
3.1.2 Formal Foundations . 38

3.2 Service-oriented Architectures . 45
3.2.1 Orchestrations and Choreographies 46
3.2.2 Formal Foundations . 46

3.3 Graphical Notation . 55
3.3.1 Business Process Diagrams . 55
3.3.2 Formal Foundations . 59

II Investigations 61
Introduction to Part II . 63

4 Data 65
4.1 Structures . 65

4.1.1 Basic Structures . 66
4.1.2 Iterators . 69

4.2 Values, Types, and Functions . 71
4.2.1 Booleans and Bytes . 72
4.2.2 Natural Numbers . 75
4.2.3 Syntactical Extensions . 78
4.2.4 Derived Values and Structures . 80

4.3 Data Patterns . 82
4.3.1 Data Visibility Patterns . 83
4.3.2 Data Interaction Patterns . 85
4.3.3 Data Transfer Patterns . 87
4.3.4 Data-based Routing Patterns . 89

5 Processes 91
5.1 Representation . 91

5.1.1 Structure . 91
5.1.2 Behavior . 93
5.1.3 Processes and Instances . 96

5.2 Process Patterns . 97
5.2.1 Basic Control Flow Patterns . 97
5.2.2 Advanced Branching and Synchronization Patterns 100
5.2.3 Structural Patterns . 104
5.2.4 Multiple Instance Patterns . 104
5.2.5 State Based Patterns . 108
5.2.6 Cancellation Patterns . 110

CONTENTS xiii

5.2.7 Additional Pattern . 111
5.3 Properties . 112

5.3.1 Structural Soundness . 112
5.3.2 Lazy Soundness . 114
5.3.3 Weak Soundness . 117
5.3.4 Relaxed Soundness . 120

6 Interactions 125
6.1 Representation . 125

6.1.1 Correlations and Dynamic Binding 125
6.1.2 Structure . 126
6.1.3 Behavior . 131

6.2 Interaction Patterns . 134
6.2.1 Single Transmission Bilateral Interaction Patterns 134
6.2.2 Single Transmission Multilateral Interaction Patterns 136
6.2.3 Multi Transmission Interaction Patterns 137
6.2.4 Routing Patterns . 139

6.3 Properties . 140
6.3.1 Interaction Soundness . 140
6.3.2 Interaction Equivalence . 142

III Results 145
Introduction to Part III . 147

7 Unification 149
7.1 Formal Models . 149

7.1.1 The Customer . 150
7.1.2 The Bank . 155
7.1.3 The Broker . 158
7.1.4 The Loan Broker Interaction . 159

7.2 Simulation . 163
7.3 Reasoning . 167

7.3.1 Lazy Soundness of the Customer . 167
7.3.2 Interaction Soundness of the Customer 168
7.3.3 Interaction Equivalence of the Banks 169
7.3.4 Conclusion . 170

8 Discussion 171
8.1 Revisiting the Shifting Focus . 171

8.1.1 Dynamic Binding . 171
8.1.2 Composition and Visibility . 172
8.1.3 Change . 173

8.2 Formal Foundations . 174

xiv On the Application of a Theory for Mobile Systems to Business Process Management

8.2.1 Minimum Bisimulation Equivalence Requirements 174
8.2.2 Efforts for Bisimulation . 175
8.2.3 Expressiveness of Bisimulations for Soundness 177
8.2.4 Drawbacks of (Bi)-Simulation for Service Equivalence 178
8.2.5 Drawbacks of the Pi-Calculus Semantics 179

8.3 Related Work . 181
8.3.1 Data, Process, and Interaction Patterns 181
8.3.2 Extended BPMN . 182
8.3.3 Abstract Views of Processes and Interactions with Dynamic Binding . . 182
8.3.4 Lazy Soundness . 182
8.3.5 Interaction Soundness and Equivalence 183
8.3.6 Related Formalizations . 184
8.3.7 Work in Progress . 184

9 Conclusion 187
9.1 Summary . 187
9.2 Future Work . 188
9.3 Concluding Remarks . 189

IV Appendix 191

A Examples 193
A.1 Processes . 194

A.1.1 Lazy Soundness . 194
A.1.2 Weak Soundness . 195
A.1.3 Relaxed Soundness . 197

A.2 Interactions . 200
A.2.1 Interaction Soundness . 200
A.2.2 Interaction Equivalence . 202

A.3 Unification . 203
A.3.1 Lazy Soundness of the Customer . 204
A.3.2 Interaction Soundness of the Customer 205
A.3.3 Interaction Equivalence of the Banks 207
A.3.4 Debugging Session . 207

B Bibliography 209

Part I

Foundations

1

Introduction to Part I

Part I introduces the thesis by motivating the problem, summarizing the theoretical background,
and discussing the state-of-the-art. It starts with the observation of fundamental shifts in the stud-
ied areas. With the arrival of service-oriented architectures (SOA)—a central realization strategy
for business process management (BPM)—static process descriptions, enacted by central en-
gines within closed environments, have come to their limitations. Instead, dynamic interactions,
based on dynamic binding of services found in open environments, come into play. Existing
theoretical treatments based on parallel system theory, however, elide dynamic binding and are
thus left behind recent practical developments. Nevertheless, advancements in theoretical com-
puter science gave rise to theories of mobile systems such as the π-calculus. The π-calculus is a
calculus of parallel components that communicate and change their structure. Due to its support
of changing structures, this calculus is well suited to represent dynamic binding required for
today’s BPM architectures. The preliminaries for the application of the π-calculus to the area of
BPM will be settled in the first part.

Structure of Part I Part I is composed of three chapters. The first chapter introduces the
shifting requirements for BPM and motivates the thesis. The second chapter introduces a variant
of the π-calculus that is used as the formal foundation. The third chapter introduces the state-of-
the-art in business process management.

3

4 On the Application of a Theory for Mobile Systems to Business Process Management

Chapter 1

The Shifting Focus

This thesis discusses the application of a theory for the description of mobile systems into the
domain of business process management (BPM). BPM focuses on designing, enacting, man-
aging, analyzing, adapting, and mining business processes [14]. The investigated theory—the
π-calculus [99]—has been developed during the last two decades based on observations on the
limitations of existing formal theories for sequential and parallel systems. Since sequential and
parallel systems are widely agreed on for the implementation and description of workflows, a
special kind of business processes, we discuss why these do not match the shifting requirements
for the wider area of business process management, introduce arising theories, and finally settle
the scope and scientific contribution.

1.1 Shifting Requirements

Nowadays, we can observe a fundamental shift in the requirements for computer aided business
processes. Those new requirements arise from the evolution of workflow management (WfM)
to business process management. Current state-of-the-art in workflow research focuses on static
process structures for designing and enacting business processes. BPM, in contrast, discusses
agile orchestrations and choreographies resulting from service-oriented architectures (SOA) [41]
as the central realization strategy for BPM. This leads to distribution instead of centralized en-
gines, dynamic process structures instead of static workflows, and agile interactions between
distributed services instead of pre-defined interactions. Why? Because the environments in
which today’s business processes are executed shift from closed to open. These sketched shifts
raise interesting questions regarding the formal representation and verification of interacting
business processes. In the following subsections we motivate the shifts and discuss the issues in
detail.

1.1.1 From Static to Dynamic Systems

Current state-of-the-art research in workflow management focuses on static system theory for
designing and enacting business processes. Examples are workflow nets [9], the YAWL system
[11], workflow modules [85], or production workflows [83]. Analysis of business processes is

5

6 On the Application of a Theory for Mobile Systems to Business Process Management

Send
Credit

Request

Receive and
Display Answer

Timeout

Start Finish

Figure 1.1: Sample business process in workflow net notation [9].

Receive
Credit

Request

Send
Credit

Response

Figure 1.2: An abstract process for interaction with the process from figure 1.1.

focused on Petri nets [110], such as given by different variants of soundness [1, 51]. However, as
BPM broadens to inter-organizational business processes between departments, companies, and
corporations, static process descriptions have come to their limitations. This especially holds
since the arrival of service-oriented architectures as a central realization strategy for BPM.

To underpin these assumptions we provide an example shown in figure 1.1. We used the
workflow net notation [9], since this notation is state-of-the-art in (theoretical) WfM. The busi-
ness process consists of a task that sends a credit request and afterwards waits for either the
response or a timeout if no response has been received within a given timeframe. This process
is executed in isolation in a workflow management system (WfMS). Each task appears at the
work list of an employee who executes it. The first task consists of writing and sending a letter.
Afterwards, two exclusive tasks appear at the work list. If an answer is received by mail within
a given timeframe, the answer is processed, whereas otherwise the timeout task is selected (that
contains some fallback actions).

Most business process management systems (BPMS) incorporate the service-oriented com-
puting (SOC) paradigm. Using SOC, a business process can be wrapped into a service. A
service can interact with other services to fulfill the goals of the contained business process. For
these interactions to take place, a corresponding service is required. Let’s assume this service to
have an abstract process, meaning that we only know the parts that can be used for interaction,
as shown in figure 1.2. We use clouds to denote the hidden parts. All we know is the inter-
face description (receive a request, send response with the corresponding parameter format not
shown in the visualization), as well as the interaction behavior (first receive a request, then send
a response). To denote the interaction between the services in a static way, we need to introduce
additional states that describe incoming requests and outgoing responses. The result contains
two workflow nets, which interact by shared places, shown in figure 1.3.

However, converting business processes to services by defining their static interaction points
is only half the truth of a service-oriented architecture. Beside a service requester and a service

CHAPTER 1. THE SHIFTING FOCUS 7

Send
Credit

Request

Receive and
Display Answer

Timeout

Start Finish

Receive
Credit

Request

Send
Credit

Response

Requests Responses

System
Border

Figure 1.3: Static interaction between the business processes from figure 1.1 and 1.2.

provider, as given by the examples, a third role, called a service broker is employed inside a
service-oriented architecture. The task of the service broker is to discover matching services
based on a request from the service requester and a list of registered service providers. Match-
ing services can then dynamically incorporated for usage within the business process of the
service requester (denoted as dynamic binding). Notable, new service providers can register at
the service broker even after the business process of the service requester has been deployed.
Possible interaction partners cannot be anticipated in advance, but furthermore are discovered
and dynamically integrated during runtime. Another scenario for dynamic binding is given by
callbacks, either via a single or multiple other services. In this case, the service requester hands
some kind of address to the service he invokes. The service is free to give this address to other
services as needed. These other services, as well as the original service, can use the address for
asynchronous responses. Therefore, the services need to be able to dynamically bind themselves
to the original requester.

Requirement One. A theory for BPM based on service-oriented architectures requires support
for dynamic binding of services that was not needed in static WfM theory.

1.1.2 From Central Engines to Distributed Services

Service-oriented architectures as the primary realization for BPM enforce another shift. Loose
coupling between activities of business processes becomes important. Loose coupling is realized
by making single activities available as services. Figure 1.4 shows the interaction from figure
1.3 by representing all tasks as individual services. A circle with a short name inside represents
a service. Lines denote dependencies between services. Each line connects a postcondition of
one service with the precondition of another one, where the precondition end is marked with a
filled circle. Dependencies are given between P1 and S1 , P2 , P3 as well as between S2 and
P2 . The services S1 , P2 , and P3 can only be activated after P1 has been executed, meaning

8 On the Application of a Theory for Mobile Systems to Business Process Management

P1

Send
Credit

Request
P3

Timeout

P2

Receive and
Display AnswerS1

Receive
Credit

Request

S2

Send
Credit

Response

Other space

Our space

Figure 1.4: Dynamic routing and interaction view of figure 1.3.

the preconditions of S1 , P2 , and P3 depend on the postconditions of P1 . The service S2 has
some preconditions linked to S1 that are not known to us.

The loose coupling of different activities that are wrapped into services allows for highly dis-
tributed BPM systems. Instead of having a single engine controlling every aspect of a workflow,
the dependencies are now spread across services representing parts of collaborating business
processes. Distributed services wait for messages to arrive that trigger their activation and pro-
duce new messages to trigger other services. Still, there are some distinctions to be made. They
start with different spaces in the environment where the distributed services live in. In figure
1.4, this is denoted with our space and other space. Our space is usually something like an
intranet, where we control things like access conditions, availability, implementation issues, and
so on. We make some of our services available to the outer world, acting as interaction points,
without providing knowledge or access to our internal structures. Indeed, we are free to restruc-
ture our internals as wanted. Our processes incorporate other services that are available in the
other space, typically in other intranets or the Internet. These other services are parts of sys-
tems such as ours, and represent interaction interfaces. However, we have only limited control
over them, mostly by legal agreements. We cannot enforce their availability, functionality, or
implementation. Still, we are free to drop them as interaction partners and bound to others. This
high flexibility requires the shift from closed, central engines for enacting workflows to open,
distributed services for representing business interactions.

Requirement Two. A theory for BPM should support composition and visibility of differ-
ent components, since the focus shifts from centralized workflow engines to collaborating and
distributed business processes, where integration becomes a core activity.

1.1.3 From Closed to Open Environments

In workflow theory, the execution environments are static and predictable. We denote this kind
of environment as closed, since the level of external influences is rather low. However, with
shifts from traditional departments and companies up to virtual organizations and agile, customer
specific collaborations, the execution environment is shifting too. This new kind of environment
is called open and is represented by large intranets as well as the Internet.

CHAPTER 1. THE SHIFTING FOCUS 9

Closed environments are usually accessible, deterministic, static, and have a limited number
of possible actions. Accessibility describes the level of knowledge we have about the execu-
tion environment regarding completeness, accuracy, and up-to-dateness of the information. In
a single company or department we should be able to exactly capture this knowledge. If we
expand the environment to the whole Internet, there is much left in the dark that could be useful
or crucial for the business, however we are simply unable to find and incorporate it. Executing
a task in an open environment is more uncertain then in a closed one. This is denoted as the de-
terminism of the actions. In an open environment they are way more possibilities to foresee and
handle. However, if the environment is complex enough, as e.g. the Internet, we cannot enforce
everything. While closed environments are most static, open environments tend to be constantly
changing in large parts, regardless of our actions. Interaction partners appear, disappear, are
prevented, or something else happens that we have to take into account for the business to run.
Furthermore, the number of interaction partners that can be invoked to perform a certain task is
rising fast as the environment opens to the world. So the decision-making process of whom to
incorporate into the business is getting more complex.

Requirement Three. A theory for BPM should support change, since the environment where
business processes are executed is shifting from closed to open.

1.2 Advancing Theories

After having introduced the shifting requirements for business process management, we discuss
how theories of computer science can pace up with them. We start with sequential systems,
advance to parallel systems, and conclude with mobile system.

1.2.1 Sequential Systems

Sequential systems can be formally described by the λ-calculus [23]. The λ-calculus is a the-
ory designed to investigate the definition of functions that are used for sequential computing.
It brought the ideas of recursion and the precise definition of a computable function into dis-
cussion even before the first computers were constructed. In the view of computer science,
the λ-calculus can be seen as the smallest universal programming language as any computable
function can be expressed and evaluated using this formalism. The λ-calculus can be used to
describe compositional systems, i.e. system where terms can be replaced and reused. Compu-
tational equal to the λ-calculus are Turing machines [122]. Both had and have a large impact
on today’s programming languages, where the former grounds functional programming and the
latter imperative languages. A common graphical representation of sequential systems is given
by flow charts as shown in figure 1.5(a).

1.2.2 Parallel Systems

While the λ-calculus and Turing machines build the foundation for many computer science
related topics, the formal description of business processes requires a different approach. In

10 On the Application of a Theory for Mobile Systems to Business Process Management

Start Task Decision Stop

(a) Sequential System. (b) Parallel System.

P2

P3

P5

P4

P1

P2

P3

P5

P4

P1

Evolution

(c) Mobile System.

typical business processes tasks are not only executed in sequential order, furthermore tasks are
executed in parallel by different employees to speed up the processing. These different—then
again sequential—processing paths have to be created and joined at some points in the business
processes. Even further, parallel processing tasks could depend on each other. The optimization
of business processes usually adds parallelism as well as dependencies as this is an effective
way to reduce the throughput time for requests. These kinds of parallel processes are difficult
to describe in terms of the λ-calculus. To overcome the limitations of sequential systems, an
approach to represent parallel systems, called Petri nets [110], has been proposed. Petri nets
have a powerful mathematical foundation as well as a strong visual representation. An example
is shown in figure 1.5(b). Petri nets use the concept of an explicit state representation for parallel
systems. Each Petri net is always in a precisely defined state denoted by the distribution of tokens
over places contained in the net. The state of the system can be changed by firing transitions that
relocate the token distribution over the places. Petri nets have been adapted by many systems
that are used in the workflow management domain to describe business processes, e.g. in [55, 2].
Beside the advantages of Petri nets that include strong visualization capabilities, mathematical
foundations, as well as their main purpose, the description of parallel systems, Petri nets also
have serious drawbacks regarding the shifting requirements for BPM. The main drawbacks are
the static structure of the nets as well as the missing capabilities for advanced composition as
for instance recursion. A broad research on the capabilities of Petri nets regarding common
patterns of behavior found in business processes showed that they fulfill basic tasks like splitting
and merging process paths easily, while they fail at advanced patterns like multiple instances
of a task with dynamic boundaries [12]. Whereas there exist approaches to overcome some or
all of the limitations regarding the behavior [9, 11], the static structure and limited composition
capabilities of Petri nets remains.1

1 Petri have been extended with support for dynamic structure, like self-modifying Petri nets [124], recursion [69],
and objects [100]. However, these enhancements also complicate the theory of the nets and thus have reached
limited usage in the area of BPM.

CHAPTER 1. THE SHIFTING FOCUS 11

Enactment

Evaluation

Configuration

Design &
Analysis

Figure 1.5: BPM lifecycle.

1.2.3 Mobile Systems

A theory for mobile systems, the π-calculus [99], overcomes the limitations of Petri nets re-
garding the static structure and limited composition capabilities at the cost of a more complex
representation. The π-calculus represents mobility in mobile systems by directly expressing
movements of links in an abstract space of linked processes. An example is shown in figure
1.5(c). Due to the fact that a mobile system’s structure is evolving all the time, only snapshots
can be given. Practical examples are hypertext links that can be created, passed around, and
disappear. The π-calculus does not, however, support another kind of mobility that represents
the movement of processes. An example is code that is sent across a network and executed
at its destination. The π-calculus focuses on interactions as first class citizens. Interactions
take place between different parallel processes. The processes use names for interaction, where
names are a collective term for concepts like channels, links, pointers, and so on. As the mobile
system evolves, names are communicated between processes and extrude or intrude their scope
regarding certain processes. As synchronization between processes is based on interactions and
received names can also be used as communication channels, the link structure is changing all
the time the mobile system evolves. Another main difference to Petri net theory is given by the
focus on observation of the external visible behavior of systems instead of their internal com-
putations. Observational theory gives rise to bisimulation equivalence, which can be used to
manifest invariants of the system under investigation. Link passing mobility, composition, and
support for bisimulation equivalence of dynamic systems make the π-calculus a promising can-
didate for providing a theoretical foundation for business process management that has yet been
neglected in scientific research.

1.3 Scope and Scientific Contribution

After having motivated the shifting requirements for business process management and dis-
cussed theories for supporting them, we determine the scope, highlight the scientific contribu-
tion, and introduce the structure of this thesis.

12 On the Application of a Theory for Mobile Systems to Business Process Management

1.3.1 Scoping

Business process management can be seen as a circle of activities, shown in figure 1.5. The
initial activities are placed inside Design and Analysis. Here, business processes are modeled
from scratch or existing business processes are re-engineered. The business process models can
then be analyzed regarding three different criteria: (1) Are they doing what they are supposed
to do from a semantic viewpoint? This sub-activity is called validation. (2) Do they fulfill per-
formance requirements? This one is called simulation. (3) Are they free of structural errors
such as deadlocks? The last sub-activity is called verification. In the Configuration activity, sys-
tems are selected and the business processes are implemented, tested, and deployed. Enactment
refers to the actual operation and enactment of the business processes, also including monitoring
and maintenance. The Evaluation activity finally includes process mining and business activity
mining as an input to business process re-engineering found again in Design and Analysis.

In the course of this thesis we investigate the interplay between business process manage-
ment and a formal theory for mobile systems. As can already concluded from the description
of the BPM lifecycle, formal theories play an important role in the design and analysis activity.
Business processes are modeled formally for two major reasons. First of all, a formalized model
allows collaborating people—e.g. business analysts, process modelers, or software engineers—
to settle upon a common understanding. Each of the collaborators might have an own view
atop of the formal model, focusing on certain aspects. The formal model defines concepts like
activities, dependencies between them, and execution constrains as well as providing a unique
semantics. Second, with the help of a theory, a formal model can be verified regarding certain
properties. As shown in figure 1.6, this thesis focuses on the formal representation of business
processes in the π-calculus. Closely related to the formal representation are graphical notations
that will be used to derive formal models. Graphical notations are optimized for creating busi-
ness processes and discuss their semantic meaning. Furthermore, the formal model can be used
as a foundation for an executable representation that has to be enriched with organizational and
system specific properties.

The scope of this thesis is set on the design and verification of formal models of data, pro-
cesses, and interactions between processes as found in the design and analysis activity of BPM.
The theory investigated is a variant of the π-calculus closely related to the original publica-
tion by Milner, Parrow, and Walker [99]. Out of scope are actual functional implementations,
organizational and operational aspects, deployment, enactment, and evaluation.

1.3.2 Contribution

The scientific contribution provides a unified, sound, and formal foundation for the investigated
areas of business process management. First of all, a sound formalization of data, workflow, and
service interaction patterns will be given. Due to the nature of the original pattern descriptions, a
number of implicit assumptions have to be made explicit in the course of this thesis. As a second
step, algorithms for mapping a graphical notation to π-calculus expressions will be given. We
focus on a subset of the Business Process Modeling Notation (BPMN). Furthermore, we enhance
the subset of the BPMN to directly support dynamic interactions based on the idea of π-calculus
names. To abstract the formal expressions of the π-calculus from a certain graphical notation for

CHAPTER 1. THE SHIFTING FOCUS 13

Design & Analysis

Graphical
Process/

Interaction
Pi-Calculus

Representation

Verification

Executable
Representation

Validation Simulation

......

Figure 1.6: The scope of this thesis classified inside the BPM lifecycle.

BPM, we introduce an intermediate layer given by process and interaction graphs. These graphs
provide an abstract view of processes and interactions. Basing on the formal models, we derive
two new kinds of soundness that will be denoted as lazy soundness and interaction soundness.
While the former guarantees a temporal deadlock freedom for processes, the latter provides a
compatibility notion for a set of interacting processes with a special focus on dynamic bind-
ing. The soundness properties will be complemented by a behavioral conformance property that
considers observable interactions of different services. The property will be called interaction
equivalence. Since interaction equivalence is too strong regarding several applications, a weaker
version that will be based on simulation will conclude the different kinds of verification. Since
the actual reasoning will be done in the π-calculus, algorithms for proving lazy soundness, inter-
action soundness, and interaction equivalence using bisimulation equivalences will be provided.
Finally, a prototypical tool chain for showing the practical feasibility will be discussed.

1.3.3 Structure

This thesis is divided into three parts. The first part introduces the π-calculus and the domain
of business process management including key concepts. The second part investigates how the
π-calculus can be applied to describe and reason about models of business processes including
data, processes, and interactions. The third part discusses the results leading to a unified formal
foundation for the investigated areas.

Part I: Foundations. Chapter 2 introduces the π-calculus. It starts by classifying existing
process calculi. A syntax and semantics for the π-calculus is given afterwards. The chapter is
concluded by providing a graphical representation of π-calculus systems as well as discussing
bisimulation as a way of reasoning. Chapter 3 introduces the domain of business process man-
agement starting with key concepts used throughout this thesis. It then discusses workflow
as state-of-the-art including different perspectives and formal foundations given by set the-
ory and Petri nets. Workflow is complemented by expansion to business process management
and service-oriented architectures including orchestrations, choreographies, and existing formal
foundations. The chapter concludes by introducing a notation for the graphical representation of
business processes.

14 On the Application of a Theory for Mobile Systems to Business Process Management

Part II: Investigations. Chapter 4 discusses how structured data can be represented in the π-
calculus. Based on formal definitions of basic types like booleans and integers, complex struc-
tures like tuples, stacks, queues, and lists are defined. The chapter concludes by giving examples
of how the workflow data patterns can be formalized. Chapter 5 investigates how business pro-
cesses can be represented formally. It starts by introducing an abstract structure called process
graph that builds an intermediate layer between a graphical notation and the π-calculus. It in-
troduces an algorithm to map process graphs to π-calculus expressions based on the workflow
patterns. Furthermore, reasoning on process graphs is introduced, leading to the definition of
a new kind of soundness called lazy soundness, as well as adapting existing soundness defi-
nitions to process graphs. Reasoning is based on bisimulation equivalences between different
invariants and π-calculus formalizations of the process graphs. Chapter 6 goes one step further
and discusses interacting business processes. It discusses concepts like correlations and dy-
namic binding typically found in interacting systems. Interactions between business processes
are represented using interaction graphs, that again represent an intermediate layer between a
graphical notation and the π-calculus. This time, an algorithm for mapping interaction graphs
to π-calculus expressions is given. Furthermore, possible realizations of the service interaction
patterns inside an interaction graph are discussed. The chapter concludes by introducing rea-
soning on interaction graphs, deriving two new properties, namely interaction soundness and
interaction equivalence. While the former focuses on deadlock freedom of a given process and
a set of services, the latter ensures behavioral equivalence of different service realizations.

Part III: Results. In chapter 7, the unification of the three investigated areas is illustrated by
example. Further concepts like data flow graphs are discovered, investigated, and described. The
chapter concludes by applying simulation and reasoning on the example. Chapter 8 discusses the
results by first returning to the fulfillment of the shifting requirements of BPM. Further topics
include the discussion of drawbacks of the π-calculus for the investigated areas as well as related
work. The thesis is concluded in chapter 9, where the results are summarized and ideas for future
work are drawn.

Chapter 2

The π-calculus

This chapter describes the π-calculus as it is applied throughout this thesis. The π-calculus
is a process calculus, which is a theoretical framework for the study of concurrent processes.
Since there exist different variants of the π-calculus, e.g. [99, 108, 96, 97, 118], necessary and
matching concepts are distilled and presented in this chapter. These are the syntactical rules to
derive processes, formal semantics, and bisimulations between processes. The chapter starts by
introducing different process calculi in general and classifies the π-calculus among them.

2.1 Classification

The history of process calculi can be traced back to the seventies, when in 1978 Hoare [71] pro-
posed a language called Communicating Sequential Processes (CSP). It aimed at the description
of parallel systems that are composed out of sequential components. The key concepts of CSP
include guarded commands to control non-determinism and parallel commands to execute se-
quential processes concurrently. In contrast to existing approaches at that time, the sequential
processes do not communicate using global variables. Instead, they denote a system of interact-
ing automata with local variables that use communication with input and output commands to
synchronize their execution. CSP has been extended later on with a formal semantics [40, 72]
and is still a major foundation for the description and reasoning on parallel systems [111].

Since CSP lacked a formal semantics in the beginning, a competing approach called a Calcu-
lus of Communicating Systems (CCS) has been proposed in 1980 by Milner [92]. Milner based
his calculus on rigid formal foundations required for the investigation of observation equiva-
lence between systems made up of concurrent processes. Observation equivalence between two
systems is given if their behavior is indistinguishable by observation in all possible environments
(contexts). In his work, he also denoted what a useful process calculus is about:

”It should be possible to describe existing systems, to specify and program new
systems, and to argue mathematically about them, all without leaving the notational
framework of the calculus.” [92]

While Hoare’s CSP at this time mainly aimed at description and specification of systems, Mil-
ner’s CCS had a strong mathematical focus on reasoning about concurrent processes. Like CSP,

15

16 On the Application of a Theory for Mobile Systems to Business Process Management

Process
Calculi

CSP
(1978)

CCS
(1980)

ACP
(1982)

Pi-Calculus
(1989)

Join
Calculus
(1996)

Spi
Calculus
(1997)

Fusion
Calculus
(1998)

Mobile
Ambients

(1998)

Figure 2.1: A classification of selected process calculi.

also CCS has been refined later on [93, 94].

In 1982 another approach, this time called an Algebra of Communicating Processes (ACP),
was published by Baeten and Weijland [21]. The purpose of this approach was to provide an
axiomatic investigation of concurrent processes. Baeten and Weijland furthermore coined the
term process algebra in their work. Today, process algebra and process calculus are often used
synonymously.

In the mid-eighties, all three major approaches (CSP, CCS, and ACP) reached a level of
maturity making them well suited to fulfill Milner’s requirements on a useful process calculus.
In 1986 a technical report by Engberg and Nielsen introduced an approach to extend CCS with
label passing [56]. In its core, it allowed for the transmission of communication links between
concurrent processes. The processes, in turn, can use the newly received communication links to
establish communication with processes prior unknown to them. Thus, the concurrent processes
of Engberg and Nielsen are not based on static communication structures as in existing process
calculi at that time. Their label passing approach is nowadays known as link passing mobility
(see also page 53). Three years later, in 1989, the π-calculus was introduced by Milner, Parrow,
and Walker based on CCS and the work of Engberg and Nielsen [99]. They described a calculus
of communicating systems that is able to express processes with changing structures. The π-
calculus merges variables, constants, and channels, by unifying them into one single concept
called name. Names are used as input and output ports of processes as well as the values that
are communicated. Based on or inspired by the π-calculus, several subsequent process calculi
targeting more specific topics have been developed. Examples are the Join Calculus by Fournet
and Gonthier [61], Spi-Calculus by Abadi and Gordon [16], Mobile Ambients by Cardelli et
al. [44], and Fusion Calculus by Parrow [109]. In 2001 Milner introduced bigraphical reactive
systems [98] as a model of mobile interactions.

A graphical classification of the different process calculi discussed is shown in figure 2.1.
While CSP and ACP also motivated subsequent developments, only a selected subset of exten-
sions to the concepts of the π-calculus are included. An extended discussion on the history of
process algebra by Baeten can be found in [20]. A more recent discussion of mobile calculi by
Nestmann can be found in [103].

CHAPTER 2. THE PI-CALCULUS 17

2.2 Syntax and Semantics

The process calculus under consideration, the polyadic π-calculus, consists of an infinite set
of names and another infinite set of agent identifiers.1 As stated, names are a collective term
for concepts like links, pointers, references, identifiers, channels, and so on. They are used for
interaction among concurrent agents, as well as representing data that is communicated in these
interactions. N denotes the set of names ranged over lowercase letters such as a, b, c and K
denotes the set of agent identifiers ranged over uppercase letters such as R,S, T .

The agents evolve by performing actions. The capabilities for action are divided into four
kinds. The first capability of an agent is sending a tuple of names, denoted as ỹ, synchronously
via another name used as a channel. The second capability represents the opposed functionality
of receiving a tuple of names synchronously via another name, again used as a channel. To avoid
confusion, the names of z̃ have to be pairwise distinct. The third capability is the execution of an
unobservable action, a so called silent step. The last capability is performing a match between
two names. Capabilities of agents are represented as prefixes given by:

π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π . (2.1)

The output prefix x〈ỹ〉 consists of a subject x and objects ỹ. A name used as the subject of an
output prefix is called a co-name, it is represented with a bar above the name. The subject can
be thought of as an output port of an agent that contains it and it is able to send the objects. The
input prefix x(z̃) consists of the subject x and the objects z̃. Here, the subject x can be thought
of as an input port. The input prefix is able to receive arbitrary names and replace each further
occurrence of the names of z̃ in the agent containing the input prefix with the received names.
The unobservable prefix is denoted as τ , it represents an internal or silent step. The match prefix
is denoted as [x = y]π, it behaves like the prefix π if x and y are equal. The agents of the
π-calculus are given by:

P ::= M | P |P | νz P | A(x1, . . . , xn)
M ::= 0 | π.P | M + M .

(2.2)

The termination symbol is 0, denoting an agent that can do nothing. The current capabilities of
an agent are given by π.P . They state that the agent behaves as P after the action represented by
π has been done. For instance, a〈x〉.x(z).0 first sends the name x via a and thereafter receives
a name via x. M + M denotes a summation, where the agent continues as either the left or
the right hand side. For instance, a(x).0 + b(y).0 can receive a name either via a or b. P |P
represents parallel composition. The left and the right hand side are called components and
are executed independently of each other. Two components can interact via shared names on
matching input and output prefixes. For instance, in a〈x〉.0 | a(y).0 the left hand component
can send x via a and the right hand component can receive x via a. The restriction operator
νz P restricts the scope of the name z to P . Components of P can interact via z. For instance,
in (νa (a〈x〉.0 | a(y).0) | Q), the left hand component can interact with the middle component,

1 We use the term agent to denote a π-calculus process for avoiding a semantic mismatch with a (business) process
as introduced in chapter 3.

18 On the Application of a Theory for Mobile Systems to Business Process Management

whereas any instance of Q is unable to interact with the other components. A(x1, . . . , xn)
represents a defined agent identifier:

A(x1, . . . , xn)
def
= P with i 6= j ⇒ xi 6= xj . (2.3)

Each agent identifier has a definition as above, where all names used as parameters are pairwise
distinct. It can be seen as a process declaration with x1, . . . , xn as formal parameters found in
P . The formal parameters are replaced by actual names as the agent evolves. An instance is

R(x)
def
= νy x〈y〉.R(y) + τ.0 ,

that either transmits a restricted name via the name given by the parameter or stops execution.
We use parentheses to resolve ambiguity or ease the understanding. Prefixes and restriction

bind more tightly than composition. For instance π.P | Q is (π.P) | Q. Furthermore, product
and summation operators are used to denote multiple agents. For instance,

∏3
i=1 Pi means

P1 | P2 | P3 and
∑3

i=1 Qi means Q1 + Q2 + Q3. A sequence of identical prefixes is denoted by
curly brackets, for instance {x(a)}3

1 means x(a).x(a).x(a). The length of a tuple z̃ is denoted
as |z̃|. If the length of the object is zero, x〈〉 and x() are denoted with elided brackets, i.e. x and
x. Finally, we sometimes denote a sequence of restrictions such as νz1 . . . νzn in a short way by
νz1, . . . , zn or put brackets around (νz1, . . . , zn).

2.2.1 Bindings

The π-calculus has two operators for name binding, i.e. they restrict the scope of a name:

Definition 2.1 (Binding) The input prefix x(z).P and the restriction operator νz P are binding
the occurrence of z within the scope of P . �

The occurrence of a name that is not bound is called free. The set of names that occur free
in an agent P is denoted as fn(P) ⊆ N , whereas the names that occur bound are denoted as
bn(P) ⊆ N . Examples are:

fn(x(y).(a〈y〉.0 + b〈y〉.0) | (νd)x〈d〉.0) = {a, b, x} ,

and
bn(x(y).(a〈y〉.0 + b〈y〉.0) | (νd)x〈d〉.0) = {d, y} .

A bound name in an agent can be changed to another name:

Definition 2.2 (α-conversion) Let x ∈ bn(P). The syntactical replacement of x inside its
scope with another name y, y 6∈ fn(P) ∪ bn(P), is denoted as α-conversion. �

Two agents P and Q are α-convertible, denoted as P = Q, if Q can be derived from P by a
finite number of changes of bound names (α-conversions). An instance is given by

a(x).b〈x〉.0 = a(y).b〈y〉.0 .

Names can occur free and bound in the same agent. Thus, for

A
def
= y(z).x(y).y〈b〉.0

CHAPTER 2. THE PI-CALCULUS 19

it holds that y ∈ fn(A) and y ∈ bn(A). To avoid such homonyms, the condition fn(P) ∩
bn(P) = ∅ should be used whenever applicable. Furthermore, we consider all free names of
an agent to be its parameters and omit them except those changing in parametric recursion.
Consider for instance

A(x)
def
= a〈x〉.A(x) + b(y).A(y) ,

where a and b are omitted from the parameter list. The name x has been kept because it is
required for parametric recursion (a and b are invariant in A).

Agents can interact via free names, e.g. if x ∈ fn(P) then agent P can use x for interaction
with another agent. The evolution of an agent with an input prefix x(z̃).P applies a substitution
of the names of z̃ with the received names in P .

Definition 2.3 (Substitution) A substitution is a function that maps names to names: σ : N →
N . �

A substitution σ with σ(x) = y that maps x to y and σ(z) = z, z 6= x representing identity
for all other names is written as {y/x}. A number of names that are substituted instantly is
denoted {ỹ/x̃}, where the names of x̃ have to be pairwise distinct and |x̃| = |ỹ|. The application
of a substitution σ to an agent A is denoted as Aσ. To avoid unintended captures of bound names
(called scope intrusion), an α-conversion of bound names has to take place wherever required.
If P{w/y} should take place and w is bound in P so that the new w disturbs the scope of the old
w, then w has to be changed to z beforehand (z 6∈ fn(P) ∪ bn(P)). Since names are used as
subjects and objects, substitution triggered by an input prefix is what actually implements link
passing mobility in π-calculus. An example is given by

x〈a〉.P ′ | x(b).b〈c〉.Q ′ ,

where the left hand component has knowledge of a name a that is sent via x to the right hand
component. In the second prefix of the right hand component, the received name is used as the
subject of an output prefix. Hence, the right hand component has gained a new interaction link.

Bound occurrences of names introduced by the restriction operator νzP have two interesting
properties. First, components of P can interact with each other via z. Second, components of P
can extrude the scope of z to another agent by sending z via some name. For instance, in

νa (a〈b〉.a(x).0 | a(w).w〈a〉.0) | b(y).y〈z〉.0

the first and the second component can interact via a due to fn(a〈b〉.a(x).0) = {a, b} and
fn(a(w).w〈a〉.0) = {a}. The third component has no interaction with the other components
yet. After an interaction of the first and the second component, the agent is given by:

νa (a(x).0 | b〈a〉.0) | b(y).y〈z〉.0 .

Still, the occurrence of the name a is bound to the first and second component. However, the
second component can communicate a via the free name b to the second component. The scope
of a is extruded:

νa (a(x).0 | 0 | a〈z〉.0) .

Finally, also the third component can interact with the first component (omitted).

20 On the Application of a Theory for Mobile Systems to Business Process Management

SC-ALPHA P1 ≡ P2, if P1 = P2

SC-MAT [x = x]π.P ≡ π.P
SC-SUM-ASSOC M1 + (M2 + M3) ≡ (M1 + M2) + M3

SC-SUM-COMM M1 + M2 ≡ M2 + M1

SC-SUM-INACT M + 0 ≡ M
SC-COMP-ASSOC P1 | (P2 | P3) ≡ (P1 | P2) | P3

SC-COMP-COMM P1 | P2 ≡ P2 | P1

SC-COMP-INACT P | 0 ≡ P
SC-RES νz νw P ≡ νw νz P
SC-RES-INACT νz 0 ≡ 0
SC-RES-COMP νz (P1 | P2) ≡ P1 | νz P2, if z /∈ fn(P1)

SC-UNFOLD A(ỹ) ≡ P{ỹ/x̃}, if A(x̃)
def
= P

Table 2.1: The axioms of structural congruence.

2.2.2 Structural Congruence

Before we continue with a formal semantics for the evolution of agent terms, we require a defi-
nition of structural congruence between them. Structural congruence requires two prerequisites,
namely context and congruence. Informally, a context is an agent with an expansion slot (hole)
to add additional behavior given by another agent:

Definition 2.4 (Context) A context is an agent term with exactly one occurrence of a hole,
denoted as [·], instead of a non-degenerated occurrence of 0. �

An occurrence of 0 is non-degenerated if it is not the left or right hand term in a sum. C[P]
denotes a context C with [·] replaced by agent P. The replacement is literal, which means that

occurrence of names free in P may be bound in C[P]. For instance, let C
def
= νx (x〈a〉.0 | [·]),

then C[x(y).0] = νx (x〈a〉.0 | x(y).0). Congruence is then given by:

Definition 2.5 (Congruence) An equivalence relation S on agents is a congruence if (P,Q) ∈ S
implies (C[P], C[Q]) ∈ S for every context C. �

Structural congruence is a certain type of congruence:

Definition 2.6 (Structural Congruence) Structural Congruence, denoted as ≡, is the smallest
congruence on agents that obey to the axioms in table 2.1. The axioms of structural congruence
allow the recasting of agent terms. �

SC-ALPHA relates α-convertible agents, whereas SC-MAT simply saves the introduction of
a transition rule for match in the formal semantics given later on. For instance, using SC-MAT,
SC-SUM-INACT, and SC-COMP-COMM, the following agents are structurally congruent:

a(b).0 | ([z = z]a〈z〉.0 + 0) ≡ (a〈z〉.0 | a(b).0) .

Structural congruence keeps commutativity and associativity for products and summations,
as well as making 0 the identity element. More interestingly is the application of the axioms for

CHAPTER 2. THE PI-CALCULUS 21

restriction:

νx ((a〈x〉.0 + b〈x〉.0) | νz y〈z〉.z(c).0) ≡ νz (νx (a〈x〉.0 + b〈x〉.0) | y〈z〉.z(c).0) .

Using SC-RES, SC-COMP-COMM, and SC-RES-COMP, the restriction operator νz has been
brought to the top of the term, whereas νx moved inside. SC-RES-COMP realizes scope extru-
sion, as in

(νx a〈x〉.0) | a(y).0 ≡ νx (a〈x〉.0 | a(y).0) ,

and in combination with α-conversion also scope intrusion, as in

(νx a(b).b〈x〉.0) | a〈x〉.0 ≡ νx ′ (a(b).b〈x ′〉.0 | a〈x〉.0) .

Finally, SC-UNFOLD can unfold terms realizing parametric recursion. For instance, an agent

given by A(x)
def
= νa x〈a〉.A(x) + τ.0 will unfold as a term in x(y).A(y) as follows:

x(y).A(y) ≡ x(y).(νa y〈a〉.A(y) + τ.0) .

2.2.3 Reduction Semantics

We now make the informal semantics of the π-calculus explicit by introducing a reduction rela-
tion on agent terms. Formally, the semantics is based on a transition system:

Definition 2.7 (Transition System) A transition system is defined as a pair (S,−→) with:

• S is a set of states and

• −→⊆ S × S is a transition relation. �

The set of states is given by the grammar according to equation 2.2. The idea behind the
transition relation −→ is that an agent P can evolve to P ′, denoted as P −→ P ′, as a result
of an intraaction between components of P . Thus, we only cover internal actions of an agent.
The reduction relation is given by a set of inference rules (equations 2.4–2.8) that make use of
structural congruence. Inference rules are composed out of premises and a conclusion. If the
premises are fulfilled, the conclusion is also valid. Inference rules are written in the form:

Premises
Conclusion

.

If the set of premises is empty, the conclusion is denoted as axiom. Regarding reduction, the key
rule is an axiom:

(x〈ỹ〉.P + M) | (x(z̃).Q + N) −→ P | Q{ỹ/z̃} with |ỹ| = |z̃| . (2.4)

The axiom states that two components made up of sums can interact via a name x. If the
intraaction takes place, M and N are discarded, the prefixes before P and Q are removed, and
the names z̃ in Q are substituted with ỹ. Interestingly, if an intraaction with an agent is possible,

22 On the Application of a Theory for Mobile Systems to Business Process Management

it can always be brought in a form resembling axiom 2.4 via the axioms of structural congruence
from table 2.1. The corresponding inference rule is given by

Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′ . (2.5)

Consider for instance an agent
a(x).A | a〈b〉.B

that has to be brought into a form corresponding to axiom 2.4 to derive a reduction. By using SC-
COMP-COMM the order of the components can be flipped and via SC-SUM-INACT the required
sums can be added:

a(x).A | a〈b〉.B ≡ a〈b〉.B | a(x).A ≡ (a〈b〉.B + 0) | (a(x).A + 0) .

Since the form matches the axiom, a reduction is possible:

(a〈b〉.B + 0) | (a(x).A + 0) −→ B | A{b/x} .

By applying SC-COMP-COMM again, the expected result can also be denoted as

a(x).A | a〈b〉.B −→ A{b/x} | B ,

giving the intuitive expected behavior.
Beside intraactions inside an agent, also internal actions denoted by τ as given in equation

2.1 are possible. The formal behavior is captured in a second axiom:

τ.P + M −→ P . (2.6)

The axiom states that a sum with a τ prefix at the left term can reduce to P and discard M . Due
to rule 2.5, SC-SUM-COMM can be used to flip the terms of the sum:

x(y).A + τ.B −→ B .

A second inference rule considers the parallel composition of agent terms:

P −→ P ′

P | Q −→ P ′ | Q . (2.7)

The rule states that a component P can evolve independently of another component Q if P has
a reduction. Consider

(u〈w〉.A | u(x).B) | τ.C −→ (A | B{w/x}) | τ.C ,

that can be reduced because the left hand term has an intraaction according to axiom 2.4 and
rule 2.5.

The reduction semantics is completed with a third inference rule, covering restrictions:

P −→ P ′

νz P −→ νz P ′ . (2.8)

The rule states that a restriction of a name above an agent term does not inhibit a reduction. The
restricted name can even be used as subject of an intraaction:

νa (a〈b〉.A + 0) | (a(x).B + 0) −→ νa (A | B{b/x}) .

CHAPTER 2. THE PI-CALCULUS 23

P Qx

R

a

P' Q'x

R

a

x x

Figure 2.2: Flow graph example.

2.2.4 Flow Graphs

A graphical representation of π-calculus agents is given by an informal usage of Milner’s flow
graphs [91] as introduced in [99]. A flow graph is a certain kind of graph, where nodes repre-
sent agents and arcs represent communication links between them. Figure 2.2 shows a system
composed of three agents before and after a reduction. The corresponding agents are given by

νx (P | Q) | R with P
def
= b(z).0 + x〈a〉.P ′, Q

def
= x(y).Q ′, and R

def
= a.R′ ,

where only P and Q are intraacting and evolve to P ′ and Q ′, with a 6∈ fn(P ′) ∪ fn(Q). Nodes
are denoted as circles with the name of the agent inside, where a hierarchical order might be kept
(i.e. agents consisting of more than one component might be collapsed or expanded). Circles
representing agents are connected using lines, where a dotted end denotes the target node. A line
is drawn from each node representing an agent with an output prefix to another node representing
an agent with a matching input prefix. Bound names are written inside the circle that represents
the corresponding agent, as near as possible to the connecting edge. Free names are written as
labels along the edges. In any case, it is possible to only show important names and agents. For
instance, P can behave as shown, but additionally includes the name b as an input prefix that is
not contained in the flow graph.

2.3 Bisimulation

In this section, equivalences between agents based on their external observable behavior are
introduced. These are denoted as bisimulation equivalences or bisimilarities. If two agents are
related by a bisimulation, they match each others transitions in a way that cannot be distinguished
by an external observer. The informal meaning of bisimulation equivalence can be given as
follows:

Let P and Q be two related agents. If P can evolve to P ′, then also Q must be able
to evolve to Q ′ such that P ′ and Q′ are again related. If the same holds for the op-
posite direction, starting from Q, the two agents are called bisimilar or bisimulation
equivalent.

Bisimulation was first mentioned by Park in [107], based on Milner’s work on simulation
[90]. According to Milner’s extended work [94], bisimulation has its root in standard automata
theory. See for instance figure 2.3(a), which shows a tea and coffee vending machine. The user

24 On the Application of a Theory for Mobile Systems to Business Process Management

Vending Machine

Coin CoffeeTea

(a) External View.

c
c

tea

coffee

(b) Internal Automaton A.

c c

tea

coffee

c

(c) Internal Automaton B.

Figure 2.3: A vending machine.

can insert coins (represented by the pushbutton) and receive either tea or coffee (represented
by the bulbs). Furthermore, two different versions of the internal automaton are shown. The
alphabet of both automata is made up of the transitions ActV = {c, tea, coffee}. C represents
an external input to the vending machine, i.e. the insertion of a coin, whereas tea and coffee
represent an external output of the vending machine, i.e. the products. Both automata deliver
tea for the insertion of one coin, and coffee for the insertion of two coins. Regarding automata
theory, both accept the same language and are thus behavioral equivalent (omitted, see [97]).
Regarding a thirsty user, both are quite different. While variant A shows a deterministic behav-
ior, variant B acts non-deterministic! Instead of analyzing traces as in standard automata theory,
bisimulation contains a stronger equivalence criterion, since the current actions are taken into
account. Concerning the example, both automata for the vending machine can be proven not to
be bisimulation equivalent according to the informal definition stated above.

Example 2.1 (Vending machines) Variant A of the vending machine is not bisimulation
equivalent to variant B. Proof by counterexample:

1. Let A
def
= c.(tea.A + c.coffee.A) and B

def
= c.tea.B + c.c.coffee.B according to figure

2.3.

2. Now A
c−→ tea.A+c.coffee.A, while B has a non-deterministic choice when mimicking

the interaction, e.g. B
c−→ tea.B.

3. Finally, the remainder of A accepts another interaction tea.A + c.coffee.A
c−→ coffee.A

that the remainder of B is unable to mimic. �

2.3.1 LTS Semantics

The reduction semantics given in the previous section does not describe the external observable
behavior of the π-calculus agents. Axiom 2.4 only describes internal actions (i.e. intraactions)
of an agent. Since these actions are internal, the only external observation that can be made at
most is the fact that something has happened. This something corresponds to an internal action
denoted as τ . If we want to express that an agent has the capability to receive an input from an
(arbitrary) environment, work on the input, and finally provide a result back to the environment,
reduction semantics is not sufficient. An environment can be thought of as some kind of context
where the agent is placed within. Consider for instance

νy i(x).τ.o〈y〉.0 .

CHAPTER 2. THE PI-CALCULUS 25

According to reduction semantics, this agent cannot evolve. Nevertheless, it contains possible
communications with an environment via i and o. Adding support for these kinds of interactions
requires a differentiation between the actions that can occur. Beside internal actions, also input
and output actions should be observable. The observation of different actions is made possible
with a labeled transition system (LTS) semantics that bears the actions as labels:

Definition 2.8 (Labeled Transition System) A labeled transition system is defined as a three-
tuple (S, T,

t−→) with:

• S is a set of states,

• T is a set of transition labels, and

• t−→⊆ S × S is a family of binary transition relations for each t ∈ T . �

The set of states is given by the grammar according to equation 2.2. The set of transition
labels, called actions, is derived from the prefixes.

Definition 2.9 (Actions) The actions α of the π-calculus are given by:

α ::= x〈(νz̃)ỹ〉 | x(ỹ) | τ ,

where Act denotes the set of actions and z̃ ⊆ ỹ. �

The first action corresponds to the output prefix, where the objects ỹ are sent via the subject
x. The objects can be restricted names, denoted as νz̃, inside the tuple ỹ. In this case scope
extrusion takes place. The second action corresponds to the input prefix, where the objects ỹ are
received via the subject x. The third action denotes an internal, unobservable action. The names
contained in an action are given by n(α) and the bound names by bn(α):

n(α) =

α = x〈(νz̃)ỹ〉 : {x, ỹ, z̃}

α = x(ỹ) : {x, ỹ}
α = τ : ∅

and bn(α) =

α = x〈(νz̃)ỹ〉 : {z}

α = x(ỹ) : {ỹ}
α = τ : ∅

.

The semantics for the agents, i.e. how they can evolve, is given by the transition relations.

Definition 2.10 (Transition Relations) The transition relations α−→ of the π-calculus, with
α ∈ Act , are given by the rules in figure 2.4. �

Rule STRUCT explicitly includes the axioms of structural congruence into the semantics,
since they simplify the transition rules. PREFIX requires a special treatment of input transitions
such as

P
a(x)−→ P ′ .

Due to the late semantics, x does not denote the value received, but rather locates the places in
P ′ where x will appear. An alternative rule with explicit substitution, such as

a(x).P au−→ P ′{u/x}
,

26 On the Application of a Theory for Mobile Systems to Business Process Management

STRUCT
Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′ PREFIX
α.P

α−→ P
SUM

P
α−→ P ′

P + Q
α−→ P ′

PAR
P

α−→ P ′

P | Q α−→ P ′ | Q
(bn(α)∩fn(Q)=∅) COMM

P
x〈ỹ〉−→ P ′ Q

x(z̃)−→ Q′

P | Q τ−→ P ′ | Q′{ỹ/z̃}
(|ỹ|=|z̃|)

RES
P

α−→ P ′

νz P
α−→ νz P ′ (z 6∈ n(α)) OPEN

P
x〈(νz̃)ỹ〉−→ P ′

νa P
x〈(νaz̃)ỹ〉−→ P ′

(x6=a ∧ a6∈z̃ ∧ a∈ỹ)

Figure 2.4: The π-calculus transition rules.

would give a slightly different semantics that will not be discussed further. Using PREFIX,

a(x).x〈y〉.0 a(u)−→ u〈y〉.0 u〈y〉−→ 0

evolves to inaction. Furthermore, using STRUCT, PREFIX, and SUM,

b〈u〉.0 + τ.a(x).0 τ−→ a(x).0

evolves to the right hand side of the summation. The corresponding derivation tree of the pre-
ceding transition is:

STRUCT

SUM
τ.a(x).0 τ−→ a(x).0

τ.a(x).0 + b〈u〉.0 τ−→ a(x).0

b〈u〉.0 + τ.a(x).0 τ−→ a(x).0 .

Rule PAR has the side condition that Q does not contain a name that is bound in α. In
P | Q α−→ P ′ | Q the action should not refer to any occurrence of a name in Q. Hence, an
inference

PAR
a(x).P

a(x)−→ P

a(x).P | Q a(x)−→ P | Q

combined with an output a〈u〉.R a〈u〉−→ R using COMM

COMM
a〈u〉.R a〈u〉−→ R (a(x).P | Q)

a(x)−→ (P | Q)

a〈u〉.R | (a(x).P | Q) τ−→ R | (P | Q){u/x}

is only valid if x /∈ fn(Q) (according to PAR), because otherwise the substitution {u/x} might
affect a free x in Q. To make an interaction possible if x ∈ fn(Q), the bound name x of P has to

CHAPTER 2. THE PI-CALCULUS 27

be α-converted first. Still, COMM does not support scope extrusion directly. A possible solution
is using STRUCT to bring the restriction to the top of the term before applying RES and COMM:

STRUCT

RES

COMM
a〈u〉.P a〈u〉−→ P a(x).Q

a(x)−→ Q

a〈u〉.P | a(x).Q τ−→ P{u/x} | Q
νu (a〈u〉.P | a(x).Q) τ−→ νu (P | Q{u/x})

(νu a〈u〉.P) | a(x).Q τ−→ νu (P | Q{u/x}) .

The derivation tree above shows how bound output actions can be bypassed, while scope extru-
sion by communicating bound names is still possible. This is due to RES, where all interactions
using COMM are valid, since n(τ) is always empty. Rule OPEN describes the output of bound
names. An application is given by:

OPEN
a〈u〉.P a〈u〉−→ P

νu a〈u〉.P a〈νu〉−→ P .

OPEN is required to capture the special case of exporting bound names. This case is required for
open d-bisimulation introduced later on.

2.3.2 Ground Bisimulation

We are now prepared to give a formal definition of bisimulation for agent terms. To distinguish
different kinds, we denote the basic bisimulation as ground bisimulation:

Definition 2.11 (Ground Bisimulation) A ground bisimulation is a symmetric, binary relation
R on agents such that ∀α ∈ Act :

PRQ ∧ P
α−→ P ′ ⇒ ∃Q ′ : Q

α−→ Q ′ ∧ P ′RQ ′ with bn(α) ∩ (fn(P) ∪ fn(Q)) = ∅ .

P and Q are ground bisimilar, denoted as P ∼ Q, if they are related by a ground bisimulation.
�

Furthermore, bisimulation is an equivalence relation, hence P ∼ P , P ∼ Q ⇒ Q ∼ P , and
P ∼ Q∧Q ∼ R ⇒ P ∼ R hold. A proof can be found in [97]. Ground bisimulation considers
a strong relation between interactions and unobservable actions. Two agents

P
def
= a(x).τ.τ.b〈z〉.0 and Q

def
= a(x).τ.b〈z〉.0

are not bisimulation equivalent, since they differ in the number of their unobservable actions
(τ transitions). A bisimulation that abstracts from these unobservable actions is called weak
bisimulation. Weak bisimulations are of particular interest, since they abstract from the internal
behavior of agents and instead only consider the external visible behavior. A weak bisimu-
lation is obtained by defining =⇒ to represent zero or more τ transitions, i.e. τ−→

∗
, α=⇒ as

28 On the Application of a Theory for Mobile Systems to Business Process Management

=⇒ α−→=⇒, and α̂=⇒ as α=⇒ if α 6= τ and =⇒ if α = τ .

Definition 2.12 (Weak Ground Bisimulation) A weak ground bisimulation is a symmetric,
binary relation R on agents such that ∀α ∈ Act :

PRQ ∧ P
α−→ P ′ ⇒ ∃Q ′ : Q

α̂=⇒ Q ′ ∧ P ′RQ ′ with bn(α) ∩ (fn(P) ∪ fn(Q)) = ∅ .

P and Q are weak ground bisimilar, denoted as P ≈ Q, if they are related by a weak ground
bisimulation. �

The differences between the strong and weak kinds of bisimulation are shown by example.
Consider for instance the agents

A
def
= i.o.0 and B

def
= νy (i.y.0 | y.o.0) .

Both agents are not (strong) ground bisimilar since B has an additional τ transition. They are,
however, weak ground bisimilar due to the abstraction from τ transitions. To show that two
agents are not bisimilar, we need to find a counterexample that considers all possibilities:

Proof 2.1 (A 6∼ B) By counterexample.

1. A
i−→ o.0, mimicked by B

i−→ νy (y.0 | y.o.0).

2. The remainder of B continues with νy (y.0 | y.o.0) τ−→ νy o.0.

Since the remainder of A, o.0, is unable to mimic this transition, A 6∼ B holds. �

To show that A and B are related according to weak ground bisimulation, we need to to find
a relation R.

Proof 2.2 (A ≈ B) By enumeration of R with (A,B) ∈ R.

R = {(0,0), (i.o.0, νy (i.y.0 | y.o.0)), (o.0, o.0), (o.0, νy (y.0 | y.o.0))}

Since R is symmetric, A ≈ B holds. �

In certain situations, we only require one direction of a bisimulation, called simulation.
A simulation is a one-way investigation of two agents P and Q. If Q is able to match all
transitions of P , then Q simulates P . By removing the property of symmetry from the weak
ground bisimulation definition, a weak ground simulation is given by:

Definition 2.13 (Weak Ground Simulation) A weak ground simulation is a binary relation R
on agents such that ∀α ∈ Act :

PRQ ∧ P
α−→ P ′ ⇒ ∃Q ′ : Q

α̂=⇒ Q ′ ∧ P ′RQ ′ with bn(α) ∩ (fn(P) ∪ fn(Q)) = ∅ .

Q is weak ground similar to P , denoted as P w Q, if they are related by a weak ground
simulation. �

CHAPTER 2. THE PI-CALCULUS 29

We use the term ground to denote that only the subjects of the agents are covered correctly.
Since an input action denotes a placeholder for the objects to be received, a substitution has to
take place in the bisimulation game. For instance, two agents given by

P
def
= a(x).P + a(x).0 and Q

def
= a(x).Q + a(x).[x = u]τ.Q , (2.9)

are bisimulation equivalent, P ∼ Q, since x in the match prefix will never be substituted. To
overcome this problem, different variants of bisimulation for the π-calculus have been devel-
oped. The most recent of them is called open bisimulation and will be discussed in the next
subsection.

2.3.3 Open Bisimulation

Open bisimulation was introduced by Sangiorgi in [116]. It includes a quantification over all
substitutions in the bisimulation definition to provide a congruence, i.e. make it work in arbitrary
contexts. For a π-calculus variant without restriction, it is defined as follows:

Definition 2.14 (Open Bisimulation) An open bisimulation for a π-calculus variant without
restriction is a symmetric, binary relation R on agents such that ∀α ∈ Act and ∀σ:

PRQ ∧ Pσ
α−→ P ′ ⇒ ∃Q ′ : Qσ

α−→ Q ′ ∧ P ′RQ ′ .

P and Q are open bisimilar, denoted as P ∼O Q, if they are related by an open bisimulation. �

Open bisimulation does not contain a special treatment of input actions, since quantification
over substitutions occurs for every transition. If P

α−→ P ′ and Q
α−→ Q ′, the requirement above

already states that P ′σ must be simulated by Q′σ for all substitutions σ in the next step of the

bisimulation game. Hence, the agents given in equation 2.9 are not open bisimilar. After
a(x)−→

occurred (and the right side of the sum has been chosen in both agents), a substitution {u/x}
enables further transitions in the remainder of B that cannot be mimicked by the remainder of
A.

Open bisimulation is defined for a calculus without restriction, because a bound output action
causes problems. For instance,

P
def
= νx a〈x〉.[x = y]τ.0 and Q

def
= νx a〈x〉.0

should be open bisimilar, since x is distinct from all free names of P . However, they evolve to

P
a〈νx〉−→ [x = y]τ.0 and Q

a〈νx〉−→ 0. Obviously, for a substitution {x/y}, both are not equivalent.
The substitution is possible, since the bound output action removed the restriction νx. Anyhow,
the name x is local to P , so it should never be equal to y. Therefore a list of names that will
never be equal is required. This list is kept in the form of a distinction that relates names that
will always be distinct.

Definition 2.15 (Distinction) A distinction is a finite, symmetric, irreflexive, and binary relation
on names. �

30 On the Application of a Theory for Mobile Systems to Business Process Management

Distinctions are ranged over by D. A substitution σ respects a distinction D if (a, b) ∈ D ⇒
σ(a) 6= σ(b). If a substitution σ respects a distinction D, then Dσ is the relation {(σ(a), σ(b)) :
(a, b) ∈ D}. Using distinctions, open bisimulation including the restriction operator can be
defined:

Definition 2.16 (Open D-Bisimulation) An open d-bisimulation is a distinction-indexed family
of a set of symmetric, binary relations RD on agents such that ∀α ∈ Act and ∀σ respecting
D : PRDQ ∧ Pσ

α−→ P ′ and bn(α) ∩ (fn(Pσ) ∪ fn(Qσ)) = ∅ ⇒

1. If α = x〈(νz̃)ỹ〉 then ∃Q ′ : Qσ
x〈(νz̃)ỹ〉−→ Q ′ ∧ P ′RD ′Q ′

where D ′ = Dσ ∪ {{z} × (fn(Pσ) ∪ fn(Qσ))} ∪ {(fn(Pσ) ∪ fn(Qσ))× {z}} for all z
of z̃

2. else ∃Q ′ : Qσ
α−→ Q ′ ∧ P ′RDσQ ′ .

P and Q are open d-bisimilar, denoted as P ∼D
O Q, if they are related by an open d-bisimulation.

�

D ′ represents an extension of D by making the bound names z̃ of the output prefix x〈(νz̃)ỹ〉
distinct to all free names of Pσ and Qσ (clause (1) of the definition). Using open d-bisimulation,
the agents

P
def
= νx a〈x〉.[x = y]τ.0 and Q

def
= νx a〈x〉.0

are equivalent, since after P
a〈νx〉−→ [x = y]τ.0 and Q

a〈νx〉−→ 0, the remainder of P ≡ 0. This

is due to distinction D that has become D = {(x, y), (y, x)} in the transition
a〈νx〉−→ (regarding

clause (1) of definition 2.16). Since open d-bisimulation states that all substitutions σ respect
D, a substitution {x/y} is not possible and hence [x = y]τ.0 cannot evolve further. Also, two
agents

A
def
= νx a〈x〉.b(y).[x = y]τ.0 and B

def
= νx a〈x〉.b(y).0

are open d-bisimilar (A ∼D
O B). While it might be excepted that the bound name x sent via a

can possible received again via b and the match prefix will become true, this can never happen
due to the addition of x to the distinction. Thus, special care has to be taken in object-based
evaluation inside agents.

A weak version of open d-bisimulation as well as weak open d-simulation are acquired
accordingly:

Definition 2.17 (Weak Open D-Bisimulation) An weak open d-bisimulation is a distinction-
indexed family of a set of symmetric, binary relations RD on agents such that ∀α ∈ Act and ∀σ
respecting D : PRDQ ∧ Pσ

α−→ P ′ and bn(α) ∩ (fn(Pσ) ∪ fn(Qσ)) = ∅ ⇒

1. If α = x〈(νz̃)ỹ〉 then ∃Q ′ : Qσ
α̂=⇒ Q ′ ∧ P ′RD ′Q ′

where D ′ = Dσ ∪ {{z} × (fn(Pσ) ∪ fn(Qσ))} ∪ {(fn(Pσ) ∪ fn(Qσ))× {z}} for all z
of z̃

2. else ∃Q ′ : Qσ
α̂=⇒ Q ′ ∧ P ′RDσQ ′ .

CHAPTER 2. THE PI-CALCULUS 31

P and Q are open d-bisimilar, denoted as P ≈D
O Q, if they are related by a weak open d-

bisimulation. �

Definition 2.18 (Weak Open D-Simulation) A weak open d-simulation is acquired by removing
the property of symmetry from definition 2.17 (Weak Open D-Bisimulation). An agent Q is open
d-similar to P , denoted as P wD

O Q, if they are related by a weak open d-simulation. �

32 On the Application of a Theory for Mobile Systems to Business Process Management

Chapter 3

Business Process Management

This chapter introduces business process management. It starts with discussing key concepts
that are further on related to workflow and service-oriented architectures. Workflow is the tra-
ditional term for business processes executed and managed by computers and service-oriented
architectures are a central realization technology for business process management.

Definition 3.1 (Business Process Management) Business process management (BPM) refers
to an integrated set of activities for designing, enacting, managing, analyzing, optimizing, and
adapting computerized business processes. �

Business process management sets the focus on business processes. As stated in chapter 1,
this thesis focuses on design and verification of business processes. When presuming a pro-
cess for now as a completely closed, timely and logical sequence of activities, we can define a
business process.

Definition 3.2 (Business Process) A business process is a process that creates a value or result
for a customer. It is directed by the business objectives of a company and by the business
environment. �

Business objectives and the environments of business processes require the addition of busi-
ness related attributes. Examples are: Who executes certain activities? How are certain activities
executed? A detailed discussion follows along the lines of this chapter starting with the intro-
duction of key concepts. The first concept is given by the activities of a business process.

Definition 3.3 (Activity) An activity is a piece of work to be done. An activity is also denoted
as a task. �

It can be, for instance, a manual activity like phoning someone, writing a letter, etc., or
an automated activity, like invoking a script or computer program. An activity can also be
a decision, e.g. between two further activities, or another situation like waiting for previous
activities to finish, e.g. a bus driver waiting for at least three passenger to enter the bus.

Definition 3.4 (Activity Instance) An activity instance is a concrete realization of an activity.
�

Examples of an activity instance are actually phoning Mr. Smith, actually waiting for three

33

34 On the Application of a Theory for Mobile Systems to Business Process Management

Created

Canceled

FinishedReady/
Activated

Running/
Executing

Activity Instance Lifecycle

Figure 3.1: The lifecycle of an activity instance.

passengers, etc.

Definition 3.5 (Activity Instance Lifecycle) An activity instance lifecycle defines the states an
activity instance can have. The possible states and transitions are shown in figure 3.1. �

Exemplary, this means for an activity instance of phoning someone: Discover the idea to
phone Mr. Smith (created), fulfill all preconditions as finding phone number, get relevant doc-
uments on your desk (ready or activated), make the call (running/executing), and finally you’re
done (finished). At all stages you have the possibility to cancel your activity instance (cancel).
When phoning Mr. Smith is on your to-do-list (created), you can remove this item, e.g. if you
have not all documents at hand. After you have prepared everything (ready), you can decide to
cancel the call. Even while phoning with Mr. Smith (running) you can cancel by simply hanging
up in the middle of the call.

Definition 3.6 (Control Flow) Control flow defines temporal execution dependencies between
activities. �

An example is writing a letter and thereafter sending it. Control flow relations are written
as tuples of activities, e.g. (Write Letter, Send Letter). We assume transitivity of control flow
relations, but not symmetry and reflexivity. After having defined a ”sequence” of activities by
control flow as well as activity itself, we can refine the definition of a process.

Definition 3.7 (Process) A process is a set of activities related by control flow. �

Example 3.1 (Credit Broker Process) An example is a credit broker process that finds the
lowest interests for a given credit request. It might consist of the activities (A) Receive Credit
Request, (B) Process Credit Request, and (C) Show Results. The dependencies are straightfor-
ward: A has to happen before B and B has to be finished before C. Accordingly, the control
flow relations are given by (A,B) and (B,C). To denote that activity B can be executed several
times (e.g. querying different banks), we add the control flow relation (B,B). Note that (A,C)
is given by the transitivity of control flow.

Definition 3.8 (Process Instance) A process instance is the concrete realization of a business
process. A process instance is also denoted as a case. �

Examples of a process instance are the actual processing of an insurance claim from Mr.
Smith or buying a house including several steps.

Definition 3.9 (Process Instance Lifecylce) A process instances lifecycle defines the states a

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 35

Created

Canceled

TerminatedRunning/
Executing Ended

Process Instance Lifecycle

Figure 3.2: The lifecycle of a process instance.

process instance can have. The possible states and transitions are shown in figure 3.2. �

In the first state (created), all activities of a business process are converted to activity in-
stances with the activity instance lifecycle state created. In the second state (running/executing),
activity instances are activated, executed, finished, or canceled. The third state (ended) is reached
if the result of the business process is provided by a certain activity instance. Other activity in-
stances, doing clean-up or additional work, can still be activated, executed, finished, or canceled.
If all activity instances of a process instance are in the state finished or canceled, the process pro-
cess instance lifecycle is in the state terminated. Furthermore, a process instance can be canceled
while it is not being terminated. In this case, all activity instances of the process instance are
canceled immediately if they have not been finished already. The distinction between the states
ended and terminated is sometimes blurred if the result of the business process is provided the
moment the last activity instance finishes. In this case, the state terminated is reached immedi-
ately.

Definition 3.10 (Complex Activity) A complex activity is an activity consisting of a process.
�

Throughout this thesis we further on abstract from complex activities by expanding them
syntactically into the surrounding process.

Definition 3.11 (Interaction Flow) Interaction flow defines temporal dependencies between
activities of different processes. �

An example is sending and receiving a letter. Interaction flow relations are written as tuples
of activities from different processes (Send Letter, Receive Letter).

Definition 3.12 (Interaction) An interaction is given by a set of processes related by interaction
flow. �

Example 3.2 (Credit Broker and Customer Interaction) An example interaction is given
by the credit broker process from example 3.1 and a customer process. The customer has the
activities (D) Ask for Credit Offer and (E) Read Credit Offer with the single relation D before
E, formally: (D,E). The credit broker and the customer need to synchronize their processes
using interaction flow from activity D to A, and from C to E. Thus, the interaction flows are
given by the tuples (D,A) and (C,E) and the complete interaction is given by the processes of
the credit broker and the customer as well as the interaction flows.

Definition 3.13 (Abstract Process) An abstract process is a process that contains only the

36 On the Application of a Theory for Mobile Systems to Business Process Management

ActivityControl Flow

Process Interaction
Flow

Interaction

from

to

from
to

Figure 3.3: Relations between the key concepts.

activities and (combined) control flow relations that are required for an interaction. �

Considering example 3.2, the abstract process of the credit broker contains only the activities
A and C with a combined control flow relation (A,C) when engaged inside an interaction with
the customer.

Figure 3.3 shows the relations between the key concepts. A side condition is given by
forbidding interaction flows between activities of the same process. The formal representation
of processes and control flow will be discussed in detail in chapter 5 (Processes). The formal
representation of interactions and interaction flows will be discussed afterward in chapter 6
(Interactions). Beforehand, we introduce existing work from the areas of workflow and service-
oriented architectures.

3.1 Workflow

The traditional term for business processes enacted by computers is workflow [63]. A workflow
describes business processes at a conceptual level required for understanding, communicating,
and re-designing but also captures requirements for information systems and humans enacting
the workflow. Hollingsworth of the Workflow Management Coalitions (WfMC) defines a work-
flow as follows:

Definition 3.14 (Workflow) Workflow defines ”the computerised facilitation or automation of
a business process, in whole or part” [73]. �

Closely related to workflow is the term workflow management system:

Definition 3.15 (Workflow Management System) A Workflow Management System (WfMS)
is ”a system that completely defines, manages and executes workflows through the execution of
software whose order of execution is driven by a computer representation of the workflow logic”
[73]. �

A workflow is composed of different aspects, called workflow perspectives. These follow
the divide and conquer approach to support separation of concerns.

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 37

Basic Control Flow Patterns
Sequence

Parallel Split
Synchronization
Exclusive Choice

Simple Merge

Advanced Control Flow Patterns
Multi-choice

Synchronizing Merge
Multi-merge
Discriminator

(N-out-of-M-Join)

Structural Patterns
Arbitrary Cycles

Implicit Termination

Multiple Instance Patterns
MI without Synchronization
MI with a priori Design Time

Knowledge
MI with a priori Runtime

Knowledge
MI without a priori Runtime

Knowledge

State-based Patterns
Deferred Choice

Interleaved Parallel Routing
Milestone

Cancellation Patterns
Cancel Activity
Cancel Case

Figure 3.4: The workflow patterns, according to [12].

3.1.1 Workflow Perspectives

The workflow perspectives have been introduced by Curtis et al. in [48] and since then been
refined, e.g. in [131, 130]. The most basic perspective is the functional one, defining activities
inside workflows.

Definition 3.16 (Functional Perspective) The functional perspective covers activities required
in a workflow. �

Activities in a workflow are in alignment with definition 3.3 (Activity). Activities can be
composed of other activities as given by definition 3.10 (Complex Activity). Usually, this re-
quires execution constraints between them, leading to a sub-workflow. The behavioral perspec-
tive gives the execution order of activities in a workflow.

Definition 3.17 (Behavioral Perspective) The behavioral perspective describes dependencies
between activities required in a workflow. �

The behavioral perspective is the most important perspective, since it distinguishes work-
flows from traditional software engineering approaches (see definition 3.15). It defines depen-
dencies between activities by the use of control flow. Common patterns have been collected as
workflow patterns [12]. These are divided into six categories, depicted in figure 3.4. Workflow
patterns will be investigated in detail in chapter 5 (Processes).

Definition 3.18 (Information Perspective) The information perspective describes workflow
relevant application data. �

The information perspective models data in workflows. It can be distinguished between
control flow, case, and environment relevant data. Control flow data is required for the correct
routing of the workflow, e.g. if a given value is smaller than a threshold, execute activity A,
otherwise B. Case data is required for the execution of the activities regarding a specific pro-
cess instance, e.g. documents or pictures. Environmental data is available for a set of process
instances, such as the tax rate to apply. Common patterns of data have been collected as data
patterns [113]. These will be discussed in chapter 4 (Data).

Since workflows are executed in complex organizational and technical environments, re-

38 On the Application of a Theory for Mobile Systems to Business Process Management

source assignment, either by humans or software systems, is another central aspect. Resource
assignment is divided into the organizational perspective that assigns human labor to activities
and the operational perspective that assign computer power to activities.

Definition 3.19 (Organizational Perspective) The organizational perspective describes the as-
signment of human resources to workflows. �

Since a direct mapping between activities found in a workflow and specific people working
in a company is often to restrictive, role assignment and resolution is used. Instead of defining
that activity A is executed by a certain employee, e.g. John, we say activity A is executed by a
role, e.g. scientific assistant. Since John is a scientific assistant, we can assign the execution of
activity A to John for a given process instance. If John is unavailable, we can look up the staff
index for other members of the role scientific assistant.

Definition 3.20 (Operational Perspective) The operational perspective describes the integra-
tion of tools and applications into workflow management systems. �

The tools and applications are executed either fully automatic, i.e. without user interaction,
or represent the activation of standard office software like word processors including default
templates. The organizational and operational perspectives are often interleaved. For instance,
an employee manually executes an activity and additionally an application program like a word
processor is required. Common patterns for workflow resources have been collected as resource
patterns [114]. The organizational and the operational perspective are out of scope for this
thesis.

3.1.2 Formal Foundations

Since workflows describe the dependencies between activities, people, and other resources in-
volved in companies or departments executed by a workflow management system, a precise and
formal definition of the concepts is required. Two major approaches are based on set theory and
Petri nets.

Set Theoretic Approaches

Set theory [54] uses logic operations on sets to denote activities, processes, and data. Leymann
and Roller discuss a common approach in [83]. Further approaches based on set theory can be
found for instance from Weske in [130]. Set theoretic approaches use directed, (a)cyclic graphs
to denote workflows. A directed graph is a tuple consisting of nodes and edges.

Definition 3.21 (Directed Graph) A directed graph is a two-tuple (N,E) with

• N as a non-empty, finite set of nodes, and

• E ⊆ N ×N as a set of directed edges between nodes. �

Edges represent relations and nodes represent activities in workflows. It can be distinguished
between control and data flow graphs. The behavioral aspects of a workflow can be depicted as
a workflow graph shown in figure 3.5. Each node represents a workflow activity and the edges

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 39

A B

C

E

F G

D

Figure 3.5: A workflow graph.

denote relations between them. As can be seen, activity B depends on activity A, whereas
activities C end E depend on B. What is not contained in the graphical representation is how C
and E depend on B. Will C and E be executed after B, or either C or E only? These properties
of workflow graphs have to be added in a formal representation.

Definition 3.22 (Simple Process Graph) The example can be formalized using set theory by
defining a simple process graph consisting of a four-tuple (N,E, S, J) with

• N as a non-empty, finite set of nodes,

• E ⊆ N ×N as a set of directed edges between nodes,

• S : N 9 {AND,XOR} assigns each node a split condition if more than one edge is
leaving this node, and

• J : N 9 {AND,XOR} assigns each node a join condition if more than one edge is
targeting this node. �

In contrast to the graph-based visualization of the example, the formalization solves the ambi-
guity by providing a join and split behavior.

Example 3.3 (Set Theoretic Workflow Graph) The workflow graph from figure 3.5 is for-
malized according to definition 3.22 as follows:

1. N = {A,B, C, D, E, F,G}

2. E = {(A,B), (B,C), (C,D), (D,C), (B,E), (D,F), (E,F), (F,G)}

3. S = {(B,AND), (D,XOR)}

4. J = {(C,XOR), (F,AND)} �

A set theoretic formalization of workflows does not only allow an unambiguous enactment
of the contained processes but furthermore opens the door for analysis. Analysis of workflows,
and business processes in a wider scope, includes validation, simulation, and verification. Vali-
dation investigates if a workflow does what it should do. Since the semantics of the activities has
to be taken into account, this is almost ever a human task in workflow management. Simulation
executes workflows and measures relevant data such as average throughput times, bottleneck

40 On the Application of a Theory for Mobile Systems to Business Process Management

activities, etc. Verification checks formal properties of workflows regarding the behavioral per-
spective. In particular, it is of special interest if a workflow contains deadlocks or livelocks. A
deadlock for an arbitrary process is defined as follows:

Definition 3.23 (Deadlock) A deadlock is given if a process instance has no possibilities of
further executing activity instances while not being terminated. �

Deadlocks can occur if one activity instance of a process instance is waiting for another
one and vice versa or by structural errors. The former can occur by using shared resources and
the latter is given for instance if an exclusive control flow split, where one path of execution is
selected, is followed by a synchronizing merge that waits on all incoming paths. A livelock is
given by:

Definition 3.24 (Livelock) A livelock is a situation during the execution of a process instance
where the process instance can never terminate, but still enable and execute certain activity
instances. �

Livelocks occur usually if shared resources are allocated unfair or by structural errors. The
former is given if if a resource is used by one activity A that is required by activity B running in
parallel. However, if A deallocates the resource, it is allocated to another activity different to B
and so on. The latter is given for instance by misaligned splits and joins, where a cyclic path of
the process can occur ever again. A detailed discussion on deadlocks and livelocks can be found
in [129].

One approach to prove workflows formalized as simple process graphs to be deadlock free
is by creating all possible traces. A trace is defined according to Hoare [72] as follows:

Definition 3.25 (Trace) A trace is a finite sequence of actions that occurred inside a process
instance up to a specific moment in time. �

While we do not have defined actions on simple process graphs, we can consider them to be
the nodes traversed so far. If all traces end up with nodes that have no outgoing edges, the simple
process graph is deadlock free. While complete, this approach has the drawback of requiring
infinite memory even for limited inputs. Already example 3.3 (Set Theoretic Workflow Graph)
creates an infinite state space because of the contained loop.

Petri net based Approaches

Petri nets as invented by Carl Adam Petri are also based on graphs using set theory [110].
However, they form a special subclass as they have a widely acknowledged formal semantics.

Definition 3.26 (Petri net) A Petri net is given as a three-tuple (P, T, F):

• P is a finite set of places,

• T is a finite set of transitions (P ∩ T = ∅), and

• F ⊆ (P × T) ∪ (T × P) is a set of arcs called flow relations. �

A Petri net is a directed graph with two types of alternating nodes (places and transitions).
A place p directly connected by an arc to a transition t is called an input place of t. Accordingly,

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 41

A B

C D

E

F G
i o

Figure 3.6: A Petri net.

an output place p denotes a place directly after a transition t, such that there exists a directed
arc from t to p. The sets of output and input places for a transition t are denoted by t• for the
former and •t for the latter. Corresponding, the set of transitions directly before and after a place
p are denoted by •p and p•. Places can contain tokens used for representing the current state.
Petri nets have a strong graphical notation, shown in figure 3.6. Places are depicted as circles,
transitions are drawn as rectangles, and tokens are represented as black dots inside places.

The state of a Petri net is defined as the distribution of tokens over places called marking,
formally: M ∈ P → N. States are represented as summations of places multiplied by the
contained tokens, e.g. p1 + 3p2 + 2p4 . The example from figure 3.6 has only one token in the
leftmost place i and zero in all others, i.e. its current state is represented by i. States are partially
ordered: M1 ≤ M2 if ∀p ∈ P : M1 (p) ≤ M2 (p), with M(p) denoting the number of tokens in
place p in state M . The marking of a Petri net changes according to the following firing rules:

1. A transition t is enabled if each input place of t contains at least one token, and

2. An enabled transition t may fire. When firing, t removes one token from each of its input
places and produces one token for each of its output places.

A transition is denoted as M1
t−→ M2 if transition t is enabled in M1 and after firing t,

state M2 is reached. A firing sequence of transitions σ = t1 , t2 , . . . , tn leading from state M1

to state Mn is formally denoted as M1
σ−→ Mn . Two important definitions for Petri nets are

reachability and path.

Definition 3.27 (Reachable [Petri net]) A state Mn of a Petri net is reachable from another
state M1 , denoted as M1

∗−→ Mn , if and only if there exists a firing sequence σ such that
M1

σ−→ Mn . �

Definition 3.28 (Path [Petri net]) A path in a Petri net (P, T, F) is a non-empty sequence
n1 , . . . ,nk with ni ∈ (P ∪ T), ni ∈ N for 1 ≤ i ≤ k, such that (n1 ,n2), . . . , (nk−1 ,nk) ∈ F .

�

Petri nets have been refined for representing workflows [3, 10]. Transitions correspond to
activities, while places and arcs are used for describing relations. A Petri net modeling the
behavioral perspective of workflow is called a workflow net [2, 9].

Definition 3.29 (Workflow net) A workflow net is given by a Petri net (P, T, F) with the
following properties:

42 On the Application of a Theory for Mobile Systems to Business Process Management

1. There is exactly one initial place i ∈ P with •i = ∅;

2. There is exactly one final place o ∈ P with o• = ∅; and

3. Every node x with x ∈ (P ∪ T) is on a path from i to o. �

The properties of a workflow net can be checked statically, thus it can be decided if a given
Petri net is a workflow net. However, there exist additional requirements for workflow nets
regarding verification. These are called soundness properties [10].

Definition 3.30 (Sound) A workflow net WF = (P, T, F) with an initial place i and a final
place o is sound if and only if:

1. WF has the option to always complete: ∀M (i ∗−→ M) ⇒ (M ∗−→ o);

2. WF has a proper termination: ∀M (i ∗−→ M ∧M ≥ o) ⇒ (M = o); and

3. WF has no dead transitions: ∀t∈T∃M,M ′i
∗−→ M

t−→ M ′ . �

A less restrictive soundness property called relaxed soundness has been introduced in [51].
Relaxed soundness does not consider deadlocks or livelocks and allows token to remain in a
workflow net after the final place is marked. It is based on the assumption that each transition
should participate in the workflow at least once, i.e. there exist no dead activities.

Definition 3.31 (Relaxed Sound) A workflow net WF = (P, T, F) with an initial place i and
a final place o is relaxed sound if and only if WF has no dead transitions and each transition is
on a path from i to o: ∀t∈T∃M,M ′i

∗−→ M
t−→ M ′ ∗−→ o. �

Beyond Workflow nets

While workflow nets dominated workflow theory for over a decade, serious drawbacks have
been investigated leading to an extended specification called Yet Another Workflow Language
(YAWL) [11]. Workflow nets are based on state/transition Petri nets and thus inherit all draw-
backs of Petri nets as a control flow language for workflow. In particular, several kinds of
workflow patterns involving multiple instances, advanced synchronization, and cancellation are
not directly supported. High-level Petri nets as described in [77] overcome the limitations re-
garding the workflow pattern [112] but are less expressive. Expressiveness is used informal,
denoting the modeling effort required to describe a business process. An extended discussion
can be found in the YAWL documentation [11]. YAWL extends workflow nets graphically by
making them look like an extension to Petri nets but is actually a mixture of Petri nets and a
proprietary transition system. Formally, additional information are added to a workflow net for
representing all workflow patterns.

Definition 3.32 (Extended Workflow net) An extended workflow net is a tuple (C, i,o, F, split,
join, rem,nofi) with:

• C is a set of conditions,

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 43

enter exitmi_a

add

mi_e

start complete

exec

mi_c

Figure 3.7: Illustrated YAWL task semantics, according to [11].

• i ∈ C is the input condition,

• o ∈ C is the output condition,

• T is a set of tasks (activities),

• F ⊆ (C\{o}× T)∪ (T ×C\{i})∪ (T × T) is the flow relation, such that every node in
the graph (C ∪ T, F) is on a path from i to o,

• split : T → {AND,XOR,OR} specifies the split behavior of each task,

• join : T → {AND,XOR,OR} specifies the join behavior of each task,

• rem : T 9 P(T ∪ C)\{i,o} specifies additional tokens to be removed by emptying a
part of the extended workflow net, and

• nofi : T 9 N × Ninf × Ninf × {dynamic, static} specifies the multiplicity of each
task (minimum, maximum, threshold for continuation, and dynamic/static creation of in-
stances). �

The tuple (Cext , T, F ext) corresponds to a Petri with Cext = C∪{c(t1,t2)|(t1, t2) ∈ F∩(T×
T)} representing all places including implicit ones, and F ext = (F\(T × T)) ∪ {(t1, c(t1,t2))|
(t1, t2) ∈ F ∩ (T × T)} ∪ {(c(t1,t2), t2)|(t1, t2) ∈ F ∩ (T × T)} representing additional flow
relations for implicit places. The split and join functions correspond to definition 3.22 (Simple
Process Graph) adding OR-split/join behavior. Rem is a partial function able to remove tokens
from a part of the extended workflow net if a certain task is executed. Nofi is again a partial
function used for multiple instance patterns.

The semantic of YAWL is based on a transition system focusing on tasks. An illustration
depicting the semantics of a single YAWL task is shown in figure 3.7. While it looks like a Petri
net, the behavior differs by the thick arcs, representing the generation/consumption of multiple
tokens. Transition enter for a task t occurs if •t contains sufficient tokens for the join(t) func-
tion. Enter consumes all tokens from •t and produces tokens inside the task depending on the
number of instances to be created from nofi(t). If only one instance should be produced, one
token for mia and one token for mie are produced. If more instances are required, more pairs of

44 On the Application of a Theory for Mobile Systems to Business Process Management

e1

a1Do

On

...Do

On

e2

e2

(a) Sequence.

e1

a1Do

On

e2

...Do

On e2

...Do

On e3

e3

(b) Parallel.

e1

a1a
then
Do

On

c1If

a1b
else
Do

e2

e3

...Do

On e2

...Do

On e3

(c) Choice.

Figure 3.8: ECA business rules representing control flow.

tokens for mia and mie are produced. Start occurs once for each token placed in mie and pro-
duces a token for exec representing the executing of an instance of the task. Complete occurs if
an instance is completed; the corresponding token from exec is consumed and another for mi c

produced. Transition exit occurs when all instances have finished, consuming corresponding
tokens from mia and mi c. Exit furthermore removes tokens from selected parts of the extended
workflow net as given by rem(t). The number of tokens produced depends on split(t). Transi-
tion add comes into play if a task represents multiple instances with dynamic instance creation.
As long as the maximum number of instances as defined by nofi(t) has not been reached, add
can create new instances by adding tokens to mie and mia. Each transition is formally described
in [11].

Other Approaches

Another approach for the formal representation of workflows is based on business rules [79].
It originates from ECA rules found in active database systems, denoting event, condition, and
action [50]. Basically, a workflow activity routed by business rules is activated if certain events
have occurred and defined conditions hold. After the activity is finished, new events can be
generated as part of the action. Business rules can have different triggers, for instance:

• OR-trigger event E1 or E2 trigger the rule (E1 ∨ E2);

• AND-trigger, event E1 and E2 together (E1 ∧ E2);

• Sequence-trigger, event E1 followed by E2 (E1, E2);

• Counter-trigger, n times event E (n ∗ E);

• M-out-of-n-trigger, m events out of a set of n;

• Periodical-trigger, every n-th event; or

• Interval-trigger, where every event E within an interval of events triggers the rule.

Figure 3.8 shows how business rules can be used to specify control flow. An extended
discussion can be found in [79]. Several other approaches for representing workflow exists, e.g.
by logic [49], agents [74], graph-grammars [19], and extensions of Petri nets [101]. These will
not be discussed here.

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 45

Service
Provider

Service
Requestor

Service
Broker

publish bind

find

Figure 3.9: The service-oriented architecture, according to [41].

3.2 Service-oriented Architectures

Service-oriented architectures (SOA), as introduced in [41], provide the state-of-the-art archi-
tecture for realizing BPM solutions [104, 136]. SOA replaces architectures with tightly coupled
components by a loose coupling approach where parts of the system are integrated just in time.
These parts are called services. Since no common definition of a service exists, we give the
following for the purpose of this thesis:

Definition 3.33 (Service) A service is an (abstract) process with interaction flows that represent
the external visible interface. �

While activities representing purely computing tasks are referred to as e-business services
[41], the definition of a service refers to a wider scope. In contrast to activities, services are an
offer to perform work for someone external. Therefore each service has a well-defined speci-
fication containing its functionality and interaction behavior. Services are loosely coupled in a
meaning that they are dynamically bound and easily exchangeable. They furthermore constitute
the basic buildings blocks of a service-oriented architecture.

Definition 3.34 (Service-oriented Architecture) A service-oriented architecture is a software
architecture style focusing ”on how services are described and organized to support their dy-
namic, automated discovery and use” [41]. �

While the initial approach to SOA was based on web services [66, 75, 18], it can be ab-
stracted from concrete realization strategies and focused on the core architecture. A service-
oriented architecture is based on three key entities, service providers, service brokers, and ser-
vice requestors, depicted in figure 3.9. Service providers publish the availability of their services
at a service broker. This includes the functional description, the required interaction behavior,
and how the services can be reached. Service brokers register and categorize published services
and offer search capabilities. Service requesters utilize service brokers to find specific services
and thereafter are able to bind to them.

Service-oriented architectures issue a number of questions. First of all, what should a service
provider publish about its service? The functional description can be split into two parts, static
interfaces and semantic descriptions. Whereas the former is already implemented by existing
standards like WSDL [46], the latter has not yet been solved completely. Regarding required in-
teraction behavior, the published information will in most cases be minimized to cover business
secrets and allow updating the internal processes without notification; i.e. abstract processes

46 On the Application of a Theory for Mobile Systems to Business Process Management

are used. Binding is based on information contained in the description of how a certain service
can be reached. While practically solved as done using assign from PartnerLink in
BPEL4WS [28] the theoretical treatment of dynamic binding is still under investigation. The
find operation takes most attention in research, focusing on semantic matching and behavioral
compatibility. Current practical approaches as UDDI [105] only allow static interface match-
ing. By using service-oriented architectures for business process management, highly flexible
business processes are supported. Instead of predefined business processes, service can be dis-
covered and integrated during runtime.

3.2.1 Orchestrations and Choreographies

Web services, a special kind of service that use standardized protocols, brought the terms or-
chestration and choreography into BPM related computer science:

”An orchestration defines the sequence and conditions in which one web service
invokes other web services in order to realize some useful function. [...]” [126].

An orchestration corresponds to definition 3.7 (Process). Activities are represented by (web)
services that are invoked following a given control flow, i.e. the orchestration. The complete
orchestration is then itself a service:

”Web Services Choreography concerns the interactions of services with their users.
Any user of a Web service, automated or otherwise, is a client of that service. These
users may, in turn, be other Web Services, applications or human beings. Transac-
tions among Web Services and their clients must clearly be well defined at the time
of their execution, and may consist of multiple separate interactions whose compo-
sition constitutes a complete transaction. This composition, its message protocols,
interfaces, sequencing, and associated logic, is considered to be a choreography.”
[126]

In the context of this thesis, choreography corresponds to definition 3.12 (Interaction). A chore-
ography describes how multiple business processes work together regarding message protocols,
interfaces, sequencing, and associated logic, whereas an interaction focuses on the sequences of
messages given by the contained processes. Common patterns have been collected as service
interaction patterns [24]. These will be discussed in detail in chapter 6 (Interactions).

3.2.2 Formal Foundations

Service-oriented architectures do not have a common formal foundation until now. Existing
work can be parted into extensions to workflow, i.e. Petri net based, and other approaches in-
cluding process algebra [21]. Most existing work focuses on orchestrations and choreographies,
where service discovery and dynamic binding are elided.

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 47

PPS

(a) PPS rule.

PJS

(b) PJS rule.

PJ3S

(c) PJ3S rule.

Figure 3.10: Inheritance-preserving transformation rules.

Petri net based Approaches

In [15] Weske and van der Aalst introduced an approach for interorganizational workflows (P2P
approach, public-to-private) based on inheritance-preserving transformation rules for Petri nets
[6, 5, 27]. While not directly related to service-oriented architectures, they nevertheless provide
a formal representation of choreographies and describe how workflow nets used as orchestrations
can be derived thereof.

The P2P approach is divided into three steps. In the first step the choreography (called
public workflow) is modeled using workflow nets. In the second step, the workflow net is par-
titioned into domains representing different participants. Each transition belongs to exactly one
participant, whereas places can be shared between two participants, denoting interactions. The
resulting workflow net is called an interorganizational workflow net. In the third step, the or-
chestrations of the participants (called private workflows) are refined using the corresponding
public part of the interorganizational workflow. To ensure conformance regarding the public
workflow, certain rules have to be followed [6, 27], shown in figure 3.10. Figure 3.10(a) denotes
the addition of a loop (PPS rule), figure 3.10(b) shows the insertion of transitions in-between
existing transitions (PJS rule), and figure 3.10(c) shows how to add transitions in parallel to ex-
isting ones (PJ3S rule). These rules are based on projection inheritance for labeled Petri nets,
informally defined as:

”If it is not possible to distinguish the behaviors of x and y when arbitrary tasks of
x are executed, but only the effects of tasks that are also present in y are considered,
then x is a subclass of y.” [6].

To formalize projection inheritance, an abstraction operator for labeled Petri nets is introduced.
This operator is based on an unobservable action or silent step known from process algebra [21].

Definition 3.35 (Labeled Petri net) A labeled Petri net is given as a four-tuple (P, T, F, l) with
P , T , F representing places, transitions, and arcs as given in definition 3.26 (Petri net) and

48 On the Application of a Theory for Mobile Systems to Business Process Management

l : T → L is a labeling function with L being a set of labels. �

A labeled Petri net can contain markings:

Definition 3.36 (Marked, labeled Petri net) A marked, labeled Petri net is a tuple (N, s) with
N = (P, T, F, l) as a labeled Petri net and s is a bag over P denoting the marking of the net. �

An abstraction operator for Petri nets renames all transitions of a certain subset of the net to
silent steps τ :

Definition 3.37 (Abstraction Operator) N = (P, T, F, l0 ∪ τ) is a labeled Petri net. The
abstraction operator τ is a function that renames all transition labels for a certain subset I ⊆ T
to the silent step τ . Formally: τ1(N) = (P, T, F, l1), so that for any t ∈ T : l0(t) ∈ I ⇒
l1(t) = τ and l0(t) 6∈ I ⇒ l1(t) = l0(t). �

The formal definition of projection inheritance requires branching bisimilarity [64], an equiv-
alence relating two processes regarding their observable runtime behavior. In contrast to equiv-
alences based on traces, that only consider past actions, branching bisimulation considers the
current actions. Hence branching bisimulation is stronger (i.e. it relates fewer processes) than
equivalences based on traces [30]. Branching bisimilarity is rooted in process algebra and has
been adapted to Petri nets by Basten [27]. It is denoted as p ∼b q for p and q being marked,
labeled Petri nets.

Definition 3.38 (Projection Inheritance) Projection inheritance is given if two marked, labeled
Petri nets N0 and N1 representing sound workflow nets are in a super-/subclass relationship.
Formally: N1 ≤pj N0 if and only if I ⊆ T such that (τ1(N1), [i]) ∼b (N0, [i]). �.

Projection inheritance thus relates any two nets N0 and N1 if N1 is a subclass of N0. Re-
garding the P2P approach, projection inheritance ensures that the private workflows of the par-
ticipants (orchestrations) are a subclass of the public workflow (choreography). Accordingly,
the private extensions do not disturb the behavior of the public workflow.

Martens proposed in [84, 85] a different approach for formalizing web services using work-
flow nets. The approach focuses on compatibility analysis of different services. Workflow nets
that represent services should have a certain quality regarding their behavior denoted as weak
soundness:

Definition 3.39 (Weak Sound) A workflow net WF = (P, T, F) with an initial place i and a
final place o is weak sound if and only if:

1. WF has the option to always complete: ∀M (i ∗−→ M) ⇒ (M ∗−→ o); and

2. WF has a proper termination: ∀M (i ∗−→ M ∧M ≥ o) ⇒ (M = o). �

Weak soundness is a subset of soundness (see definition 3.30) by omitting dead transitions.
Martens argues that composed systems might include workflows where not all functionality is
required. However, since the functionality is contained it should not disturb soundness. A web
service (called workflow module) is modeled by an internal process represented by a workflow
net and an interface able to communicate with the environment.

Definition 3.40 (Workflow Module) A workflow module is given by a Petri net N = (P, T, F)
if and only if

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 49

?v

!m?m

!!n

m

n
?n

m

n

!w

v

w

(a) Syntactical compatible mod-
ules.

?v

!m?m

!n ?n

m

n

!w

v

w

(b) Composed module.

?v

!m?m

!n ?n

m

n

!w

v

w

!v

?w

v

w

(c) Module and environment.

Figure 3.11: Services represented by workflow modules.

1. The set of places is divided into three disjoint sets: P = PN ∪P I ∪PO with PN denoting
internal places, P I denoting input places, and PO denoting output places.

2. The flow relation is divided into internal flow: FN ⊆ (PN × T) ∪ (T × PN) and com-
munication flow: FC ⊆ (P I × T) ∪ (T × PO).

3. The internal process (PN , T, FN) is a workflow net.

4. No transition is connected to both an input and an output place at the same time: @t ∈ T
such that | • t ∩ P I | > 0 ∧ |t • ∩PO| > 0. �

A distributed business process is then made up of composed workflow modules that are syn-
tactical compatible. Syntactical compatibility for two workflow modules is given if the internal
processes are disjoint and for each common place there is one output place in one module and
one input place in the other module. Thus two modules are syntactical compatible if certain
input and output places match (see figure 3.11(a)).

Two workflow modules A and B are composed by merging common places and specifying
the remaining places as new interface. Furthermore, the initial states of A and B are preceded
by a new transition and a new initial state. The same holds for the final states.

Definition 3.41 (Composed System) Let A = (Pa, Ta, Fa) and B = (Pb, Tb, Fb) be two syn-
tactically compatible workflow modules. Furthermore, is, os /∈ (Pa ∪Pb) denote two additional
places and ti, to /∈ (Ta ∪ Tb) denotes two new transitions. A composed system Π = A ⊕ B is
given by a workflow module (Ps, Ts, Fs) with:

• Ps = Pa ∪ Pb ∪ {is, os},

50 On the Application of a Theory for Mobile Systems to Business Process Management

• Ts = Ta ∪ Tb ∪ {ts, to}, and

• Fs = Fa ∪ Fb ∪ {(is, ts), (ti, ia), (ti, ib), (oa, to), (ob, to), (to, os)}. �

An example of a composed workflow module is shown in figure 3.11(b). If two workflow
modules A and B are composed such that A ⊕ B is a workflow net (i.e. the composed system
has an empty interface), A is called an environment of B and vice versa (see figure 3.11(c)).

Definition 3.42 (Environment [Workflow Module]) Let A ⊕ B be a composed system. A is
called an environment of B, if each output place of A is an input place of B, and each output
place of B is an input place of A. �

Another concept introduced by Martens is the usability of workflow modules. Usability
denotes the quality of a workflow module regarding possible environments:

Definition 3.43 (Usable [Workflow Module]) A workflow module A is called usable if there
exists at least one environment B such that A ⊕ B is weak sound. Furthermore, if A ⊕ B is
weak sound, the environment B utilizes workflow module A.

Based on the definition of usability, simulation between two different workflow modules A
and B is given if each utilizing environment E of workflow module A is an utilizing environment
of workflow module B. Equivalence between workflow modules is then given by:

Definition 3.44 (Equivalence [Workflow Modules]) Two workflow modules A and B are
called equivalent if A simulates B and B simulates A. �

Two workflow modules are equivalent if an observer (the environment) cannot detect any
differences between the workflow models regarding their external visible behavior. A service
broker can use this equivalence relation to find behavioral appropriate services for a certain
service requester.

A different view on describing the service behavior has been made by Massuthe and Schmidt
based on the work of Martens [86, 87]. They propose operating guidelines containing communi-
cation structures for service requesters to be published at service brokers. Operating guidelines
describe the wanted behavior of requesters in contrast to abstract processes of service providers.
This is done to reduce the complexity for a service broker to select appropriate service providers
for a specific service requester. Instead of deciding whether an environment containing the pro-
cess of the requester utilizes each workflow module representing a possible interaction partner,
with operating guidelines, the service broker has to decide if the requester’s process matches the
guidelines. The complexity of deciding weak soundness for each possible combination of inter-
action partners is in the order of the product of the sizes of the requester and provider, whereas
matching is basically in the size of the requester’s process.

The argumentation of Massuthe at al. is based on open workflow nets extending workflow
modules with an initial and one or more final markings:

Definition 3.45 (Open Workflow net) An open workflow net is given by a Petri net N =
(P, T, F) and the following three additions:

• in, out ⊆ P with ∀p ∈ in : (t, p) /∈ F and ∀p ∈ out : (p, t) /∈ F and ∀p ∈ in ∪ out :
| • p|+ |p • | ≤ 1,

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 51

• m0 as the initial marking, and

• Ω as a set of final markings. �

Accordingly, the component-wise union of two open workflow nets M and N , denoted as
M⊕N , yields a composed net. A deadlock for an open workflow net is given if a certain marking
m of the net enables no transitions at all. Based on these preconditions, weak termination is
defined:

Definition 3.46 (Weak Termination) A weak termination of an open workflow net is given if
all deadlocks are final markings of the set Ω. �

An open workflow net M is called a strategy for another open workflow net N if M ⊕ N
has weak termination. Regarding service-oriented architectures, a service broker must decide
whether a requester’s process R is a strategy for a given service S as otherwise unexpected
behavior might occur. Accordingly, an abstract process of S has to be transmitted to the ser-
vice provider for decision-making. Operating guidelines use a different approach as introduced
above:

Definition 3.47 (Operating Guideline) An operating guideline is the description of the behavior
of all strategies for a certain requester’s process. �

Thus an operating guideline describes how a service requester successfully interacts with a
service. The behavior for a certain strategy is given by constructing a reachability tree of the
inner places, i.e. p ∈ P\(in ∪ out). Each edge of the reachability tree is is annotated with !x
if the corresponding transition in N is connected to an output place p ∈ out and with ?x if the
the corresponding transition is connected to an input place p ∈ in . Thereby each x represents
a certain label. All other edges are marked as silent steps τ . The reachability trees can then be
merged to provide a common behavior for all strategies to be published at the service broker.

Process Algebra and Calculi

Process algebra and calculi have been proposed as foundations for service-oriented architectures,
e.g. by Bordeaux and Salaün in [32]. They propose to select a certain process algebra regard-
ing the topic of investigation. This might include, but is not limited to, formal descriptions,
composition, discovery, or correctness analysis of services.

In [115, 33] Bordeaux et al. give examples using CCS [94]. CCS, as the predecessor of the
π-calculus, uses a set of names for representing actions and messages inside a system, given by
Act = A ∪ A ∪ τ . A represents names given by lowercase letters such as a, b, c, . . . , A rep-
resents corresponding co-names given by overlined lowercase letters such as a, b, c, . . . , and τ
represents a silent step. The basic capabilities of processes are receiving a message (simply de-
noted by writing the name), emitting a message (denoted by writing the co-name), or perform an
unobservable action (denoted by τ). The processes of CCS are given by the following grammar:

P ::= α.P | 0 | P |P ′ | P + P ′ | P\L | P [f] . (3.1)

Informally, α.P executes the action α and thereafter behaves as P ; 0 denotes inaction, a process
that can do nothing anymore; P |P ′ denotes parallel execution of P and P ′; P + P ′ is the

52 On the Application of a Theory for Mobile Systems to Business Process Management

ACT
α.A

α→ A
SUM-L

A
α→ A′

A + B
α→ A′ COM-L

A
α→ A′

A|B α→ A′|B

COM-I
A

a→ A′ B
a→ B′

A | B τ→ A′ | B′ RES
A

α→ A′

A\L α→ A′\L
(α,α/∈L) REL

A
α→ A′

A[f]
f(α)→ A′[f]

Figure 3.12: CCS transition rules.

exclusive choice between P or P ′, P\L restricts the scope of the set of names L to P ; and P [f]
relabels names in P given by f as a relabeling function. Uppercase letters are used to range
over process identifiers derived by P , such as A,B, C. The semantics of CCS is defined using
a labeled transition system: The states are given by P , i.e. the process definitions, and Act
represents the set of transitions labels, i.e. the actions and messages. The set of rules for CCS
is given in figure 3.12. Elided from the rules are the symmetric forms SUM-R and COM-R that
simply swap the left and right components as well as congruence (CON). The rules correspond
to the informal description of the grammar from equation 3.1.

According to Bordeaux et al., CCS processes can be used to describe orchestrations and
choreographies in service-oriented architectures. For instance, the required behavior of a citizen
making a request can be formally described as follows:

C = req .question.answer .(refuse.C + accept.C) .

A citizen C sends a request (req), receives some questions , sends the answer , and finally re-
ceives either a refuse or accept of the request. Thereafter the citizen process is reset using
recursion. This behavior can now be complemented by several systems supporting the citizen,
i.e. wait for requests, process them, and finally send the result. Several kinds of bisimilarity can
then be used to reason on equivalences. However, Bordeaux et al. only give examples instead
of a concrete methodology using process algebra for service-oriented architectures. Especially,
they do not consider more complex control flow relations as for instance given by workflow
patterns.

Approaches using proprietary transition systems for formalizing service choreography and
orchestration have also been proposed, e.g. in [34, 88]. Exemplarily, we investigate the ap-
proach from Busi et al. [42]. They introduced a formal model of choreographies including
roles, variables, and operations. Conversions between roles are defined by using the following
grammar:

CP ::= 0 | CP ;CP | µ | CP |CP | CP + CP . (3.2)

Informally, 0 denotes a null conversation, µ is an interaction, CP ;CP sequential composition,
CP |CP parallel composition, and CP +CP exclusive choice. Interaction µ is further specified by
(ρA, ρB, o, x̃, ỹ, dir) denoting an interaction from a role ρA to another role ρB . The operation
to be performed is denoted by o, whereas x̃ and ỹ denote sequences of variables used by the
sender and receiver. The direction is denoted using dir ∈ {↓, ↑} representing request (↑) or
response (↓). The semantics is given using labeled transition systems, where sequence, parallel,

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 53

and choice are analogue to CSS, and the interaction rule is given by:

µ
µ→ 0, µ = (ρA, ρB, o, x̃, ỹ, dir) .

The behavior of the interaction rule depends on the direction. If dir =↑ the information from x̃
of ρA are passed to ỹ of ρB and the operation o is enacted at ρB . For dir =↓, the reverse holds.
Processes are defined using the following grammar:

P ::= 0 | o | o | o(x̃) | o(ỹ) | o(x̃, ỹ, P) | o(x̃, ỹ) | P ;P | P + P | P |P .

Most parts are analogue to CSS with the notable exception of actions for external synchroniza-
tion. o and o(x̃) denote simple input and output. A request-response operation is denoted by
o(x̃, ỹ, P), meaning the process receives messages, stores the received messages in x̃, executes
a process P , and finally sends the information contained in ỹ back to the requester. An invoca-
tion on an operation o is denoted by o(x̃, ỹ) with x̃ representing the request and ỹ the response.
Processes are executed at different locations inside an orchestrated system E given by:

E ::= [P]id | E‖E . (3.3)

[P]id is called an orchestrator, representing a process identified by id . Processes inside an
orchestrated systems can only be composed in parallel using ‖. The formal semantics is given
by thirteen transition rules for P and six more complex ones for E, to be found in [42]. Based
on the given formalizations, branching bisimilarity can then be used to reason on conformance
between an orchestration given by E and a choreography given by CP . However, the approach
by Busi et al. does not consider existing patterns for choreographies and interactions and thus
might have a restricted applicability. Furthermore, it is based on a proprietary transition system
instead of standard proposals like CCS, meaning a lack of tool support, academic acceptance
and investigations.

Recent research on choreography patterns also emphasizes the importance of mobility for
the formal representation of routing and dynamic binding in choreographies [24]. The concept
of mobility referred to denotes link passing mobility capabilities for processes. Examples are
hypertext links that can be passed along participants of choreographies allowing them to gain
access to prior unknown services. A different approach of mobility is denoted as process passing
mobility. An example is code send across at network and executed at the receiver’s site. Guidi
and Lucci differentiate in [67] four mobility types described in a proprietary service-based lan-
guage. Internal state mobility describes message exchange between a sender and receiver, i.e.
the message is mobile. Location mobility describes a location exchange between a sender and
receiver, where the receiver afterwards can access a service at the location transmitted (i.e. it
resembles link passing mobility). Interface mobility allows services to acquire operations at
run-time and exhibit them in their interfaces, i.e. the interface changes dynamically. Functional
mobility refers to processes that can be received and executed inside the receiver’s processes (i.e.
it resembles process passing mobility).

Recent Standards

While not formal in a sense of mathematical sound, existing standards give substantial ground-
ing to BPM and SOA. XML-based orchestration languages for the description of composed web

54 On the Application of a Theory for Mobile Systems to Business Process Management

Choreography GUI

Company A Company B

WS-CDL

Choreography between
Company A and Company B

BPEL4WS

Company A

Java, EJBs

Company B

Generated
Workflow

Traditional
Integration

Figure 3.13: WS-CDL based web service integration, according to [128].

services are for instance WSFL, XLang, or BPML [76, 89, 35]. Today the Business Process
Execution Language for Web Service (BPEL4WS) [28] supersedes these standards. As investi-
gated by Wohed et al. in [8], BPEL4WS supports most, but not all workflow patterns. In par-
ticular, BPEL4WS might cause problems regarding application areas requiring arbitrary loops,
milestone, or advanced multiple instances pattern. Formal verification for BPEL4WS has been
investigated using different directions as for instance state machines by Farabod et al., Fisteus
et al., or Fu et al. [57, 60, 62], process algebra by Ferrara [58], or Petri nets by Stahl et al., or
Schlingloff et al. [70, 119]. Each of these approaches gives a formal semantics to BPEL4WS.

XML-based choreography languages are the Web Services Choreography Interface (WSCI)
and the Web Service Choreography Description Language (WS-CDL) [127, 128]. WSCI focuses
on the description of the observable behavior of web services and uses this knowledge to describe
collective message exchange among a set of interacting web services. Thus, WSCI provides a
message oriented view of the choreography. WS-CDL, in contrast, focuses on describing a
global viewpoint on all interacting business partners. Figure 3.13 shows the application area
of WS-CDL. A choreography between a number of companies is specified using WS-CDL.
The abstract processes for each company are then generated out of the WS-CDL specification
and can be implemented using different technologies as depicted in the figure. A discussion
of the advantages and disadvantages of WS-CDL by Barros et al. can be found in [26]. A
formalization of WSCI in CSS has been provided by Brogi et al. [38], whereas Gorrieri et al.
discuss a proprietary process algebra for the formalization of WS-CDL [65].

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 55

Po
ol La

ne
La

ne

Event Activity Gateway
Sequence Flow
Message Flow

Figure 3.14: BPMN core elements.

3.3 Graphical Notation

Graphical notations for BPM are manifold, ranging from event-driven processes chains over ac-
tivity diagrams up to Petri nets [78, 106], including many vendor specific ones. To represent the
concepts introduced beforehand graphically, a subset of the Business Process Modeling Nota-
tion [36], short BPMN, is used. The BPMN allows for modeling processes and interactions in
so-called business process diagrams (BPD). A BPD represents either a single process or a mul-
tiple of processes with corresponding interactions. An introduction to BPMN can be found in
[132]. Since the BPMN does not support all workflow patterns directly [133, 134], we introduce
some additions for a direct representation of patterns like n-out-of-m-join or multiple instances
without synchronization.

3.3.1 Business Process Diagrams

The BPMN was designed as a modeling notation capable of communicating a wide variety
of information to different audiences ranging from business analysts to IT experts. For these
different needs, three types of business processes diagrams have been defined:

• Private (internal) business processes,

• Abstract (public) business processes, and

• Collaboration (global) business processes.

Private business processes represent the internal processes of an organization and conform with
definition 3.7 (Process). Abstract business processes represent the interaction between a private
process and another (undefined) process. Only the activities relevant for communication are
contained inside. They conform to definition 3.33 (Service). Collaboration business processes
represent the interaction between two or more abstract business processes. Accordingly, they
conform to definition 3.12 (Interaction).

Core Elements

A business process diagram is composed out of core elements shown in figure 3.14. These
elements are further on specialized while keeping their outside shape. The primary modeling
elements termed as flow objects are events, activities, and gateways. An events is something that

56 On the Application of a Theory for Mobile Systems to Business Process Management

Process
Order

Credit Card
Payment

Invoice
Payment

Ship
Order

Sa
le

s
Di

st
rib

ut
io

n

Sh
op

Start Event

Activity

Gateway

End Event
Ba

nk

Message FlowWhite Box Pool

Black Box Pool

Figure 3.15: Example BDP using core elements.

happens in the course of a business process. It affects the flow of a process and can have a trigger
or result. An activity is work a company performs; it can be atomic or complex. Gateways
are used for routing sequence flows. In this thesis, all flow objects conform to definition 3.3
(Activity).

Sequence flows connect events, activities, and gateways and therefore are termed connectiv-
ity elements. BPMN sequence flow represents the control flow concept (definition 3.6). Message
flow shows the flow of messages between different business processes. Thus, it represents the
interaction flow concept (definition 3.11).

All flow objects are placed inside pools. A pool is a container for grouping a set of activities,
and the relations between them, for a particular organization. To allow further decomposition,
lanes inside a pool can be used. These can represent the organizational workflow perspective.
Pools can be black or white boxed. A black box pool hides its inside details, so message flows
can only occur to the outside rectangle of the pool. A white box pool shows internal details, so
message flows connect to internal elements.

An example of a BPD is shown in figure 3.15. The example is a mixture of a private and
abstract business process. It consists of two participants (organizations), denoted as Bank and
Shop. The former is shown as a black box pool, whereas the latter is a white box pool. The
business process starts at the Shop’s sales lane by receiving a start event, i.e. an order. The order
is thereafter processed in the activity Process Order. The next activity depends on the routing
decision of the gateway after Process Order. A default gateway, as shown in the example,
makes an exclusive decision between the two downstream activities. Thus, either Credit Card
Payment or Invoice Payment is executed next. While the latter is a simple activity, the former
interacts with the Bank’s pool by using message flow. Afterward, the sequence flow is joined and
another activity, Shop Order is executed by the department Distribution. The business process
is concluded with an end event, denoted using a bold outlined circle.

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 57

Start

Intermediate

End

Default Message Timer

Figure 3.16: BPMN events.

Handle Support
Request Create Report

Receive Support
Request

Wait for internal
tech. Response Send Solution

(a) Message example.

Collect Votes Create Report Publish Report

Every Monday at
10am After 8 hours

Wait till 8pm

(b) Timer example.

Figure 3.17: BPMN event examples.

Events

As mentioned earlier, the core elements can be modified to achieve more complex behavior. An
example has already been given in figure 3.15, where the core element event has been named
start event, and a derived shape, with a bolder outline, end event. A third kind of event is called
intermediate event, denoted using a double-lined outline. An intermediate event affects the flow
of the process, but does not start or end it.

Based on start, intermediate, and end events, different types of events have been specified.
A subset required for this thesis is shown in figure 3.16. In the BPMN notation, all start events
produce a token, which follows the sequence flow of the process. All end events consume tokens.
Thus, some informal kind of Petri net semantics is used to denote process execution in BPMN.

A default event has no specific trigger or result beside starting and ending the process. A
message start event starts the process the moment a message is received. A message intermediate
event holds the process flow until either a message is received or sends a message. A message
end event ends a process by sending a message. An example is shown in figure 3.17(a). A timer
start event triggers the start of a process at a specific time. A timer intermediate event holds
the process flow until a given time constraint is fulfilled. Furthermore, intermediate events can
be placed at the border of an activity, as shown in figure 3.17(b). If such an event occurs, i.e.
a message is received or a time constraint reached, the outgoing sequence flow of the event is
activated immediately, while the default sequence flow is canceled.

58 On the Application of a Theory for Mobile Systems to Business Process Management

TaskTask Task
n/D min,max,tn

Figure 3.18: BPMN extension for multiple instances.

n

OR

Exclusive Decision/Merge

Data-based XOR Event-based
XOR

Inclusive
Decision/Merge

(OR)

Parallel
Fork/Join

(AND)

N-out-of-M
Join

(a) BPMN gateways. (b) Event-based gateway exam-
ple.

Figure 3.19: BPMN gateways with example.

Activities

Activities of the BPMN can be divided into processes, sub-processes, and tasks. Sub-processes
can contain other sub-processes. In BPMN, a process is work performed within a company or
organization. The term business process refers to one or more of these processes. Each process is
contained within a pool. A sub-process defines a compound activity. It can be shown collapsed,
hiding its inner details, or expanded, showing its inside details. A collapsed sub-process is
marked with a plus sign at the bottom. Processes can either embed sub-process or reference
them, where the semantics changes accordingly, i.e. inline vs. call behavior. A task represents
an atomic activity within a process. While the BPMN defines several types of tasks, they are
not sufficient to support multiple instance workflow patterns graphically. To overcome these
limitations, an extension is shown in figure 3.18. The left task denotes multiple instances without
synchronization, i.e. n instances of the task are created and the sequence flow is passed on
immediately. The middle task represents synchronized multiple instances, either with a dynamic
number of instance calculated during runtime of the process (denoted by D at the upper right
corner) or with a static number of instances known at design time (denoted with a natural number
instead of D). The right task denotes multiple instances with limited priori knowledge, where
a minimum and maximum number of instances to be created can be given by min and max .
Furthermore, a threshold can be given via t.

Gateways

Gateways are used as routing constructs for sequence flow. They can decide, split, or merge the
flow of the process. The possible gateways are shown in figure 3.19(a). The interesting types
are the event-based exclusive choice and the n-out-of-m-join. The former is contained in the
official specification, whereas the latter has been added to support the discriminator and n-out-
of-m-join workflow pattern. The event-based based exclusive choice is used to model decisions

CHAPTER 3. BUSINESS PROCESS MANAGEMENT 59

based on events rather than process data. The process flow will continue if one of the specified
events occurs. In figure 3.19(b), this might be a yes message, a no message, or a timeout. The
n-out-of-m-join gateway waits for n incoming sequence flows and activates the outgoing ones
thereafter.

3.3.2 Formal Foundations

The BPMN has no formal foundation yet. The specification defines a mapping to BPEL4WS as
an executable language. However, this mapping is not to be meant as a semantics for BPMN and
will hence be removed from subsequent version of the BPMN specification according to IBM
sources. During this thesis we will refer to business process diagrams for visualizing formal
processes and interactions. Basically, we utilize process and interaction graphs that will be
introduced in chapter 5 (Processes) and 6 (Interactions). The former is used to represent private
business process diagrams, whereas the latter denotes abstract or collaboration business process
diagrams.

60 On the Application of a Theory for Mobile Systems to Business Process Management

Part II

Investigations

61

Introduction to Part II

Part II discusses the application of the π-calculus to derive formal models of interacting busi-
ness processes. It starts with the representation of data as processes. Data is required for internal
routing decisions, to represent cases, and environmental values. Since the representation of data
values and structures in terms of agents is uncommon in the BPM domain, a detailed deriva-
tion of cells, stacks, queues, booleans, and natural numbers as well as functions working on
them is given. Building atop of data, the formal representation of processes as process graphs
is introduced. Each instance of a process graphs gets a formal semantics by a π-calculus map-
ping, which describes the actual execution behavior. The semantics of the activities is given
by a catalogue of formalized process patterns, covering a broad range of possible application
scenarios. The formalized business processes are then analyzed according to several soundness
properties. The π-calculus representation of business processes reveals its strengths in describ-
ing interactions among a set of business processes. Due to the direct support of dynamic binding
and correlations, agile interactions can be given. Once again, a pattern catalogue is investigated,
serving as a link to the practical applicability. Finally, formal analysis regarding compatibility
and conformance of interactions is introduced.

Structure of Part II Part II is composed of three chapters. The first chapter develops the
representation of data in the π-calculus. The second chapter discusses the formal representation
and verification of business processes based on process patterns. The third chapter extends the
discussion to agile interactions between business processes based on interaction patterns.

63

64 On the Application of a Theory for Mobile Systems to Business Process Management

Chapter 4

Data

In this chapter we discuss how data can be represented in the π-calculus. The chapter starts
by introducing how names can be made persistent using a kind of memory cell agent. The cell
agent is further on enhanced to support stack and queue like behavior for subsequent interactions.
Afterward, the representation of boolean values is discussed. A short introduction to types for
names is given and the representation of functions working on booleans is shown. Based on
booleans, natural numbers are introduced and syntactical extensions to the π-calculus regarding
their handling are defined. Natural numbers are used to represent advanced structures such as
lists. Finally, common data patterns found in business processes are investigated.

4.1 Structures

This section describes the representation of data structures in the π-calculus. Since the λ-
calculus can be encoded in the π-calculus (see e.g. [118]), it is possible to represent all kinds of
functions and their corresponding data in the π-calculus (e.g. Milner [95] or Sangiorgi [117]).
However, since the functional representation of data has a high computational effort, we inves-
tigate a more straightforward representation. Our approach is inspired by the examples given in
the original paper on the π-calculus [99] as well as the PICT language [123]. We use agents to
represent data, make it persistent using recursion, and apply names as pointers to agents repre-
senting a certain data type. As also our representation requires computational efforts, it is only
applied if necessary for simulation or verification, whereas otherwise the representation of data
is assumed to be implemented natively.

For the integration of the structures, values, and functions introduced later on, we first have
to make a convention regarding their free names that can be used by other agents:

Convention 4.1 (Unique Availability) Let P be the composition of all agents representing
structures, values, and functions. Let Q be the top-level composition of all other agents in a
system given by P | Q:

P
def
=

n∏
i=1

Pi Q
def
=

m∏
i=1

Qi

65

66 On the Application of a Theory for Mobile Systems to Business Process Management

To allow a unique availability of all components of P to all components of Q, i.e. they can
interact conflict-free, we assume the following properties to hold:

1. The free names of all components of P are unique, formally fn(Pi) ∩ fn(Pj) = ∅ for all
i, j with 0 < i < n ∧ 0 < j < n ∧ i 6= j.

2. Free names of P can occur as either (1) subjects of input prefixes in Q or (2) as arbitrary
objects of output prefixes in Q, i.e. no component of Q provides a functionality via the
same free names as P . �

The free names of an agent representing a structure, value, or function are then used to access
its functionality.

4.1.1 Basic Structures

Basic structures provide elementary grouping and accessing features to names. Each basic struc-
ture has a simple interface consisting of an accessor name for adding and removing names. Any
count of names can be sent to an accessor name by using it as an output prefix and retrieved
afterward by using it as an input prefix. We distinguish three types of return possibilities: (1)
only the last name, or the last sequence of names (ñ) is returned infinite often (e.g. cell, pair),
(2) the last name sent is the first name returned (stack), or (3) the first name sent is the first name
returned (queue). For b and c we require an additional name that is triggered when the structure
is empty.

The basic structures are defined in the following paragraphs. Each basic structure is globally
available to other agents inside a system and can produce a copy of itself via recursion.

Definition 4.1 (Cell) A cell holds a name and allows read and write operations to retrieve or
change the content:

CELL
def
= νc cell〈c〉.(CELL1 (⊥) | CELL)

CELL1 (n)
def
= c〈n〉.CELL1 (n) + c(x).CELL1 (x) .

A new cell is initialized with the default name⊥ (false). The restricted name retrieved by reading
via the name cell is then used as read and write accessor to the cell’s content. �

For instance, consider the agents

A
def
= νd cell(c).c〈d〉.b〈c〉.0 and B

def
= b(p).p(x).τ.0

inside a system

S
def
= νcell ν⊥ νb (A | B | CELL) .

Agent A first creates a restricted name d and retrieves a fresh cell c. Afterward the name d is
stored inside the cell via c, and the name c is sent via b. Agent B receives the name of the cell via

CHAPTER 4. DATA 67

b and afterward retrieves the content. A cell can be easily extended to a pair, storing a sequence
of two names:

Definition 4.2 (Pair) A pair holds a sequence of two names and allows read and write opera-
tions to retrieve or change the content:

PAIR
def
= νt pair〈t〉.(PAIR1 (⊥,⊥) | PAIR)

PAIR1 (m,n)
def
= t〈m,n〉.PAIR1 (m,n) + t(x, y).PAIR1 (x, y) .

�

A new pair is initialized and accessed similar to a cell. Furthermore, we define an agent
TRIPLE holding a sequence of three names according to PAIR (omitted). By employing pairs
and triples, more advanced data structures can be created. We investigate stacks and queues.

Definition 4.3 (Stack) A stack stores names that can be removed in reverse order; i.e. first in,
last out. Names can be contained in the stack several times. The stack consists of two operations,
push to add names to and pop to remove names from the stack. The stack presented here is based
on two assumptions. (1) The push operation can be called infinite often; i.e. there is no upper
limit on the size of the stack, and (2) the pop operation can be called as long as there are elements
on the stack. If the stack size is zero, the special name empty can be read infinite often instead.
These assumptions simplify the definition of the stack without restricting its expressive power.
The stack is given by:

STACK
def
= νs νempty stack〈s, empty〉.(STACK0 | STACK) .

STACK first creates two restricted names: s, used as an accessor name for push and pop oper-
ations, and empty, used to represent the empty stack. It then behaves as follows:

STACK0
def
= empty .STACK0 + s(newvalue).triple(next).

next〈⊥,⊥,newvalue〉.STACK1 (next) ,

where STACK0 either returns empty or receives a name newvalue via s to push on the stack.
In the last case, a new triple is created and initialized with (prev , test , value), where prev rep-
resents the previous triple (⊥ as this is the first triple on the stack), test is a flag if there are more
elements on the stack (also ⊥), and value is the received value.1 If a name has been pushed on
the stack, the agent continues as STACK1 with the current triple as a parameter:

STACK1 (curr)
def
= curr(prev , test , value).(s〈value〉.

([test = >]STACK1 (prev) + [test = ⊥]STACK0)+
s(newvalue).triple(next).next〈curr ,>,newvalue〉.
STACK1 (next)) .

1 We explicitly have to denote a name for testing if there are more elements on the stack, as a mismatch operator
(e.g. prev 6= ⊥) is not contained in the considered π-calculus grammar.

68 On the Application of a Theory for Mobile Systems to Business Process Management

The agent STACK1 first retrieves the values (prev , test , value) from the current triple to have
them prepared for immediate response in the case a pop interaction on s occurs as the next
transition. In this case, the value is sent via s. If there are more elements on the stack (test =
>) the agent behaves as STACK1 with prev as a parameter and otherwise as STACK0 . If
an element is added to the stack by using s as a push interaction, a new triple is created and
initialized with (curr ,>,newvalue), where curr represents the current triple (now acting as the
predecessor), > for signaling that there are more elements on the stack, and newvalue as the
pushed value. The agent then behaves as STACK1 with the newly allocated triple as parameter.

�

Definition 4.4 (Queue) A queue stores names that can be removed in order; i.e. first in, first
out. Names can be contained in the queue several times. The queue consists of two operations,
enqueue to add names to and dequeue to remove names from the queue. The queue presented
here is based on two assumptions. (1) The enqueue operation can be called infinite often; i.e.
there is no upper limit on the size of the queue, and (2) the dequeue operation can be called as
long as there are elements in the queue. If the queue is empty, the special name empty can be
read infinite often. The queue is given by:

QUEUE
def
= νq νempty queue〈q, empty〉.(QUEUE0 | QUEUE) .

The queue creates, equal to the stack, two fresh names: q used as an accessor for enqueue and
dequeue operations, and empty, used to represent the empty queue. It then behaves as follows:

QUEUE0
def
= empty .QUEUE0 + q(newvalue).triple(newtriple).

newtriple〈⊥,⊥,newvalue〉.QUEUE1 (newtriple,newtriple) ,

where QUEUE0 either returns empty infinite often or receives a name via q to enqueue to the
queue. In the last case, a new triple is created and initialized with (next , test , value), where
next represents the next triple (⊥ as this is the only triple in the queue), test is a flag if there are
more elements in the queue after this one (also⊥), and value is the received value. If a name has
been enqueued, the agent continues as QUEUE1 with the current triple as an explicit parameter
representing the first and last triple of the queue:

QUEUE1 (first , last)
def
= first(next , test , value).(q〈value〉.

([test = >]QUEUE1 (next , last) + [test = ⊥]QUEUE0)+

q(newvalue).triple(newtriple).newtriple〈⊥,⊥,newvalue〉.
last(oldnext , oldtest , oldvalue).last〈newtriple,>, oldvalue〉.
QUEUE1 (first ,newtriple) .

The agent QUEUE1 works analog to the stack with the exception that the queue needs to update
the next pointer of the triple previous to the newly added triple. �

CHAPTER 4. DATA 69

4.1.2 Iterators

An iterator iterates through a data structure. We distinguish two types of iterators, destructive
and non-destructive. Destructive operators remove the elements from the structure, whereas
non-destructive iterators keep the elements in the structure.

Definition 4.5 (Iterator) An destructive iterator that works on stacks and queues is defined by:

I
def
= s(x).τI .I + empty .I ′ .

The iterator works on a structure s. While there are elements available in the structure, the left
hand side of the iterator is chosen. The work done with the current element is here denoted as
τI . If the basic structure returns empty, the iterator finishes. �

A non-destructive iterator needs to have knowledge about the data structure it iterates. Since
this might cause problems related to concurrent access, special care has to be taken when em-
ploying these iterators. A trivial non-destructive iterator for a stack uses a temporary stack to
store the values:

IS
def
= stack(tmpstack , tmpempty).IS0

IS0
def
= s(x).tmpstack〈x〉.τIS0 .IS0 + empty .IS1

IS1
def
= tmpstack(x).s〈x〉.IS1 + tmpempty .IS ′ .

In agent IS a new temporary stack tmpstack is allocated first. Thereafter, each element from
the original stack s is read and written to the temporary stack. Afterward the content of the
current stack’s value is evaluated insie τIS0 . Once the original stack is empty, agent IS1 restores
the content of the original stack s by iterating over the temporary stack tmpstack . A non-
destructive iterator for queue works accordingly. However, the proposed non-destructive iterator
is not safe in concurrent environments, where the data structure can be accessed in parallel.

Example 4.1 (Bank Counters) An example illustrating the problems is a given by a bank
which has several counters that serve incoming customers according to a first in, first serve prin-
ciple. The formal representation consists of a waiting queue, where new names (i.e. customers)
are enqueued using an agent FILL (i.e. the customers enter the bank building). The waiting
queue is processed by several agents SERVE representing the bank’s counters. A sample sys-
tem is then given as

WQ
def
= queue(wq ,we).(FILL | SERVE | SERVE) ,

where two agents SERVE work on elements of the queue added by FILL. Possible implemen-
tations are

FILL
def
= νt τ.wq〈t〉.FILL and SERVE

def
= wq(x).τ.SERVE .

By adding a fourth component INSPECT , that searches the waiting queue for a specific name
(i.e. a premium customer), unwanted behavior can occur. The implementation has been adapted

70 On the Application of a Theory for Mobile Systems to Business Process Management

from the non-destructive stack iterator to a queue:

INSPECT
def
= queue(tmpqueue, tmpempty).INSPECT0

INSPECT0
def
= wq(x).tmpqueue〈x〉.τ.INSPECT0 + we.INSPECT1

INSPECT1
def
= tmpqueue(x).wq〈x〉.INSPECT1 + tmpempty.0 .

The agent INSPECT declares a non-destructive iterator that uses tmpqueue as a temporary
queue. In INSPECT0 , each name read from the waiting queue wq is stored in tmpqueue . Af-
terward the name is evaluated by some unobservable action represented by τ (i.e. inspected for a
specific customer). If the waiting queue emits the name we , the queue is empty and INSPECT1

is executed. INSPECT1 iterates the temporary queue in a destructive manner. Each name read
is enqueued in the original waiting queue wq . This approach causes two problems. First, the
agent FILL is able to enqueue new names to the waiting queue while INSPECT1 is restor-
ing the original state. Thus, new names can be added in arbitrary positions. Second, since
INSPECT0 dequeues names, parallel transitions of QUEUE might consume names that are
contained a later positions in the waiting queue. Thus, the processing behavior of the waiting
queue is random instead as first in, first serve, which in turn would anger the bank’s customers.

To overcome the problems, we show how a queue with a non-destructive iterator is con-
structed. A corresponding stack is defined accordingly.

Definition 4.6 (Iterator Queue) A queue with a non-destructive iterator, denoted as iterator
queue, is derived from pattern 4.4 (Queue). While the iterator queue is iterated, no enqueue
or dequeue operation can take place. Technically, the iterator queue employees an additional
name i, called the iterator accessor. Via i, two restricted names it and itempty for iterating the
queue can be acquired. These names can be used according to definition 4.5 (Iterator) without
destroying the queue’s content. Subsequent interactions via it return the names contained inside
the queue, wheras itempty signal that no more names are available for iteration. In contrast to
empty, the iterator name itempty is only available for interaction once. Thereafter, the iterator
queue returns to its normal operation, meaning that names can now be enqueued and dequeued
again. The iterator queue is given by:

IQUEUE
def
= νq νempty νi iqueue〈q, empty , i〉.(IQUEUE0 | IQUEUE) .

The iterator queue creates and returns, in addition to a queue, another restricted name i. It then
behaves as follows:

IQUEUE0
def
= νit νitempty (empty .IQUEUE0 + q(newvalue).triple(newtriple).

newtriple〈⊥,⊥,newvalue〉.IQUEUE1 (newtriple,newtriple)+
i〈it , itempty〉.itempty .IQUEUE0) .

IQUEUE0 has an additional summation accessed via i that returns two names for iterating the
queue. However, only itempty can be used for interaction, since the iterator queue is empty at

CHAPTER 4. DATA 71

this point. If a name has been enqueued, the iterator queue behaves as IQUEUE1 :

IQUEUE1 (first , last)
def
=

νit νitempty first(next , test , value).(q〈value〉.
([test = >]IQUEUE1 (next , last) + [test = ⊥]IQUEUE0)+

q(newvalue).triple(newtriple).newtriple〈⊥,⊥,newvalue〉.
last(oldnext , oldtest , oldvalue).last〈newtriple,>, oldvalue〉.
IQUEUE1 (first ,newtriple) + i〈it , itempty〉.IQUEUE2 (next)) .

IQUEUE1 works as QUEUE1 , except for the restricted names it and itempty and a possible
interaction via i. If an interaction via i occurred, the iterator queue behaves as IQUEUE2 :

IQUEUE2 (curr)
def
=

[test = >]curr(next , test , value).it〈value〉.IQUEUE2 (next)+
[test = ⊥]itempty .IQUEUE1 (first , last) .

When agent IQUEUE2 is active, all remaining names inside the queue have to be read via it
before itempty can be read (according to definition 4.5 (Iterator)). Afterward, the iterator queue
behaves as IQUEUE1 again. �

The iterator queue provides a concurrent safe implementation of a queue, that has the prop-
erty of blocking all enqueue and dequeue interactions while it is being iterated. Due to the
blocking semantics, special care has to be taken inside potential iterator agents.

We are now able to define a safe variant of example 4.1 (Bank Counters) by using an iterator
queue. The agent WQSAFE represents a correctly working waiting queue that can be inspected:

WQSAFE
def
= iqueue(wq ,we, i).(FILL | SERVE | SERVE | INSPECT SAFE) ,

where FILL and SERVE remain the same. The agent INSPECT SAFE is given by:

INSPECT SAFE
def
= i(it , itempty).INSPECT SAFE0

INSPECT SAFE0
def
= it(x).τ.INSPECT SAFE0 + itempty .0 .

Since an iterator queue is used to inspect the waiting queue, names cannot be enqueued or de-
queued while an iteration takes place. Thus, the problems found in example 4.1 (Bank Counters)
do not exist any longer.

4.2 Values, Types, and Functions

This section introduces the representation of data values, data types, and functions in the π-
calculus.

72 On the Application of a Theory for Mobile Systems to Business Process Management

4.2.1 Booleans and Bytes

The basic unit of data is a bit that is represented as a boolean value.

Definition 4.7 (Boolean) A boolean represents a truth value inside a system of agents. It is given
by

ν> ν⊥ S ,

where > represents true, ⊥ represents false, and S represents the system of agents. �

For instance, a system S composed of two agents A and B that use boolean values is given
by:

S
def
= ν> ν⊥ νch (A | B) ,

A
def
= τ.(ch〈>〉.A + ch〈⊥〉.A) , and

B
def
= ch(x).([x = >]τ.B ′ + [x = ⊥]τ.0) .

The agent S defines two restricted names representing true and false values as well as an inter-
action channel. The components A and B can then evolve concurrently. However, only A can
evolve immediately, since B has no counterpart for interaction. A does some internal calculation
that is abstracted from by τ and afterward sends either > or ⊥ via the name ch . In both cases,
A evolves by recursion as originally defined. In the second step of A, an interaction between A
and B is possible. Thus, a possible interaction for B is given by:

ch(x).([x = >]τ.B ′ + [x = ⊥]τ.0)
ch(>)−→ [> = >]τ.B ′ + [> = ⊥]τ.0 .

Since > 6= ⊥, only one active transition of the sum remains for B, making it deterministic (B
can execute the left hand side of the sum). If A had sent ⊥ via ch instead, the right hand side of
B would have been enabled for execution. By regarding ch as a pointer, it clearly points to an
agent A, that is able to return either > or ⊥ an infinite number of times. Consequently, the type
of the name ch can be said to be boolean, since it always points to an agent representing boolean
values in S.

Definition 4.8 (Type) The type of a name n is given by the kind of data an agent able to interact
via n represents. If more complex data can be accessed via multiple names, the names are
subscripted with their corresponding part. �

The type of a name can be denoted with a colon behind the name, e.g. raining : boolean or
patients : queue iterator to make the terms more readable. In contrast to theoretical treatments
such as given in [118], we consider types as purely additional information without any formal
meaning. Thus, the type of a name only denotes what can be expected by using the name as
the object of an input or output prefix. While different agents can interact via the same name,
and a type overloading is also possible, we prohibit this for typed names. In other words, the
type of n defines the codomain of a function that is pointed to by n. An example of a function
represented by an agent is already given by A. This agent is able to emit boolean values in a

CHAPTER 4. DATA 73

non-deterministic manner; it represents a function that returns random boolean values. Since A
considered as a function does not take any input, its signature is simply given by:

A :→ boolean .

Instead of providing a random boolean generator, two more elaborate agents provide constants
for true and false values:

TRUE = true〈>〉.TRUE FALSE = false〈⊥〉.FALSE .

These agents are assumed to be placed inside a system which restricts true and false as well as
> and ⊥ globally. An agent representing a function with parameters requires a two-way inter-
action. First the parameters and a response channel are transmitted and afterward the response
is read via the response channel. A function AND representing a boolean disjunction with the
signature

AND : boolean × boolean → boolean

that compares two booleans is given by the agent

AND
def
= and(b1 , b2 , resp).b1 (x).b2 (y).([x = >][y = >]resp〈>〉.AND+

[x = ⊥]resp〈⊥〉.AND+
[y = ⊥]resp〈⊥〉.AND) .

The agent AND is made globally available inside a system using the restricted name and . When
interacting via and , the subject is expected to consist of three parts: two names b1 and b2
representing pointers to booleans, and a third name resp used as a response channel. First,
AND fetches the actual values of the pointers to the booleans. Second, it returns > via resp if
both names b1 and b2 equal >, and ⊥ otherwise. Another system T composed out of

T
def
= ν> ν⊥ νtrue νfalse νand (TRUE | FALSE | AND | C) , and

C
def
= νr and(true, true, r).r(x).([x = >]τ.C ′ + [x = ⊥]τ.C ′′) ,

with AND , TRUE , and FALSE given as above, uses the concepts introduced so far. However,
the right hand side of agent C’s sum will never be enabled due to the interaction with agent
AND , where two true values are compared. Furthermore, agent AND only provides a one-
time interaction via resp. A better solution for agent AND incorporates the return of a variable
containing the result instead of directly providing it. A variable is represented by a cell.

The modified agent AND is given as follows, where we assume it to be placed inside a
composition with CELL and the restricted names > and ⊥:

Definition 4.9 (Boolean Conjunction) The agent AND compares two names typed as booleans
for boolean conjunction.

AND
def
= cell(v).and(b1 , b2 , resp).b1 (x).b2 (y).([x = >][y = >]v〈>〉.AND1+

[x = ⊥]v〈⊥〉.AND1 + [y = ⊥]v〈⊥〉.AND1)

AND1
def
= (resp〈v〉.0 | AND) .

74 On the Application of a Theory for Mobile Systems to Business Process Management

�

In addition to the agent AND introduced earlier, the new variant is not blocking until the
response has been collected, since the modified AND is activated again using recursion placed
in parallel with the response sent via resp. A boolean disjunction is given by:

Definition 4.10 (Boolean Disjunction) The agent OR compares two names typed as booleans
for boolean disjunction:

OR
def
= cell(v).or(b1 , b2 , resp).b1 (x).b2 (y).([x = ⊥][y = ⊥]v〈⊥〉.OR1+

[x = >]v〈>〉.OR1 + [y = >]v〈>〉.OR1)

OR1
def
= (resp〈v〉.0 | OR) .

�

Finally, a boolean negation is given by the agent NEG :

Definition 4.11 (Boolean Negation) The agent NEG applies boolean negation to a name typed
as boolean.

NEG
def
= neg(b, resp).true(t).false(f).b(x).(

([b = t]resp〈false〉.0 + [b = f]resp〈true〉.0) | NEG) .

�

The boolean negation incorporates the TRUE and FALSE agents to first fetch the actual
names for true and false and furthermore returns the result as a constant. Agents 4.9 (Boolean
Conjunction) and 4.10 (Boolean Disjunction) can be adapted to work the same way. We showed
both variants to provide a choice for the application. Usage of the fixed names> and⊥ provides
less overhead, whereas the agents TRUE and FALSE provide more flexibility regarding the
actual names for true and false, as well as providing constants for them. In the remainder, we
use the agents TRUE and FALSE as defined, e.g. providing the names > for true and ⊥ for
false. Thus, a fetching of the actual values for true and false is omitted.

A second unit of data is a byte that is represented by a tuple of eight bits:

Definition 4.12 (Byte) A byte is given by a tuple of eight boolean values used as subjects of
input and outputs prefixes. The type of a byte is byte, e.g. byte42 : byte. �

For instance,
〈⊥,⊥,>,⊥,>,⊥,>,⊥〉

represents the decimal value 42. An agent returning a constant with this value is given by:

BYTE42
def
= byte42 〈⊥,⊥,>,⊥,>,⊥,>,⊥〉.BYTE42 ,

and accordingly for for each i ∈ {0 . . . 255} in BYTEi . However, since a byte has only a fixed
capacity and basic functions like addition and comparison can only be implemented using rather
complex agents, they will not be discussed further. Instead, a representation of natural numbers
as a generalization of bytes will be discussed.

CHAPTER 4. DATA 75

4.2.2 Natural Numbers

Any natural number can be represented in a binary form as a sequence of true and false values.
Sequences of true and false values can be represented using QUEUE agents in π-calculus. Since
queues work first in, first out, we define the lowest significant bit of natural number to be the
first element of the queue:

Definition 4.13 (Natural Number) A natural number n ∈ N is represented as an iterator queue
containing the binary representation of n constructed of true and false, where the first name in
the queue represents the lowest significant bit. The type of a natural number is number , e.g.
num9 : number . Since numbers are almost ever used as constants, only the iterator accessor of
an iterator queue is used if not stated otherwise. �

An agent NUM9 for constructing an iterator queue representing the decimal value 9 is given
by:

NUM9
def
= iqueue(n9 , e9 , i9).n9 〈>〉.n9 〈⊥〉.n9 〈⊥〉.n9 〈>〉.num9 〈i9 〉.NUM9 .

Since the size of an iterator queue is unbounded, there is no theoretical upper limit on the value
of any natural number to be represented. We returned only the iterator accessor to avoid an
unintended change of a natural number. When the value of a natural number is evaluated, two
iterator names are received from the iterator accessor of the iterator queue.

Before two natural numbers can be further processed, e.g. added, they have to have the same
size of their binary representation. That is, if the binary representation of a natural number n2 is
shorter than another natural number n1 , n2 has to be filled with false values. For instance, with

n1 = 〈>,>,⊥〉 and n2 = 〈>,⊥〉 ,

n2 has a shorter binary representation than n1 and thus has to be filled with an additional false
value. The filling is called normalization of two queues. Technically, it simplifies the processing:

Definition 4.14 (Normalize) Two (iterator) queues representing natural numbers are normalized,
i.e. the length of the queues is adjusted to the same, by an agent NORM :

NORM
def
= norm(n1 ,n2 , resp).n1 (q1 , e1).n2 (q2 , e2).

iqueue(q3 , e3 , i3).iqueue(q4 , e4 , i4).
(NORM1 | NORM) .

The agent NORM first receives two iterator accessors n1 and n2 as well as a response channel
resp. Via n1 and n2 , the iterator names q1 and q2 , with their corresponding empty queue
names e1 and e2 for accessing the values of the two numbers, are received. Afterward, two new
iterator queues q3 and q4 used as resulting queues are allocated. Most of the work is done in
the nested terms of agent NORM1 :

NORM1
def
= q1 (x).q3 〈x〉.(q2 (y).q4 〈y〉.NORM1 + e2 .FILL2)+

e1 .(q2 (y).q4 〈y〉.FILL1 + e2 .DONE) .

76 On the Application of a Theory for Mobile Systems to Business Process Management

NORM1 starts by either reading a name x via q1 , if one is available, or receive via e1 . If x has
been received, it is enqueued in q3 and thereafter a name y is read via q2 , if one is available, or
an e2 is received. If y has been received, it is enqueued in q4 and NORM1 recursively behaves
as NORM 1 again, which means that the processed parts of both queues have the same length.
If e2 is received instead of y via q2 , it means that the length of q2 is less than the length of q1
and thus q4 has to be filled to the same length as q1 by agent FILL2 . If an e1 is received at
the top-level summation, it is tested if a name y can be read via q2 , or the second queue is also
empty by signaling e2 . In the former case, y is enqueued in q4 and NORM1 behaves as FILL1

to fill q3 to the same length as q2 , since q1 is shorter than q2 . In the latter case, both queues
already have the same size and NORM1 behaves as agent DONE :

FILL1
def
= q3 〈⊥〉.(q2 (y).q4 〈y〉.FILL1 + e2 .DONE)

FILL2
def
= q4 〈⊥〉.(q1 (x).q3 〈x〉.FILL2 + e1 .DONE)

DONE
def
= resp〈i3 , i4 〉.0 .

The FILL agents first insert a false value (⊥) into the queue to be filled and thereafter tries to
read another name via the longer queue’s name. If this succeeds, the name is enqueued in the
corresponding result queue and FILL behaves as FILL recursively again. If it fails, no more
truth values are available and thus both result queues q3 and q4 now have the same length.
DONE simply returns the iterator accessors i3 and i4 representing normalized versions of n1
and n2 . �

By employing normalization on two natural numbers n1 and n2 , we can compare them
boolean-wise using the iterator queues as shift registers:

Definition 4.15 (Compare) Two natural numbers can be compared on equivalence by a function
with the signature

CMP : number × number → boolean ,

represented by the agent CMP :

CMP
def
= νr cmp(n1 ,n2 , resp).norm〈n1 ,n2 , r〉.r(n3 ,n4).

n3 (q1 , e1).n4 (q2 , e2).(CMP1 | CMP)

CMP1
def
= q1 (a).q2 (b).([a = b]CMP1 + [a = ⊥][b = >]resp〈false〉.0+

[a = >][b = ⊥]resp〈false〉.0) + e1 .resp〈true〉.0 .

Analog to NORM , agent CMP starts by receiving two iterator accessors n1 and n2 as well as
a response channel resp via cmp. Thereafter agent CMP receives the iterator names via n1 and
n2 , normalizes them, and behaves as agent CMP1 . CMP1 tries to fetch the first boolean value
of the first natural number via q1 and then the first boolean value of the second natural number
via q2 . The boolean values are evaluated afterward. If both are the same, CMP1 is recursively
enabled again. If both are different, the constant false is returned, since both natural numbers
are different. If in the top-level summation e1 is received, the queues representing the natural
numbers are empty and thus no more boolean values are available for comparison. Hence, both

CHAPTER 4. DATA 77

natural numbers are the same and the constant true is returned. Notable, it is not necessary to
empty the queues n3 and n4 , since these are local to a certain occurrence of CMP . �

Agent CMP gives an idea of how normalized iterator queues representing natural numbers
can be used as shift registers for boolean-wise processing. Another common operation is testing
if a natural number is less than another natural number:

Definition 4.16 (Less) For two natural numbers, n1 and n2 , it can be tested if n1 is less than
n2 . Hence, an ordering criterion for natural numbers is provided. The signature of the function
is given by

LESS : number × number → boolean ,

and the corresponding implementation by LESS :

LESS
def
= νr less(n1 ,n2 , resp).norm〈n1 ,n2 , r〉.r(n3 ,n4).

n3 (q1 , e1).n4 (q2 , e2).(LESS1 (⊥) | LESS) .

LESS receives two names n1 and n2 typed as numbers and a response channel resp via less .
After normalizing and receiving the iterator names, it behaves as LESS1 with the parameter ⊥:

LESS1 (c)
def
= q1 (b1).q2 (b2).([b1 = ⊥][b2 = ⊥]LESS1 (c)+

[b1 = >][b2 = >]LESS1 (c)+
[b1 = ⊥][b2 = >]LESS1 (>)+
[b1 = >][b2 = ⊥]LESS1 (⊥))+
e1 .([c = >]resp〈true〉.0 + [c = ⊥]resp〈false〉.0) .

The parameter c of LESS1 is used to denote if the first natural number represented by q1 is
currently less than the second natural number represented by q2 . LESS1 fetches the current
boolean values b1 and b2 of the queues q1 and q2 . The following summation considers all
possibilities. If the boolean values b1 and b2 are equal, the remainder of the agent behaves
again as LESS1 with the current result c as a parameter. If b1 is true and b2 is false, the agent
behaves as LESS1 with true as a parameter. If b1 is false and b2 is true, the agent evolves to
LESS1 with false as a parameter. If, however, the queue q1 is empty by signaling e1 , a constant
true or false for the current result is returned via resp. �

We can also construct an agent ADD for the boolean-wise addition of two natural numbers.
The result is a natural number representing the result of the addition:

Definition 4.17 (Add) Two natural numbers can be added by a function with the signature

ADD : number × number → number ,

represented by the agent ADD :

ADD
def
= νr add(n1 ,n2 , resp).norm〈n1 ,n2 , r〉.r(n3 ,n4).

n3 (q1 , e1).n4 (q2 , e2).iqueue(q3 , e3 , i3).(ADD1 (⊥) | ADD) .

78 On the Application of a Theory for Mobile Systems to Business Process Management

In addition to CMP and LESS , ADD creates a new iterator queue q3 used as return value.
ADD1 is given by:

ADD1 (c)
def
= q1 (b1).q2 (b2).([b1 = ⊥][b2 = ⊥][c = ⊥]q3 〈⊥〉.ADD1 (⊥)+

[b1 = ⊥][b2 = ⊥][c = >]q3 〈>〉.ADD1 (⊥)+
[b1 = >][b2 = ⊥][c = ⊥]q3 〈>〉.ADD1 (⊥)+
[b1 = >][b2 = ⊥][c = >]q3 〈⊥〉.ADD1 (>)+
[b1 = ⊥][b2 = >][c = ⊥]q3 〈>〉.ADD1 (⊥)+
[b1 = ⊥][b2 = >][c = >]q3 〈⊥〉.ADD1 (>)+
[b1 = >][b2 = >][c = ⊥]q3 〈⊥〉.ADD1 (>)+
[b1 = >][b2 = >][c = >]q3 〈>〉.ADD1 (>))+
e1 .q3 〈c〉.resp〈i3 〉.0 .

The agent ADD1 has a parameter c that is used to represent a carry flag that denotes if an
overflow occurred. The evolution of ADD1 starts by fetching the current boolean values b1
and b2 of the queues representing the natural numbers used as input. The following summation
considers all eight possibilities regarding b1 , b2 , and c. Accordingly, a new boolean value is
added to the queue q3 and then the agent behaves again as ADD1 with the new value of the
carry flag as parameter. If q1 is empty, i.e. e1 is signaled, the carry flag is enqueued at q3 and
the iterator name of q3 are returned via resp. �

An agent SUB for subtraction can be given accordingly to ADD . Since this is straightfor-
ward, we omit the definition.

4.2.3 Syntactical Extensions

Since the representation of natural numbers is a common task, we introduce a syntactical exten-
sion that eases the use. In particular, we introduce constant names and according agents for all
natural numbers n ∈ N and extended match constructs for evaluating them. Technically, the set
of names is extended by all natural numbers: NN = N ∪ N, the agent identifiers are extended
by the corresponding agents that produce the natural numbers: KN = K ∪ {NUM x | x ∈ N},
and the extended prefixes πN are given by:

πN ::=x〈ỹ〉 | x(z̃) | τ | [x = y]πN |
if n1 : number{==, 6=, <, >}n2 : number then P else P ′ .

(4.1)

The names n1 and n2 in equation 4.1 are typed as numbers, thus the extension only applies to
natural numbers. We provide infix operators for (1) the equality of two natural numbers, denoted
as n1 == n2 , (2) the inequality of two natural numbers, denoted as n1 6= n2 , (3) a test if n1 is
less than n2 , denoted as n1 < n2 , and (4) a test if n1 is greater than n1 , denoted as n1 > n2 .

CHAPTER 4. DATA 79

If the else part is omitted, inaction (0) is assumed instead. Usage examples are given by

A
def
= νresp add〈4, 5, resp〉.resp(n).if n == 9 then A′ ,

B
def
= b(age : number).if age < 20 then B ′ else B ′′ , and

C
def
= c(i : queue iterator , size).i(q1 , e1).C1 (0)

C1 (count)
def
= νresp q1 (x).add〈count , 1, resp〉.resp(e).C1 (e)+

e1 .size〈count〉.C .

(4.2)

Agent A first adds two natural numbers given as the constants 4 and 5. The respective agents
are assumed to be:

NUM4
def
= iqueue(n4 , e4 , i4).n4 〈⊥〉.n4 〈⊥〉.n4 〈>〉.num4 〈i4 〉.NUM4 and

NUM5
def
= iqueue(n5 , e5 , i5).n5 〈>〉.n5 〈⊥〉.n5 〈>〉.num5 〈i5 〉.NUM5 ,

where the constants are received via num4 (4) and num5 (5). The constant 9 used later on is
acquired in the same way. The statement if n == 9 then A′ is expanded using the agent CMP
as follows:

νr cmp(n, 9, r).r(e).[e = true]τ.A′ .

The complete expanded agent A is then given by:

A
def
= νresp νr num4 (4).num5 (5).num9 (9).add〈4, 5, resp〉.resp(n).

cmp〈n, 9, r〉.r(e).[e = true]τ.A′ .

The agent B first receives a name age typed as natural number via b and then behaves as B ′ if
age < 20 and otherwise as B ′′. The expanded agent B is given by:

B
def
= νr num20 (20).b(age : number).less〈age, 20, r〉.r(e).

([e = true]τ.B ′ + [e = false]τ.B ′′) .

Agent C counts the number of elements contained inside an iterator queue. Since no new ex-
tensions are contained, the expanded agent is omitted. The formal syntactical enhancements for
natural numbers are given by:

n | n ∈ N 7−→numn(n) before the first use of the constant,

if n1 == n2 then P else P ′ 7−→νr cmp〈n1 ,n2 , r〉.r(e).([e = true]τ.P + [e = false]τ.P ′)
if n1 6= n2 then P else P ′ 7−→νr cmp〈n1 ,n2 , r〉.r(e).([e = true]τ.P ′ + [e = false]τ.P)

if n1 < n2 then P else P ′ 7−→νr less〈n1 ,n2 , r〉.r(e).([e = true]τ.P + [e = false]τ.P ′)

if n1 > n2 then P else P ′ 7−→νr less〈n2 ,n1 , r〉.r(e).([e = true]τ.P + [e = false]τ.P ′)

If the else part is omitted, the right hand side of the summation in the syntactical expansion is
left out. Furthermore, we require an infinite number of agents NUMn | n ∈ N that incorporate

80 On the Application of a Theory for Mobile Systems to Business Process Management

an iterator queue to generate new queues containing the boolean representation of n, e.g.

NUM0
def
= iqueue(n0 , e0 , i0).n0 〈⊥〉.num0 〈i0 〉.NUM0 ,

NUM1
def
= iqueue(n1 , e1 , i1).n1 〈>〉.num1 〈i1 〉.NUM1 ,

NUM2
def
= iqueue(n2 , e2 , i2).n1 〈⊥〉.n1 〈>〉.num2 〈i2 〉.NUM2 ,

NUM3
def
=

Note that each agent NUMn creates a fresh iterator queue instead of acting as a singleton on
one queue. This is required for the concurrent evaluation of two iterator queues representing the
same natural number.

By using the natural number extension, we can provide language constructs like while loops
known from imperative languages: while (i=0; i++; i<3) BLOCK . An instance is
given as follows, where the block is represented by τ :

A
def
= A0 (0)

A0 (i)
def
= νresp if i < 3 then τ.add〈i, 1, resp〉.resp(r).A0 (r) else P .

Similar constructs like until or for loops are also possible. Furthermore, we can define an
agent that interacts with another agent a given times via a name also given:

EXECW
def
= execwhile(times : number , n).(EXECW0 (0) | EXECW)

EXECW0 (count)
def
= νr if count < times then (n.0 |

add(count , 1, r).r(c).EXECW0 (c)) .

This agent is called while executor, since it interacts repeatedly with another agent in a while
loop manner.

4.2.4 Derived Values and Structures

Using standard techniques, further data values can be derived. We give examples for character
strings and lists. A character string is represented as a queue and the contained characters are
given by natural numbers. Different encodings for characters as natural numbers can be used.
For the ease of presentation we refer to ASCII [45].

Definition 4.18 (Character String) A character string stores characters in order. It is given by
an iterator queue of natural numbers. Starting with the first element in the queue, each natural
number encodes a character of the string. The type of a character string is string . If a character
string is used as a constant, only the iterator name is used if not stated otherwise. �

For instance, a character string containing ”HELLO WORLD” using ASCII encoding is
given by:

S
def
= iqueue(q, e, i).q〈72〉.q〈69〉.q〈76〉.q〈76〉.q〈79〉.q〈32〉.q〈87〉.q〈79〉.q〈82〉.q〈76〉.

q〈68〉.s〈i〉.S .

CHAPTER 4. DATA 81

The size of a character string is given by the length of the corresponding iterator queue.
Hence, agent C from equation 4.2 can be used to count the characters in a given character string.

Definition 4.19 (String Comparison) A string comparison on equality of two character strings
regarding their contents can be made using a function with the signature

CMPS : string × string → boolean ,

given by the agent CMPS :

CMPS
def
= cmps(s1 , s2 , resp).s1 (q1 , e1).s2 (q2 , s2).CMPS1

CMPS1
def
= q1 (x).(q2 (y).if x == y then CMPS1 else resp〈false〉+

e2 .CMPS2 (q1 , e1))+
e1 .(q2 (y).CMPS 2(q2 , e2) + e2 .resp〈true〉)

CMPS2 (q, e)
def
= q(z).CMPS2 (q, e) + e.resp〈false〉.0 .

Agent CMPS first fetches the queues containing the characters and uses nested summations in
CMPS1 to compare the natural numbers representing the characters in a recursive manner. If
one of the queues is shorter than the other one, the shorter one has to be iterated completely to
unlock the corresponding iterator. This is done in CMPS2 . �

We can introduce further functions and syntactical extensions to ease the handling of charac-
ter strings in the π-calculus. However, the ideas should have become clear by now. An extended
discussion on how to implement advanced structures in a concurrent programming language
based on the π-calculus has been done by Turner in [123]. For the process and interaction pat-
terns introduced later on, we still need one more definition that will conclude our presentation
of values and structures. The last one is called list:

Definition 4.20 (List) A list stores names that can be removed or retrieved. Names can be
contained in the list several times. The list consists of three operations, append to add names to
the list, remove to remove names from the list if they are contained, and iterate to iterate over
the content. Elements inside the list are identified using natural numbers. The list presented here
is an ordered list given by:

LIST
def
= νapp νrem νit iqueue(q, e, i).num0(id).list〈app, rem, it〉.

(LIST0 | LIST) .

LIST first creates three fresh names, app to append names to the list, rem to remove a name
at a specific position from the list, and it to receive non-destructive iterator names for the list.
Thereafter an iterator queue for storing the values of the list and a name representing the latest
id used inside the list are created. The restricted names are thereafter sent via list . The agent
then behaves as follows:

LIST1
def
= νr νli νei (app(n, ch).pair(t).t〈id , n〉.ch〈id〉.q〈t〉.add〈id , 1, r〉.r(id).LIST1+

rem(idr : number).queue(qtmp, etmp).LIST2+
it〈li , ei〉.i(qi , qe).LIST3) .

82 On the Application of a Theory for Mobile Systems to Business Process Management

LIST1 first creates three fresh names, where r is used as a response channel for an add interac-
tion inside the app operation, and li and ie are used as iterator names for the it operation. The
operations are placed inside a sum. The append operation receives a name n to be appended via
app as well as a channel ch , creates a new pair t, inserts the current id and the received name
n into the pair, enqueues the pair in q, returns the id via ch , and finally increases the id by one.
The remove operation receives the identification number idr of the name to be removed via rem ,
allocates a new queue with qtmp and etmp, and then behaves as LIST2 . The iterator operation
returns the fresh names li and ei via it , receives the two iterator names from i to iterate the list,
and behaves as LIST3 . The agent LIST2 removes an element identified by idr from the list if
it is contained:

LIST2
def
= q(v).(v(idt ,nt).if idt 6= idr then qtmp〈v〉.LIST2 else LIST2) + e.LIST21

LIST21
def
= qtmp(v).q〈v〉.LIST21 + etmp.LIST1 .

The agent LIST3 encapsulates the iterator of q to provide a consistent behavior:

LIST3
def
= qi(x).il〈x〉.LIST3 + qe.ei .LIST1 .

�

4.3 Data Patterns

After the last sections laid the cornerstones for representing data in the π-calculus, this section
describes how data is represented in business processes based on the workflow data patterns
[113]. We have to distinguish three different kinds of data: (1) data used inside activities for
internal calculations and decision making, (2) process instance data, and (3) data provided by
the environment. We represent each kind of data as π-calculus agents. For instance, we have
agents that represent internal data, like a cell referencing a natural number, agents representing
process instance data, like a list containing character strings that describe an insurance claim,
and agents representing environmental data like external triggers, sensors, or constants. We
implement the access restrictions for each kind of data by using π-calculus restrictions. Each
activity of a business process is represented by an agent consisting of only τ as an abstraction
for the functional perspective. Since possible control flow dependencies between activities will
be discussed in detail in chapter 5 (Processes), we focus on the data aspects of activities in the
remainder of this chapter.

Figure 4.1 shows a sample system of agents focusing on data. It contains six agents repre-
senting activities (A-F) and four additional ones that represent data as introduced before. The
agent A has access to process instance data, represented by the agent X . During the execution
of the business process composed out of the activities, the restricted name x will be forwarded
to other agents representing activities. Agent B has access to data provided for all process in-
stances by the business process management system here represented by agent Z. Since access
occurs via the free name z, every agent representing an activity can incorporate this data. Agent
C uses activity internal data via the restricted name y it shares with agent Y . The scope of the

CHAPTER 4. DATA 83

A

C

B D

E F

X

Y

ENV

y
y

x

x

r

Z

z

EnvironmentBPMS Data

Activities
Complex Activity

Activity Internal Data

Process
Instance Data Pi-Calculus

System

Figure 4.1: Flow graph of agents representing business process activities and data.

name y will not be extruded any further. The agent D consists of two components E and F and
thus describes a complex activity. If the scope of a name is extruded to D, it should also include
E and F . Finally, agent E uses data provided by the environment via the name r. Access to
the environment can occur by either restricted names scoped to certain activities; i.e. external
triggers, or by free names representing constants or functions. Examples for each of the different
types of data found in business processes are contained in the data visibility patterns subsection.

Furthermore, we do not make a sharp distinction between activities and activity instances
(accordingly for processes and process instances). An activity is given by an agent according to
its definition; whereas an activity instance is given by an agent that already evolved at least once
(see chapter 5.1.3 for details). To keep consistency with the terms introduced in chapter 3 (Busi-
ness Process Management), we adapt the pattern names given in the data pattern documentation
[113] to the introduced terminology. This regards tasks, that are denoted as activities, cases, that
are denoted as process instances, workflows that are denoted as processes, sub processes that
are denoted as complex activities, as well as workflow management systems that are denoted
as business process management systems. Since the data pattern descriptions are complex, and
only given in natural language, we focus on examples of the different implementation possibil-
ities. Hence, in a pattern like style, we show one adequate solution for each pattern without
assuming completeness.

4.3.1 Data Visibility Patterns

Data visibility patterns define different layers of accessibility for data elements. The layers are
depicted in figure 4.2. Inner layers have access to shared data of all outer layers, wheras the
converse does not hold. For instance, an activity can access shared data of a complex activity
it is part of, incorporate process instance data, and data provided for all instances by the BPMS
and the environment. A process, however, has no permission to access data that is restricted to a
certain activity. The different data visibility patterns are discussed in this subsection.

Pattern 4.1 (Activity Data) Description: Data elements can be defined by activities which are

84 On the Application of a Theory for Mobile Systems to Business Process Management

Activity

Complex Activity

Process

BPMS

Environment

Figure 4.2: Different data layers.

accessible only within the context of individual execution instances of that activity. (According
to [113, p.6])

Implementation: Each activity can use restricted names for internal calculations. These names
can either be directly created using the ν operator or by creating new data structures such as a
cell. For instance,

A
def
= νx cell(c).τ.0 ,

represents an activity that (1) creates a restricted name x used for internal calculation, and (2)
acquires another restricted name c pointing to a cell. The scope of x is restricted to A, whereas
c is restricted between CELL and A.

Pattern 4.2 (Complex Activity Data) Description: Complex activities are able to define data
elements, which are accessible by each of their components. (According to [113, p.7])

Implementation: A complex activity is represented by an agent consisting of several com-
ponents, where each component represents an activity. Complex activity data is then created
according to pattern 4.1 (Activity Data), with the distinction that the names are scoped to all
components. For instance,

C
def
= queue(q, e).(A | B) ,

represents a complex activity C with the activities A and B contained inside. C first creates a
new queue q, that can afterward be accessed by A and B.

Pattern 4.3 (Scope Data) Description: Data elements can be defined which are accessible by
a subset of the activities in a process instance. (According to [113, p.9])

Implementation: A process instance is given by an agent consisting of several components
which represent activities and complex activities. Simple subsets can be defined by restricting
the scope of a name to certain components. More complex scopes (i.e. overlapping ones) require
the use of data interaction patterns introduced later on. For instance,

I
def
= (A | B | νz (C | D)) ,

restricts the scope of the name z between the components C and D.

Pattern 4.4 (Multiple Instance Data) Description: Activities which are able to execute mul-
tiple times within a single process instance can define data elements which are specific to an

CHAPTER 4. DATA 85

individual execution instance. (According to [113, p.10])

Implementation: Pattern 4.1 (Activity Data) can be applied to provide each instance of an
activity with its own restricted names. For instance,

M
def
= νx τ.M + τ.0 ,

provides multiple executions of the functional part τ , each with its own restricted name x repre-
senting a data element.

Pattern 4.5 (Process Instance Data) Description: Data elements are supported which are
specific to a process instance. They can be accessed by all components of the process during the
execution of the process instance. (According to [113, p.12])

Implementation: Since a complex activity represents a process (see definition 3.10), the solution
from pattern 4.2 (Complex Activity Data) is sufficient.

Pattern 4.6 (Business Process Management System Data) Description: Data elements are
supported which are accessible to all components in each and every process instance and are
within the control of the business process management system (BPMS). (According to [113,
p.13])

Implementation: This pattern requires the definition of a BPMS in π-calculus. Basically, a
BPMS is an agent consisting of a component representing a process that can be enacted several
times. Data available to all components has then to be defined inside the BPMS agent. For
instance,

BPMS
def
= stack(s, e).(Penact) and Penact

def
= start .(P | Penact) ,

creates a new instance of a process represented by agent P each time the agent BPMS receives
the name start . Immediately, further instances can be created using recursion. All instances
have access to the stack created first in BPMS .

Pattern 4.7 (Environment Data) Description: Data elements, which exist in the external
operating environment, are able to be accessed by components of the process during execution.
(According to [113, p.14])

Implementation: This pattern requires the definition of an environment. Basically, an environ-
ment is represented by an agent E enacted concurrently with a BPMS agent. For instance,

SYS
def
= νsensor (BPMS | E) ,

defines a system consisting of a BPMS and environment. The environment agent E can interact
with the BPMS agent via sensor , that is available to all components inside SYS .

4.3.2 Data Interaction Patterns

Data interaction patterns describe how activities of a business process can exchange data. The
data interaction patterns are parted into internal and external ones. We only discuss internal data
interaction, since external data interaction is closely related to the service interaction patterns
that will be discussed in detail in chapter 6 (Interactions).

86 On the Application of a Theory for Mobile Systems to Business Process Management

Pattern 4.8 (Data Interaction—Activity to Activity) Description: The ability to communi-
cate data elements between one activity instance and another within the same process instance.
(According to [113, p.16])

Implementation: Two activities can exchange data by the use of restricted names. The restric-
tions should only cover the agents representing the activities involved under consideration of
SC-RES-COMP . For instance, in a process with two activities represented by the agent

P
def
= νd (cell(a).τ.d〈a〉.0 | d(x).τ.0) ,

the left hand component (i.e. activity) passes the name a to the right hand component (i.e.
activity) using the restricted name d. Furthermore, activity to activity data interaction can take
place by adapting pattern 4.5 (Process Instance Data).

Pattern 4.9 (Data Interaction—Complex Activity Decomposition) Description: The ability
to pass data elements to a complex activity. (According to [113, p.18])

Implementation: A complex activity receives data from preceding activities or other com-
plex activities by receiving it via a restricted name according to pattern 4.8 (Data Interaction—
Activity to Activity). For instance, a complex activity receiving a name available to all of its
activities is given as

C
def
= d(x).(A | B) .

Consequently, the name d has to be restricted between the agent representing the preceding
activity and C.

Pattern 4.10 (Data Interaction—Complex Activity Finalization) Description: The ability
to pass data elements from a complex activity. (According to [113, p.20])

Implementation: This pattern complements the preceding pattern. However, a substantial ex-
tension to complex activities is required, namely an explicit synchronization of the components.
This is again done using restricted names. For instance,

C
def
= νc1 νc2 (cell(u).τ.c1 〈u〉.0 | νv τ.c2 〈v〉.0 | c1 (x).c2 (y).d〈x, y〉.0)

shows an agent with three components representing a complex activity. The left component (i.e.
activity) acquires a new cell u, whereas the middle component creates a restricted name v. Both
names, u and v, are sent as subject in the complex activity synchronization component, repre-
sented by the right hand term. The agents representing the activities contained in the complex
activity are synchronized via c1 and c2 . The data is transmitted to an agent representing the
subsequent activity via d.

Pattern 4.11 (Data Interaction—To Multiple Instance Activities) Description: The ability
to pass data elements from a preceding activity instance to a subsequent activity which is able
to support multiple instances. This may involve passing the data elements to all instances of the
multiple instances activity or distributing them on a selective basis. (According to [113, p.20])

Implementation: This pattern distinguishes two possibilities: Either all activity instances work
on the same, shared data or each instance receives a specific data element to work on. An

CHAPTER 4. DATA 87

example for the first approach is given by:

M
def
= cell(c).N and N

def
= τ.N + τ.0 .

Agent M first creates a cell that is shared by all instances created in N . An example for the
second approach is given by:

M
def
= m(q, e).N and N

def
= (q(x).τ.0 | N) + e.0 .

The second example uses a queue as input. For each entry of the queue, an instance is created
that works on the specific entry.

Pattern 4.12 (Data Interaction—From Multiple Instance Activities) Description: The
ability to pass data elements from an activity which supports multiple execution instances to a
subsequent activity. (According to [113, p.22])

Implementation: Just like the preceding pattern, also this pattern distinguishes two possibili-
ties. Either all activity instances return a shared data element or each instance returns a specific
element. Since different types of multiple instance activities are discussed in detail in chapter 5
(Processes), we consider multiple instances without any synchronization. For the first approach
(shared data), the current calculated value could be accessed any time, whereas for the second
approach (individual data), access is possible as soon as the last instance has been created. We
give an example for the latter case:

M
def
= queue(q, e).N and N

def
= (νx τ.q〈x〉.0 | N) + τ.d〈q, e〉.0 .

The queue containing the results is created in agent M and filled by each recursive call of N that
represents a multiple instance activity. After N decides that no more recursion should happen,
i.e. the right hand term of the sum is chosen, the queue is sent via d to the subsequent activity.

Pattern 4.13 (Data Interaction—Process Instance to Process Instance) Description: The
passing of data elements from process instance during its execution to another process instance
that is executing concurrently. (According to [113, p.23])

Implementation: This pattern can be implemented by employing shared data at the BPMS or
environment level. Thus, pattern 4.6 (Business Process Management System Data) or pattern
4.7 (Environment Data) can be applied.

4.3.3 Data Transfer Patterns

The data transfer patterns describe mechanisms for the actual transfer of data elements. They
extend the patterns introduced in section 4.3.1. Since these patterns deal with technical details
such as data passing by value or reference, not everything can be represented in the π-calculus.

Pattern 4.14 (Data Transfer by Value—Incoming) Description: The ability of an activity
to receive incoming data elements by value relieving it from the need to have shared names or
common address space with the activities from which it receive them. (According to [113, p.34])

88 On the Application of a Theory for Mobile Systems to Business Process Management

Implementation: The π-calculus does not support any values directly; only references by names
are available. Thus, the pattern is not supported.

Pattern 4.15 (Data Transfer by Value—Outgoing) Description: The ability of an activity to
pass data elements to subsequent activities as values relieving it from the need to have shared
names or common address space with the activities to which it is passing them. (According to
[113, p.35])

Implementation: The π-calculus does not support any values directly, only references by names
are available. Thus, the pattern is not supported.

Pattern 4.16 (Data Transfer—Copy In/Copy Out) Description: The ability of an activity to
copy the values of a set of data elements into its address space at the commencement of execution
and to copy their final values back at completion. (According to [113, p.35])

Implementation: This pattern can be supported by defining an agent COPY that is able to
return a copy of a given data type. If we assume such an agent,

A
def
= νresp a(x).cell(c).copy〈x, c, resp〉.resp.τ.copy〈c, x, resp〉.resp.b〈x〉.0 (4.3)

represents an activity that receives data via a, creates a cell scoped to the activity, copies the
data, executes its functional part, and finally copies back the value and transmits the result via b.
However, especially copy out it seldom useful in concurrent environments.

Pattern 4.17 (Data Transfer by Reference—Unlocked) Description: The ability to com-
municate data elements between activities by utilizing a reference to the location of the data
element in some mutually accessible location. No concurrency restrictions apply to the shared
data element. (According to [113, p.36])

Implementation: Unlocked data transfer by reference is the default case in most patterns given
beforehand. This is due to the fact that names represent references to data.

Pattern 4.18 (Data Transfer by Reference—With Lock) Description: The ability to commu-
nicate data elements between activities by passing a reference to the location of the data element
in some mutually accessible location. Concurrency restrictions are implied with the receiving
activity receiving the privilege of read-only or dedicated access to the data element. (According
to [113, p.37])

Implementation: This pattern is implemented by different data structures, for instance in defini-
tion 4.6 (Iterator Queue). If an iterator is requested from the iterator queue and only the iterator
is transmitted to an activity, the access to the queue is blocked for all concurrent activities. Read
only access can be implemented by using distinct names for read and write operations, such as
an extended memory cell:

CELLRW
def
= νread νwrite cellRW 〈read ,write〉.(CELLRW1 (⊥) | CELLRW)

CELLRW1 (n)
def
= read〈n〉.CELLRW1 (n) + write(x).CELLRW1 (x) .

(4.4)

The agent CELLRW uses distinct names read and write . If the cell should be read (or write)
only, the corresponding name has to be transmitted to an activity.

CHAPTER 4. DATA 89

Pattern 4.19 (Data Transformation—Input) Description: The ability to apply a transforma-
tion function to a data element prior to it being passed to an activity. (According to [113, p.38])

Implementation: This pattern can be implemented by providing agents for transforming the
data correspondingly.

Pattern 4.20 (Data Transformation—Output) Description: The ability to apply a trans-
formation function to a data element immediately prior to it being passed out of an activity.
(According to [113, p.39])

Implementation: This pattern can be implemented by providing agents for transforming the
data correspondingly.

4.3.4 Data-based Routing Patterns

Data-based routing patterns describe how data can be used to define control flow between ac-
tivities. They already anticipate the topic of processes that will be investigated in chapter 5
(Processes). Thus, we only provide short examples of how the patterns can be realized in the
π-calculus.

Pattern 4.21 (Activity Precondition—Data Existence) Description: Data-based precon-
ditions can be specified for activities based on the presence of data elements at the time of
execution. (According to [113, p.39])

Implementation: One possible implementation is given by an agent representing an activity that
is enacted each time data can be read from a queue:

A
def
= q(d).(τ.A′ | A) ,

where q is queue. There are also implementations possible where an exception handling takes
place if the data is not available. For instance, if an empty name is read from the queue, the
current activity instance could be skipped or the whole process instance could be canceled.

Pattern 4.22 (Activity Precondition—Data Value) Description: Data-based preconditions
can be specified for activities based on the value of specific parameters at the time of execution.
(According to [113, p.41])

Implementation: For instance, an agent representing an activity is enacted if a cell c contains
the value 3. The agent polls the values of the cell:

A
def
= c(x).if x == 3 then τ.A′ else τ.A .

Since polling produces a performance overhead, this is not a recommended implementation.
Furthermore, an exception handling can take place if a data value is not met.

Pattern 4.23 (Activity Postcondition—Data Existence) Description: Data-based postcon-
ditions can be specified for activities based on the existence of specific parameters at the time of
execution. (According to [113, p.42])

Implementation: This pattern can have two different implementations. The first alternative is to
hold the execution of the activity, whereas the second repeats the activity until the postcondition

90 On the Application of a Theory for Mobile Systems to Business Process Management

is met. While the latter one can be implemented using a while loop, the former one can be given
for instance as

A
def
= τ.A′ and A′ def

= c(x).([x = ⊥]A′ + ([x = >]A′′) .

The activity represented by the agent above polls a cell via the name c after the functional part
has been executed. As long as the value is ⊥, the polling continues, whereas a subsequent part
of the activity is activated in A′′ if the value is >.

Pattern 4.24 (Activity Postcondition—Data Value) Description: Data-based postconditions
can be specified for activities based on the value of specific parameters at the time of execution.
(According to [113, p.43])

Implementation: The implementation of this pattern is similar to activity postconditions—data
existence (pattern 4.23).

Pattern 4.25 (Event-based Activity Trigger) Description: The ability for an external event
to initiate an activity. (According to [113, p.43])

Implementation: This patterns triggers an activity if an external event occurs. Since events
and data are represented as names in the π-calculus, a possible implementation is given by an
environment E that is able to signal an event:

SYS
def
= νevt (evt .τ.A′ | E) .

The activity is represented as the left hand component. It is executed immediately after an
interaction via evt occurs. This interaction is triggered by E .

Pattern 4.26 (Data-based Task Trigger) Description: The ability to trigger a specific activity
when an expression based on process data elements evaluates to true. (According to [113,
p.44])

Implementation: This pattern can be implemented using polling or events generated by the
data producing processes. If, for instance, the environment provides the data, the solution from
pattern 4.25 (Event-based Activity Trigger) is sufficient.

Pattern 4.27 (Data-based Routing) Description: The ability to alter the control flow within a
process instance as a consequence of the value of data-based expressions. (According to [113,
p.45])

Implementation: This pattern resembles the process pattern 5.4 (Exclusive Choice) and will be
discussed in chapter 5 (Processes).

Chapter 5

Processes

In this chapter we discuss how business processes can be represented by introducing process
graphs as a static structure for defining dependencies between activities. Each node of a process
graph represents an activity, while each edge defines a control flow constraint. The execution
semantics of a process graph is given by π-calculus agents. The agent terms are based on the
workflow patterns to cover a broad range of possible behavior. Moreover, we use (bi)-simulation
equivalences to decide whether a process graph fulfills certain soundness properties. In particu-
lar, we investigate lazy, weak, and relaxed soundness.

5.1 Representation

In this section we describe the representation of business processes in the π-calculus. We intro-
duce a graph structure for business processes, continue with a formal semantics, and conclude
with a discussion of processes vs. instances.

5.1.1 Structure

We start with the definitions of a process graph, a data structure that represents a process as
given by definition 3.7 (Process). Process graphs provide a uniform representation of business
processes regardless of their actual notations:

Definition 5.1 (Process Graph) A process graph is a four-tuple consisting of nodes, directed
edges, types, and attributes. Formally: P = (N,E, T, A) with

• N as a finite, non-empty set of nodes,

• E ⊆ (N ×N) as a set of directed edges between nodes,

• T : N → TYPE as a function from nodes to types, and

• A ⊆ (N × (KEY ×VALUE)) as a relation from nodes to key/value pairs. �

The nodes N of a process graph define the activities of a process, and the directed edges E
define dependencies between activities. Each node has exactly one type assigned by the function

91

92 On the Application of a Theory for Mobile Systems to Business Process Management

2

A

C

B D
3

Figure 5.1: A simple business process.

T matching to one or more process patterns. An exception is given by the special type of
a single activity. In this case, pattern 5.1 (Sequence) has to be applied. A type is given by
an arbitrary text string. Furthermore, each node can hold optional attributes represented by
key/values pairs denoted by A. Keys and values are given by arbitrary text strings. Complex
activities are represented by a node N of the special type Reference, that references another
process graph, i.e. T (N) = Reference. As such composed process graphs can always be
flattened, we only consider flat process graphs. Some functions for accessing the sets of a
process graph are given by:

• pre : N → P(E) returns the set of edges having N as target.

• post : N → P(E) returns the set of edges having N as source.

• type : N → T returns the type of a node.

To show the coherence between a process graph and a graphical notation, we give an example
of how to map the structurally relevant parts of a business process diagram to a process graph.

Example 5.1 (Partly Mapping of a BPD to a Process Graph) A BPD is exemplary mapped
to a process graph P = (N,E, T, A) by the following steps:

1. N is given by all flow object of the BPD.

2. E is given by all sequence flows of the BPD.

3. T is given by the corresponding types of the flow objects.

4. A is given by additional attributes of flow objects, e.g.:

(a) The number of incoming sequence flows for an n-out-of-m-join node;

(b) The number of instances to be created for an activity;

(c) The nodes to be canceled for a cancel event. �

An example of a business process modeled in BPMN is given in figure 5.1. The process contains
an n-out-of-m-join pattern, modeled by a gateway with the number of required sequence flows
inside, as well as a multiple instances without synchronization pattern, modeled by activity D.
The complete business process diagram is mapped to a process graph according to the mapping
rules given in example 5.1.

CHAPTER 5. PROCESSES 93

Example 5.2 (Simple Business Process) The process graph P = (N,E, T, A) of the example
from figure 5.1 is given by:

1. N = {N1 ,N2 ,N3 ,N4 ,N5 ,N6 ,N7 ,N8}

2. E = { (N1 ,N2), (N2 ,N3), (N2 ,N4), (N2 ,N5), (N3 ,N6), (N4 ,N6),
(N5 ,N6), (N6 ,N7), (N7 ,N8) }

3. T = {(N1 ,StartEvent), (N2 ,ANDGateway), (N3 ,Task), (N4 ,Task),
(N5 ,Task), (N6 ,NoutofMJoin), (N7 ,MIwithoutSync), (N8 ,EndEvent)}

4. A = {(N6 , (continue, 2)), (N7 , (count , 3))} �

5.1.2 Behavior

The definition of a process graph contains the types of the nodes, and thereby their behavioral
semantics, only in a textual form. This causes no problems regarding ordinary activity nodes,
since we abstract from their actual semantics. However, for node types that regard to control
flow dependencies, a formal semantics has to be found. This topic has already been motivated in
definition 3.22 (Simple Process Graph). In contrast to a simple process graph, a process graph
can contain more advanced routing constructs making its formalization more complex. We give
a formal execution semantics to a process graph by mapping it to π-calculus agents according to
the following algorithm.

Algorithm 5.1 (Mapping Process Graphs to Agents) A process graph P = (PN , PE , PT , PA)
is mapped to π-calculus agents as follows:

1. All nodes of P are assigned a unique π-calculus agent identifier N1 . . . N |PN |.

2. All edges of P are assigned a unique π-calculus name e1 . . . e|PE |.

3. The π-calculus agents are defined according to the process patterns found in the next
section as given by the type of the corresponding node. Special care has to be taken for
supporting loop behavior

(a) All agents representing a node with no incoming edges (i.e. initial nodes) do not
support loop behavior, and

(b) All other agents support loop behavior by recursion (can be omitted if the process
graph does not contain cycles).

4. An agent N
def
= (νe1 , . . . , e|PE |)(

∏|PN |
i=1 Ni) representing a process instance is defined.

This agent might contain further components or restricted names according to the con-
tained patterns. �

The formalization of a process graph in the π-calculus starts with a mapping from nodes to
agents. Hence, let every node be an independent agent. Each agent has pre- and postconditions.
A precondition for an agent B could be that it should only be executed after an agent A has

94 On the Application of a Theory for Mobile Systems to Business Process Management

2

A

C

B D
3

N1

N2

N3

N4

N5
N6

N7 N8
e1

e2

e3

e4 e7

e6

e5

e8 e9

Figure 5.2: A simple business process annotated with agent identifiers and names.

finished executing the activity it represents. A postcondition for an agent B could state that B
has finished execution and then signals this to other agents. The pre- and postconditions are
represented in the second step of the algorithm by unique π-calculus names. A precondition is
denoted by using a name as input prefix and a postcondition by using a name as an output prefix.
In the third step, a pattern is applied to each agent for correctly consuming and generating the
pre- and postconditions. During this step, α-conversions of the names given in the patterns to
the corresponding names assigned to the edges have to be made. An agent representing a basic
activity inside a sequence is given by:

A
def
= x.τ.y.0 .

A waits for a single precondition (via x), executes the functional perspective of the activity it
represents (abstracted from by τ), and finally fulfills a postcondition by emitting via y. If an
agent representing a node of a process graph has no preconditions, it represents an initial node.
Correspondingly, it represents a final node if it has no postcondition. In the fourth step, all agents
representing nodes are placed as components inside a composition N . Furthermore, the names
assigned to the edges are restricted to N .

To allow generic definitions of process patterns that can be further on extended, we refine
the abstraction of the functional perspective given by τ with a functional abstraction:

Definition 5.2 (Functional Abstraction) A functional abstraction, denoted as 〈·〉, represents a
placeholder for a sequence of prefixes and restrictions. A functional abstraction may be placed
anywhere inside an agent definition where a prefix could be placed. The grammar of the se-
quences is given by:

P ::=Q.π | π | νz P

Q ::=Q.π | π
π ::=x〈y〉 | x(z) | τ

(5.1)

�

A〈ϕ〉 denotes the replacement of all functional abstractions inside the agent A by the se-

quence ϕ. Equal to a context, the replacement is literal. An example is given by A
def
= a.〈·〉.b.0,

that can be resolved by A〈m.τ〉 to A
def
= a.m.τ.b.0.

Example 5.3 (Simple Business Process Formalization) We can now map the process graph
from example 5.1 to π-calculus agents according to algorithm 5.1 by anticipating some of the

CHAPTER 5. PROCESSES 95

pattern formalizations. Figure 5.2 shows an annotated version of the business process diagram
where steps one and two of the algorithm have been applied. Each node is assigned a π-calculus
identifier and each edge is assigned a unique π-calculus name. In the third step, the actual agent
definitions are created. The first node of the business process is a start event given by the agent

N1
def
= 〈·〉.e1 .0 .

Since the node representing the start event has no incoming edges, also the agent formalizing
it has no precondition. N1 simply emits via e1 the completion of the functional part of the
start event represented by 〈·〉. The next node is of the type BPMN and gateway. Since this
gateway combines two different process patterns, namely parallel split (pattern 5.2) and syn-
chronization (pattern 5.3), it has to be evaluated which one—or even both—have to be applied.
Since |pre(N2)| = 1 the node does not represent a synchronization pattern. However, with
|post(N2)| = 3, the parallel split pattern applies. The corresponding formalization of node N2
is given as

N2
def
= e1 .〈·〉.(e2 .0 | e3 .0 | e4 .0) .

According to algorithm 5.1, we omitted loop behavior since the process graph is acyclic. After
the functional part represented by 〈·〉 has been executed, the agent provides all necessary post-
conditions via the names e2 , e3 , and e4 . A detailed discussion of the applied pattern (and also
for the nodes to follow) can be found in section 5.2. We omit the discussion here and continue
with the agents representing the tasks A, B, and C:

N3
def
= e2 .〈·〉.e5 .0 , N4

def
= e3 .〈·〉.e6 .0 , and N5

def
= e4 .〈·〉.e7 .0 .

All tasks are placed inside a sequence as explained earlier. More interesting is the next node, rep-
resenting a 2-out-of-3 join as a special kind of the discriminator (pattern 5.9). The formalization
is given by

N6
def
= νh νe (N61 | N62) ,

with the components

N61
def
= e5 .h.0 | e6 .h.0 | e7 .h.0 and N62

def
= h.h.e.h.N6 | e.〈·〉.e8 .0 .

The agent N6 uses the preconditions in such a way, that after two arbitrary names of the set
{e5 , e6 , e7} have been received, the functional part is executed and the postcondition is pro-
vided via e8 . Again, a detailed description of the pattern follows. The multiple instances task
represents a multiple instances without synchronization (pattern 5.13). It is given by the follow-
ing agent:

N7
def
= e8 .(〈·〉.0 | 〈·〉.0 | 〈·〉.0 | e9 .0) .

In this agent, the functional part represent by 〈·〉 is executed three times in parallel without any
synchronization afterward. The postcondition is provided immediately via e9 . The last node is
of the type end event and given by:

N8
def
= e9 .〈·〉.0 .

96 On the Application of a Theory for Mobile Systems to Business Process Management

A B

A B

A B

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

A B

B

vb (τ.b.0 | b.τ.0)

τ.0

τ

→

A B vb (b.0 | b.τ.0)

τ

→

0

τ

→

Petri nets Pi-Calculus

Figure 5.3: Process instances.

Finally, the last step of algorithm 5.1 is applied by defining

N
def
= (νe1 , . . . , e9)(

8∏
i=1

Ni) .

The agent N is composed out of the agents representing the nodes of the process graph. How-
ever, due to the control flow dependencies that have been implemented, only component N1 can
start evolving immediately.

5.1.3 Processes and Instances

In this subsection we discuss how the concepts process (definition 3.7) and process instance
(definition 3.8) are distinguished in terms of process graphs and π-calculus mappings. The π-
calculus by itself does not differentiate between processes and process instances (vice versa
for activities). At each step of the evolution of a system made of agents, the state is directly
represented by the agent terms. In other formalizations, as for instance Petri nets, there is a
differentiation between the definition of a business process (e.g. given by a Petri net), and the
state it is currently in (e.g. the token distribution).

Figure 5.3 depicts the issue. The left hand side contains different states of a Petri net that
represents a sequence between two activities A and B. The states are formally denoted by the
markings such as (1, 0, 0) and graphically by tokens distributed over the places. A marking
always belongs to a specific Petri net given by a three tuple (P, T, F) (see definition 3.26). The
Petri net represents the static structure of a process, whereas the markings represent a process
instance. However, as stated above, in the π-calculus both concepts are merged. This is depicted
at the right hand side of the figure. A graphical representation is given by a flow graph, however
this is only for illustrating purposes. The agent definitions represent the current state the system
is in. As the system, and thereby the process it represents, evolves, the agents change their
structure by using term rewriting. Thus, the structure as well as the current state are described
only in terms of π-calculus agents.

It is not our aim to discuss these different paradigms here. They can be mapped partly by
stating that a π-calculus agent corresponds to the concept of a process (definition 3.7) if it is

CHAPTER 5. PROCESSES 97

in the state given by its definition since it contains the complete behavior of the corresponding
process graph. A π-calculus agent might corresponds to the concept of a process instance (def-
inition 3.8) if its current state represents an evolution of a defined agent. An example for the
former case is given by

S
def
= νb (τ.b.0 | b.τ.0) .

An example for the latter case is the first evolution of the agent given above:

S
τ−→ νb (b.0 | b.τ.0) .

Both definitions only hold for a system of agents representing a business process. However, due
to recursion inside agents, an agent representing currently a process instance can represent a
process again. Consider for instance,

A
def
= τ.(b.0 | A) ,

that corresponds to an activity. After τ−→ it corresponds to an activity instance, but after b−→
and SC-COMP-INACT it corresponds again to an activity following the above definitions. Since
this subtle problem makes the distinction between processes and process instances as well as
between activities and activity instances in the π-calculus difficult, we avoid using these terms.
Instead, we talk about a prototypical representation that merges both concepts. If the structural
definition of a process according to definition 3.7 (Process) is required, we revert to a process
graph (definition 5.1). Each process graph gets a formal semantics according to algorithm 5.1
(Mapping Process Graphs to Agents). Due to the property that the agent representing the initial
node of the process graph can only be executed once, each π-calculus mapping of a process
graph is seen as a process instance according to definition 3.8 (Process Instance).

5.2 Process Patterns

This section introduces different process patterns as required by algorithm 5.1. The patterns
proposed are based on the workflow patterns, as well as an additional one that is especially
suited for interactions introduced in chapter 6 (Interactions). As done in chapter 4 (Data), we
adapt the description of the patterns to the terminology used throughout this thesis.

5.2.1 Basic Control Flow Patterns

The basic control flow patterns capture elementary aspects of control flow. A graphical repre-
sentation of these patterns is given in figure 5.4.

Pattern 5.1 (Sequence) Description: An activity in a business process is enabled after the
completion of another activity in the same process. (According to [12, p.6])

Implementation: A sequence is represented by an agent A waiting for a precondition via a,
thereafter executing the functional perspective of the activity the agent represents (i.e. 〈·〉), and
finally provides a postcondition via b:

A
def
= a.〈·〉.b.0 .

98 On the Application of a Theory for Mobile Systems to Business Process Management

Aa b

(a) Sequence.

a
b1

bn

...

(b) Parall. Split.

a1

an

b...

(c) Synchroniz.

a
b1

bn

...

(d) Excl. Choice.

a1

an

b...

(e) Simple Merge.

Figure 5.4: Basic control flow patterns.

This pattern applies to a node N of a process graph that has at most one incoming and at most
one outgoing edge: |pre(N)| ≤ 1 and |post(N)| ≤ 1. If pre(N) = ∅, the name a is omitted,
and if post(N) = ∅, the name b is omitted from the pattern.

Pattern 5.2 (Parallel Split) Description: A point in the business process where a single
thread of control splits into multiple threads of control which can be executed in parallel, thus
allowing activities to be executed simultaneously or in any order. (According to [12, p.7])

Implementation: To achieve a parallel split from an agent A, representing a node of a process
graph, n names b are emitted as a postcondition:

A
def
= a.〈·〉.(

n∏
i=1

bi.0) .

This pattern applies to a node N of a process graph that has at most one incoming edge and at
least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If pre(N) = ∅, the name a is
omitted from the pattern.

Pattern 5.3 (Synchronization) Description: A point in the business process where multiple
parallel (complex) activities converge into one single thread of control, thus synchronizing mul-
tiple threads. It is an assumption of this pattern that each incoming branch of a synchronizer is
executed once. (According to [12, p.7])

Implementation: To achieve synchronization at an agent A, representing a node of a process
graph, n names are received as a precondition:

A
def
= {ai}n

i=1.〈·〉.b.0 .

The sequential ordering of the names ai, representing preconditions, causes no problems, since
the π-calculus semantics applied is synchronous. The patterns applies to a node N of a process
graph that has at least two incoming edges and at most one outgoing edge: pre(N) ≥ 2 and
post(N) ≤ 1. If post(N) = ∅, the name b is omitted from the pattern.

The parallel split and the synchronization patterns can be combined into one node of a pro-
cess graph. The pattern is then given accordingly:

A
def
= {ai}n

i=1.〈·〉.(
m∏

i=1

bi.0) .

CHAPTER 5. PROCESSES 99

Pattern 5.4 (Exclusive Choice) Description: A point in the business process where, based
on a decision or data, one of several branches is chosen. (According to [12, p.8])

Implementation: An exclusive choice from an agent A, representing a node of a process graph,
is achieved by emitting one name bi out of a set with size n:

A
def
= a.〈·〉.(

n∑
i=1

bi.0) .

The pattern given makes a non-deterministic choice. It applies to a node N of a process
graph that has at most one incoming edge and at least two outgoing edges: |pre(N)| ≤ 1
and |post(N)| ≥ 2. If pre(N) = ∅, the name a is omitted from the pattern. A data-based choice
according to pattern 4.27 (Data-based Routing) is represented by using either the match opera-
tor of the π-calculus (for comparing π-calculus names) or higher level abstractions like natural
number comparators. Consider for instance

A
def
= a.〈·〉.if value < 100 then b1 .0 else b2 .0 ,

where the name value represents a natural number generated in 〈·〉.
Pattern 5.5 (Simple Merge) Description: A point in the business process where two or more
alternative branches come together without synchronization. It is an assumption of this pattern
that none of the alternative branches is ever executed in parallel. (According to [12, p.9])

Implementation: A simple merge at an agent A, representing a node of a process graph, is
achieved by receiving one name ai out of a set with size n:

A
def
=

n∑
i=1

ai.〈·〉.b.0 .

The patterns applies to a node N of a process graph that has at least two incoming edges and
at most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is
omitted from the pattern. If more than one name should be used as a precondition, pattern 5.7
(Synchronizing Merge) applies.

Just as the parallel split and synchronization patterns can be combined into one node of a
process graph, the same holds for the exclusive choice and simple merge patterns. The corre-
sponding pattern is given by:

A
def
=

n∑
i=1

ai.〈·〉.(
m∑

i=1

bi.0) .

Example 5.4 (Basic Control Flow Patters) We illustrate the application of the basic control
flow patterns by a process graph containing them all. Figure 5.5 depicts the process graph. We
already annotated the corresponding π-calculus agent identifiers inside the nodes as well as the
π-calculus names beside the edges. The types of the nodes are attached next to the nodes and
correspond directly to the patterns introduced so far. The nodes that are executed sequentially
are given by

N2
def
= e1 .〈·〉.e3 .0,N3

def
= e2 .〈·〉.e4 .0,N6

def
= e6 .〈·〉.e8 .0, and N7

def
= e7 .〈·〉.e9 .0 .

100 On the Application of a Theory for Mobile Systems to Business Process Management

e1

e2

e3

e4

e5

e6

e7

e8

e9

N1

N2

N3

N4 N5

N6

N7

N8Parallel
Split Sync.

Sequence Sequence

SequenceSequence

Excl.
Choice

Simple
Merge

Figure 5.5: Basic control flow pattern example.

The parallel split and synchronization patterns are implemented as

N1
def
= 〈·〉.(e1 .0 | e2 .0) and N4

def
= e3 .e4 .〈·〉.e5 .0 .

Finally, the exclusive choice and simple merge patterns are implemented by

N5
def
= e5 .〈·〉.(e6 .0 + e7 .0) and N8

def
= e8 .〈·〉.0 + e9 .〈·〉.0 .

We did not use recursion inside the agent definitions, since the process graph is acyclic. The
global agent representing the complete process graph is given by:

N
def
= νe1 . . . e9 (

8∏
i=1

Ni) .

5.2.2 Advanced Branching and Synchronization Patterns

The advanced branching and synchronization patterns cover more elaborate control flow splits
and merges. A graphical representation of these patterns is given in figure 5.6.

Pattern 5.6 (Multiple Choice) Description: A point in the workflow process where, based on
a decision or data, a number of branches are chosen. (According to [12, p.9])

Implementation: A multiple choice from an agent A, representing a node of a process graph, is
achieved by emitting a number of names bi out of a set with size n:

A
def
= νc a.〈·〉.(

n∏
i=1

(

enable︷︸︸︷
bi.0 +

cancel︷︸︸︷
c.0) | {c}n−1

i=1 .0) .

The pattern given makes a non-deterministic choice where at least one name out of bi is emitted.
The last constraint is achieved by the right hand component of A, that only emits n−1 restricted
names c. It applies to a node N of a process graph that has at most one incoming edge and at
least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If pre(N) = ∅, the name a is
omitted from the pattern. A data-based choice according to pattern 4.27 (Data-based Routing)
is represented by using either the match operator of the π-calculus (for comparing π-calculus
names) or higher level abstractions like natural number comparators. Consider for instance

A
def
= a.〈·〉.([x = y]b1 .0 | [x = z]b2 .0) ,

CHAPTER 5. PROCESSES 101

a
b1

bn

...

(a) Mult. Choice.

a1

an

b...

(b) Synch. Merge.

a1

an

b...

(c) Multi. Merge.

a1

am

b... 1

(d) Discriminator.

a1

am

b... n

(e) N-out-of-M.

Figure 5.6: Advanced control flow patterns.

where the name b1 and b2 are sent based on the evaluation of native π-calculus names. Care has
to be taken that SC-MAT can be applied at least once.

Pattern 5.7 (Synchronizing Merge) Description: A point in the business process where
multiple paths converge into one single thread. If more than one path is taken, synchronization
of the active threads needs to take place. If only one path is taken, the alternative branches
should reconverge without synchronization. It is an assumption of this pattern that a branch that
has already been activated, cannot be activated again while the merge is still waiting for other
branches to complete. (According to [12, p.11])

Implementation: A synchronizing merge at an agent A, representing a node of a process graph,
is achieved by receiving a number of names out of a set with size n:

A
def
= νc νw νd (

n∏
i=1

(

accept︷ ︸︸ ︷
ai.(d.0︸︷︷︸

final

+w.c.0︸ ︷︷ ︸
more

) +
cancel︷︸︸︷
c.0) | d.{c}n−1

i=1 .〈·〉.b.0 | {w}n−1
i=1 .0) .

The pattern implementation makes a non-deterministic choice between executing the functional
abstraction 〈·〉 or waiting for further names. The three restricted names c, w, and d represent
either cancel, wait, or done triggers. After a name has been received via ai, the component can
decide between waiting for further names if this is possible, i.e. an interaction via w can occur,
or signaling d, which leads to the cancellation of all remaining parallel components via c. Only
after all components waiting for further names are canceled, the functional part is executed. The
patterns applies to a node N of a process graph that has at least two incoming edges and at most
one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is omitted from
the pattern.

Pattern 5.8 (Multiple Merge) Description: A point in a business process where two or more
branches reconverge without synchronization. If more than one branch gets activated, possibly
concurrently, the activity following the merge is started for every activation of every incoming
branch. (According to [12, p.13])

Implementation: A multiple merge at an agent A, representing a node of a process graph, is
achieved by receiving arbitrary names out of a set with size n:

A
def
=

n∑
i=1

ai.(〈·〉.b.0 | A) .

The patterns applies to a node N of a process graph that has at least two incoming edges and at
most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is omitted

102 On the Application of a Theory for Mobile Systems to Business Process Management

B

A

C

D

d1
d2

d3 Discriminator

Sequence

Sequence

Sequence

Figure 5.7: Discriminator example.

from the pattern. Note that subsequent nodes of the process graph must support pattern 5.11
(Arbitrary Cycles).

Pattern 5.9 (Discriminator) Description: The discriminator is a point in a business process
that waits for one of the incoming branches to complete before activating the subsequent activity.
From that moment on it waits for all remaining branches to complete and ”ignores” them. Once
all incoming branches have been triggered, it resets itself so that it can be triggered again.
(According to [12, p.14])

Implementation: A discriminator at an agent A, representing a node of a process graph, is
achieved by receiving a name out of a set with size m and thereafter executing the functional
abstraction 〈·〉, while waiting for the remaining names of the set:

A
def
= νh νe (A1 | A2), A1

def
=

m∏
i=1

ai.h.0, and A2
def
= h.e.{h}m−1

1 .A | e.〈·〉.b.0 .

The patterns applies to a node N of a process graph that has at least two incoming edges and at
most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is omitted
from the pattern. Note that subsequent nodes of the process graph must support pattern 5.11
(Arbitrary Cycles).

Example 5.5 (Discriminator) We illustrate a possible evolution of the discriminator by an
example consisting of four agents A, B, C, and D. The first three agents represent nodes of a
process graph prior to the discriminator that is represented as D:

DISC
def
= νd1 νd2 νd3 (A | B | C | νh νe (D1 | D2)) .

The agents A, B, and C are defined according to pattern 5.1 (Sequence), whereas D is given by
pattern 5.9 (Discriminator). The names used as pre- and postconditions between the agents can
be found in figure 5.7. The sequential nodes are given by:

A
def
= τ.d1 .0, B

def
= τ.d2 .0, and C

def
= τ.d3 .0 .

Since we would like to evolve through the system, we replaced 〈·〉 of the pattern definitions by
τ . The agent representing a discriminator with the matching names is given by:

D
def
= νh νe (D1 | D2), D1

def
=

3∏
i=1

di .h.0, and D2
def
= h.e.h.h.D | e.τ.0 .

CHAPTER 5. PROCESSES 103

The evolution of DISC begins with either A, B, or C emitting a name after the corresponding
τ transition (omitted). We assume A to emit d1 first:

DISC τ−→ DISC1
def
= νd2 νd3 (B | C | νh νe (D11 | D2)) .

The agent A has vanished since no more prefixes exist after emitting the name d1 . Agent D1

has evolved to D11 and is defined by D11
def
= h.0 | d2 .h.0 | d3 .h.0. Immediately after, a

communication between D11 and D2 is possible:

DISC1
τ−→ DISC2

def
= νd2 νd3 (B | C | νh νe (D12 | D21)) .

D11 communicates the name h to D2 and evolves to D12
def
= d2 .h.0 | d3 .h.0. The left hand

component of D12 has vanished as it reached inaction. The agent D2 evolves to D21
def
=

e.h.h.D | e.τ.0. Now e can be communicated inside D21 :

DISC2
τ−→ DISC3

def
= νd2 νd3 (B | C | νh (D12 | D22)) .

D22 is given by D22
def
= h.h.D | τ.0. Note that the right hand side of D22 now only consists of

τ.0. After a τ transition, the right hand side of D22 vanishes. Now agent B can communicate
d2 and D12 can communicate h in turn:

DISC2
τ−→ DISC3

def
= νd3 (C | νh (D13 | D23)) .

Agent B has vanished after communicating d2 . D12 evolves to D13
def
= d3 .h.0. Agent D23 is

given by D23
def
= h.D. Finally agent C can communicate d3 to D13 and D13 can communicate

h to D23 :
DISC3

τ−→ DISC4 ≡ D .

Since no more transitions inside DISC4 are possible, the example is concluded.

Pattern 5.10 (N-out-of-M-Join) Description: An n-out-of-m-join is a generic variant of a
discriminator that waits for n out of m incoming branches.

Implementation: An n-out-of-m-join at an agent A, representing a node of a process graph, is
achieved by receiving n names out of a set with size m and thereafter executing the functional
abstraction 〈·〉, while waiting for the remaining names of the set:

A
def
= νh νe (A1 | A2), A1

def
=

m∏
i=1

ai.h.0, and A2
def
= {h}n

1 .e.{h}m−1
n .A | e.〈·〉.b.0 .

The patterns applies to a node N of a process graph that has at least two incoming edges and at
most one outgoing edge: pre(N) ≥ 2 and post(N) ≤ 1. If post(N) = ∅, the name b is omitted
from the pattern. Note that subsequent nodes of the process graph must support pattern 5.11
(Arbitrary Cycles).

104 On the Application of a Theory for Mobile Systems to Business Process Management

a bA
n

(a) Without Sync.

a bA
n

(b) Design Knowl.

a bA
D

(c) Runtime K.

a bA
min,max, t

(d) No priori K.

Figure 5.8: Multiple instance patterns.

5.2.3 Structural Patterns

Structural patterns describe routing situations regarding the structure of a process. These patterns
do not have an explicit graphical representation.

Pattern 5.11 (Arbitrary Cycles) Description: A point in a business process where one or
more activities can be done repeatedly. (According to [12, p.17])

Implementation: Arbitrary cycles are inherently given by the pre- and postcondition based ap-
proach. A postcondition, i.e. the name generated by an agent representing a node, can fulfill
the precondition of and trigger arbitrary other agents. However, agents that represent nodes
contained inside a cycle must support multiple executions by recursion. This is achieved by in-
troducing a recursion in parallel to the functional part represented by 〈·〉. We show the principle
for agents representing a node of a process graph matching pattern 5.1 (Sequence):

A
def
= a.〈·〉.b.0 becomes A

def
= a.(〈·〉.b.0 | A) .

This pattern applies to all nodes of a process graph P that are contained inside a cycle of P .

Pattern 5.12 (Implicit Termination) Description: A given complex activity should be ter-
minated when there is nothing else to be done. In other words, there are no active activities in
the business process and no other activity can be made active (and at the same time the business
process is not in deadlock). (According to [12, p.19])

Implementation: The implicit termination pattern terminates a complex activity if no other ac-
tivities can be made active. The π-calculus contains the special symbol 0 for this purpose. This
pattern applies to all nodes N of a process graph that have zero outgoing edges: post(N) = 0.

5.2.4 Multiple Instance Patterns

Multiple instance patterns create multiple activity instances. A graphical representation of these
patterns is given in figure 5.8.

Pattern 5.13 (Multiple Instances without Synchronization) Description: Within the context
of a single process instance multiple instances of an activity are created, i.e., there is a facility
to spawn off new threads of control. Each of these threads is independent of other threads.
Moreover, there is no need to synchronize these threads. (According to [12, p.20])

Implementation: An agent, representing a node of a process graph, that can spawn of n static

CHAPTER 5. PROCESSES 105

instances without synchronization is given by:

A
def
= a.(

n∏
i=1

(〈·〉.0) | b.0) .

This pattern applies to all nodes N of a process graph that have a type matching to the pattern
description. This pattern incorporates pattern 5.12 (Implicit Termination). Furthermore, the
same conditions as given by pattern 5.1 (Sequence) apply.

Pattern 5.14 (Multiple Instances with a priori Design Time Knowledge) Description: For
one process instance an activity is enabled multiple times. The number of instances of a given
activity for a given process instance is known at design time. Once all instances are finished
some other activity needs to be started. (According to [12, p.21])

Implementation: An agent, representing a node of a process graph, that can spawn of n static
instances with synchronization is given by:

A
def
= νh a.(

n∏
i=1

(〈·〉.h.0) | {h}n
1 .b.0) .

This pattern applies to all nodes N of a process graph that have a type matching to the pattern
description. The same conditions as given by pattern 5.1 (Sequence) apply.

Pattern 5.15 (Multiple Instances with a priori Runtime Knowledge) Description: For
one process instance an activity is enabled multiple times. The number of instances of a given
activity for a given process instance varies and may depend on characteristics of the process
instance or availability of resources, but is known at some stage during runtime, before the
instances of that activity have to be created. Once all instances are finished some other activity
needs to be started. (According to [12, p.22])

Implementation: An agent, representing a node of a process graph, that can spawn of n instances
with synchronization, where n is known before the execution of the first instance, is given by:

A
def
= νrun νstart a.(A1 (b) | run.A2 | A3)

A1 (prev)
def
= νnext create i〈next , prev〉.A1 (next) + run.prev .0

A2
def
= start .A2

A3
def
= create i(next , prev).(start .〈·〉.next .prev .0 | A3) .

The pattern given creates a non-determistic number of instances before the first instance is ex-
ecuted. Agent A creates two restricted names run and start . The former is emitted after all
instances have been created, which in turn triggers the emission of a unbound number of start
names at A2 . The name start is used as a shared precondition for all instances. Instances are
created in agent A1 , where next and prev represent names to the subsequent and preceding
agents. These names are used in A3 to synchronize the finalization of the instances. Since prev
equals initially b, the agent representing the subsequent node of the process graph is triggered via

106 On the Application of a Theory for Mobile Systems to Business Process Management

b after all instances have finished. A deterministic, data-based implementation using structures
and values from chapter 4 (Data) is given by

A
def
= a.queue(q, e).(A1 (0, b) | A3) ,

where q represents a queue for storing the names used as a precondition for each instance. The
preconditions, as well as the instances are created in the agents

A1 (i, prev)
def
= νresp νstart νnext if i < n then create i〈start ,next , prev〉.

q〈start〉.add〈i, 1, resp〉.resp(x).A1 (x,next) else A2

A2
def
= q(start).(start .0 | A2) + e.prev .0 .

The parameters i and prev of agent A1 represent the number of instances already created and the
name pointing to the agent previously created. Agent A1 uses a while loop to create n instances
via create i and thereafter sends all names stored in q so far, thus starting all instances. If the
queue signals empty, the name of the previously created agent, i.e. prev is sent. The instances
are created in then agent

A3
def
= create i(start ,next , prev).(start .〈·〉.next .prev .0 | A3) .

A new instance represented by agent A3 waits for its specific precondition represented by start ,
executes the functional part, waits for the completion of the agent representing the instance
created after the current instance via next , and thereafter communicates the name prev trigger-
ing the preceding instance. If the current instance is the first instance created, prev matches b.
Hence, the postcondition of the node represented by A is fulfilled. If the pattern formalization
should be used for verification of the process graph, pattern 5.1 (Sequence) has to be applied
instead, representing the case n = 1. This is due to the fact that n is unbound, i.e. if n = ∞, the
agent will never finish. The pattern applies to all nodes N of a process graph that have a type
matching to the pattern description. The same conditions as given by pattern 5.1 (Sequence)
apply.

Pattern 5.16 (Multiple Instances without a priori Runtime Knowledge) Description: For
one process instance an activity is enabled multiple times. The number of instances of a given
activity for a given process instance is not known during design time, nor is it known at any
stage during runtime, before the instances of that activity have to be created. Once all instances
are finished, some other activity needs to be started. The difference with pattern 5.15 (Multiple
Instances with a priori Runtime Knowledge) is that even while some of the instances are running
or already finished, new ones can be created. (According to [12, p.25])

Implementation: An agent, representing a node of a process graph, that can spawn of instances
with synchronization, where the number of instances is unknown until all instances have fin-
ished, is given by:

A
def
= a.(A1 (b) | A2)

A1 (prev)
def
= νnext create i〈next , prev〉.A1 (next) + prev .0

A2
def
= create i(next , prev).(〈·〉.next .prev .0 | A2) .

CHAPTER 5. PROCESSES 107

The implementation of this patterns closely resembles the previous one, with the difference that
instances can be created all the time and start immediately. This has been realized by remov-
ing the start preconditions for each instance created inside A2 as well as the corresponding
agent. A data-based implementation can use an if .. then .. else statement to make the summa-
tion deterministic based on minimum, maximum, and threshold values. A corresponding agent
A contains an agent A1 , which is responsible for creating the minimum number of instances as
well as collecting the required threshold values for continuation:

A
def
= νdone νmindone a.(A1 (0) | mindone.{done}t

1.b.0) ,

and

A1 (i)
def
= if i < min then νr create i .add(i, 1, r).r(x).A1 (x) else mindone.A2 (i) .

The minimum value min represents the number of instances that are created at least, max rep-
resents the number of instances that are created at most, and t denotes the number of instances
that need to be finished (i.e. the threshold value) for the pattern to complete. After the minimum
number of instances has been created by A1 , it signals mindone , which in turn activates the
threshold counter given by {done}t

1 in the nested right hand component of A. Thereafter A2 is
activated, which simply resembles A1 for creating the remaining number of instances:

A2 (i)
def
= if i < max then νr create i .add(i, 1, r).r(x).A2 (x) .

Agent A3 is responsible for creating the instances via create i :

A3
def
= create i .(〈·〉.done.0 | A3) .

If the pattern formalization should be used for verification of the process graph, pattern 5.1
(Sequence) has to be applied instead. This is due to the fact that the number of instances can
be unbound, thus the agent might never finish. The pattern applies to all nodes N of a process
graph that have a type matching to the pattern description. The same conditions as given by
pattern 5.1 (Sequence) apply.

Example 5.6 (Multiple Instances without a priori Runtime Knowledge) We derive a pos-
sible evolution of an agent representing a multiple instances without a priori runtime knowledge
pattern. The example shows how the recursive structure of the agents is build up while creating
instances and how it is broken down while finalizing. Agent A, representing a node resembling
a multiple instances without a priori runtime knowledge pattern, is given by:

A
def
= a.(A1 (b) | A2) .

The agent initializes A1 with the name representing the postcondition of the node, i.e. b in the
example. Agent A1 in turn has the choice between creating a new instance by interacting via
create i with agent A2 or emitting b, thus fulfilling the postcondition. We suppose agent A1 to
create a new instance. Hence, the evolution of agent A after receiving a is given as follows:

(νn1 create i〈n1 , b〉.A1 (n1) + b.0) | A2
τ−→ A1 (n1) | (τ.n1 .b.0)︸ ︷︷ ︸

1st instance

| A2 .

108 On the Application of a Theory for Mobile Systems to Business Process Management

The agents A1 and A2 are defined as given in pattern 5.16 (Multiple Instances without a priori
Runtime Knowledge). After an interaction between the components A1 and A2 occurred, a first
instance as marked above is created. As before, we inserted τ into the functional abstraction
found in A2 . Thereafter, the resulting agent can be unfolded to:

(νn2 create i〈n2 ,n1 〉.A1 (n2) + n1 .0) | (τ.n1 .b.0)︸ ︷︷ ︸
1st instance

| A2 .

If we assume again an interaction between the left hand side of the component resembling A1

and the agent A2 , thus creating a second instance, the system evolves as follows:

A1 (n1) | (τ.n1 .b.0)︸ ︷︷ ︸
1st instance

| A2
τ−→ A1 (n2) | (τ.n1 .b.0)︸ ︷︷ ︸

1st instance

| (τ.n2 .n1 .0)︸ ︷︷ ︸
2nd instance

| A2 .

We can continue creating new instances as long as we select the left hand side of the summation
found in A1 . Meanwhile, components representing instances can already evolve further. For
instance, with

A1 (n2) | (τ.n1 .b.0)︸ ︷︷ ︸
1st instance

| (τ.n2 .n1 .0)︸ ︷︷ ︸
2nd instance

| A2
τ−→ A1 (n2) | (n1 .b.0)︸ ︷︷ ︸

1st instance

| (τ.n2 .n1 .0)︸ ︷︷ ︸
2nd instance

| A2

the agent representing the first instance evolved. The same holds for

A1 (n2) | (n1 .b.0)︸ ︷︷ ︸
1st instance

| (τ.n2 .n1 .0)︸ ︷︷ ︸
2nd instance

| A2
τ−→ A1 (n2) | (n1 .b.0)︸ ︷︷ ︸

1st instance

| (n2 .n1 .0)︸ ︷︷ ︸
2nd instance

| A2 ,

where now the agent representing the second instance evolved. While we are still able to create
further instances, we conclude the example by synchronizing the existing ones. This is done by
selecting the right hand side of the summation contained in agent A1 (n2):

(n2 .0) | (n1 .b.0)︸ ︷︷ ︸
1st instance

| (n2 .n1 .0)︸ ︷︷ ︸
2nd instance

| A2 .

Now, the components can interact multiple times resulting in a component providing the post-
condition given by b:

(n2 .0) | (n1 .b.0)︸ ︷︷ ︸
1st instance

| (n2 .n1 .0)︸ ︷︷ ︸
2nd instance

| A2
τ−→ (n1 .b.0)︸ ︷︷ ︸

1st instance

| (n1 .0)︸ ︷︷ ︸
2nd instance

| A2
τ−→ (b.0)︸︷︷︸

1st instance

| A2 .

Agent A2 remains, but has no possibilities for interaction. This agent may also be cleaned-up
by an extended version of the pattern that transmits a restricted name to agent A2 evolving it to
inaction by a summation (omitted).

5.2.5 State Based Patterns

State based patterns capture implicit behavior of processes that is based on the environment or
other parts of the process. A graphical representation of pattern 5.17 (Deferred Choice) and

CHAPTER 5. PROCESSES 109

...a

b1

bn

env1

envn

(a) Deferred Choice.

C1

Cn

...

~

a b

(b) Int. Parall. Routing.

Aa b

c

(c) Ev.-bas. Rerouting.

Figure 5.9: State based and additional patterns.

pattern 5.18 (Interleaved Parallel Routing) is given in figure 5.9(a) and 5.9(b). Pattern 5.19
(Milestone) has no graphical representation in the BPMN.

Pattern 5.17 (Deferred Choice) Description: A point in the business process where one of
several branches is chosen. In contrast to pattern 5.4 (Exclusive Choice), the choice is not made
explicitly (e.g. base on data or a decision) but several alternatives are offered to the environment.
However, in contrast to pattern 5.2 (Parallel Split), only one of the alternatives is executed. This
means that once the environment activates one of the branches the other alternative branches
are withdrawn. It is important to note that the choice is delayed until the processing in one
of the alternative branches is actually started, i.e. the moment of choice is as late as possible.
(According to [12, p.28])

Implementation: A deferred choice after an agent A, representing a node of a process graph, is
achieved by guarding the summations of pattern 5.4 (Exclusive Choice) with names generated
by an agent representing the environment (E):

A
def
= a.〈·〉.(

n∑
i=1

env i.bi.0) .

The pattern given makes a deterministic choice based on external names env i from the envi-
ronment E . In the BPMN representation, these names are gathered in subsequent nodes of the
process graph. Hence, the implementation of the pattern is not in alignment with algorithm
5.1 (Mapping Process Graphs to Agents) by requiring knowledge from other nodes of the pro-
cess graph. This is due to a limitation of the π-calculus semantics, which does not allow a
cancellation-based implementation as suggested in the pattern description. A detailed discus-
sion follows in chapter 8.2.5. The pattern applies to a node N of a process graph that has at
most one incoming edge and at least two outgoing edges: |pre(N)| ≤ 1 and |post(N)| ≥ 2. If
pre(N) = ∅, the name a is omitted from the pattern.

Pattern 5.18 (Interleaved Parallel Routing) Description: A set of activities is executed in
an arbitrary order: Each activity in the set is executed, the order is decided at runtime, and no
two activities are executed at the same moment (i.e. no two activities are running for the same
process instance at the same time). (According to [12, p.31])

Implementation: An agent A, representing a node of a process graph, that executes a set with
size n of other nodes with the precondition names ci and the postcondition names di in an

110 On the Application of a Theory for Mobile Systems to Business Process Management

N

Interleaved
Parallel Routing

A
B

...

Sequence
Sequence

Sequence

Figure 5.10: Process graph structure for interleaved parallel routing pattern.

interleaved parallel routing manner is given by:

A
def
= νnext νdone a.({next .done}n

1 .b.0 |
n∏

i=1

(next .ci.di.done.0)) .

This pattern applies to a subset of a process graph with a structure as shown in figure 5.10,
where the node N is represented by agent A. Each attached activity contained in the routing
sequence is represented and connected via ci and di by a node as shown. The nodes of the set
are implemented according to pattern 5.1 (Sequence). Furthermore, N should have at most one
incoming and at most one outgoing edge: |pre(N)| ≤ 1 and |post(N)| ≤ 1. If pre(N) = ∅, the
name a is omitted, and if post(N) = ∅, the name b is omitted from the pattern.

Pattern 5.19 (Milestone) Description: The enabling of an activity depends on the process
instance being in a specific state, i.e. the activity is only enabled if a certain milestone has been
reached which did not expire yet. (According to [12, p.34])

Implementation: An agent A, representing a node of a process graph, that should only be
executed if a certain milestone has been reached and not yet expired is given by:

A
def
= a.notice.〈·〉.b.0 .

The milestone is represented by an asynchronous emission of the name notice , e.g. by

P
def
= (notice.0 + withdraw .0) | P ′ .

The milestone can be withdrawn by P ′ sending on withdraw . This pattern applies to a node N
of a process graph that has at most one incoming and at most one outgoing edge: |pre(N)| ≤ 1
and |post(N)| ≤ 1. If pre(N) = ∅, the name a is omitted, and if post(N) = ∅, the name b is
omitted from the pattern.

5.2.6 Cancellation Patterns

The cancellation pattern describe the withdrawal of one or more activities. These patterns do not
have a graphical representation in the BPMN. However, pattern 5.22 (Event-based Rerouting)
can be used to denote that activities can be canceled in a graphical manner.

CHAPTER 5. PROCESSES 111

Pattern 5.20 (Cancel Activity) Description: An enabled activity is disabled, i.e. a thread
waiting for the execution of an activity is removed. (According to [12, p.37])

Implementation: An agent A, representing a node of a process graph, that can be canceled is
given by:

A
def
= a.〈·〉.b.0 + cancel .0 .

The cancel notification can be signaled from arbitrary other agents, where the name cancel is
shared with. The activity cannot be canceled anymore once it has been activated by receiving a.
The pattern applies to a node N of a process graph that has at most one incoming and at most
one outgoing edge: |pre(N)| ≤ 1 and |post(N)| ≤ 1. If pre(N) = ∅, the name a is omitted,
and if post(N) = ∅, the name b is omitted from the pattern.

Pattern 5.21 (Cancel Process Instance) Description: A process instance is removed com-
pletely (i.e., even if parts of the process are instantiated multiple times, all descendants are
removed). (According to [12, p.37])

Implementation: Cancel process instance equals pattern 5.20 (Cancel Activity) with the differ-
ence that all remaining agents representing nodes of a process graph receive a cancel name. To
implement this pattern, all agents representing nodes of a process graph have to be enhanced
with an according sum.

5.2.7 Additional Pattern

This subsection introduces an additional pattern typically found in interacting processes that will
be introduced in the next chapter. A graphical representation is given in figure 5.9(c).

Pattern 5.22 (Event-based Rerouting) Description: The event-based rerouting pattern
represents the change of the control flow based on an event (e.g. a message) that occurs during
the execution of an activity instance. The moment the event occurs, the control flow is passed
immediately to another activity. However, the event is only considered if it occurs during the
execution of the activity instance.

Implementation: An agent A, representing a node of a process graph, that can be interrupted
leading to a rerouting of control flow is given by

A
def
= νcheck a.(A1 | A2)

with

A1 = 〈·〉.check(v).[v = >]b.0 and A2
def
= ir .c.check〈⊥〉+ check〈>〉.0 .

In case the interrupt via ir does not occur, the postcondition of A is b, emitted after the functional
part has been executed. If the interrupt occurs, the postcondition of A is c, emitted immediately
after the reception of ir . The pattern applies to a node N of a process graph that has at most
one incoming and two outgoing edge representing the possible control flows: |pre(N)| ≤ 1 and
|post(N)| = 2. If pre(N) = ∅, the name a is omitted from the pattern.

112 On the Application of a Theory for Mobile Systems to Business Process Management

5.3 Properties

After having introduced a formal semantics for process graphs in the previous section, we in-
vestigate how bisimulation equivalence can be used for verification. We start by analyzing the
static structure of a process graph, followed by the black box behavior of the corresponding
π-calculus mapping. The results provide a property that is weaker than existing soundness prop-
erties. However, it has the advantages of being computational less expensive and supporting all
process patterns. The new property is denoted as lazy soundness. The characterization of lazy
soundness is further on extended to allow reasoning on existing soundness properties. In partic-
ular, we investigate weak soundness (definition 3.39) and relaxed soundness (definition 3.31). A
business process that fulfills weak and relaxed soundness is also sound (see definition 3.30).

5.3.1 Structural Soundness

A first soundness property resembles definition 3.29 (Workflow net). The property is called
structural soundness since it applies to the structure of a process graph. Informally, structural
soundness is given by:

A process graph is structural sound if it has exactly one initial node, exactly one
final node, and all other nodes lie on a path between the initial and the final node.

The property of structural soundness for a process graph is desired, since only by having distin-
guished initial and final nodes, we can state when the execution of a process instances is started
and ended. If there exist other nodes that are not on a path between the initial and the final
node, they might resemble other initial and final nodes, which contradicts the exclusivity of the
initial and final nodes. Structural soundness is based on the concepts introduced in the following
definitions. We first need to define a path in a process graph:

Definition 5.3 (Path) A path in a process graph P = (N,E, T, A) is a sequence of nodes
〈n1, . . . , nk〉 with ni ∈ N for 1 ≤ i ≤ k such that (n1, n2), . . . , (nk−1, nk) ∈ E. �

Based on the definition of a path, the reachability of nodes contained in the process graph
can be given:

Definition 5.4 (Reachable) A node nk ∈ N of a process graph P = (N,E, T, A) is reachable
from another node n1 ∈ N , denoted as n1

∗→ nk, if and only if there exist a path leading from
the first to the second node. �

Furthermore, we define two special kinds of nodes, denoted as initial node and final node:

Definition 5.5 (Initial Node) A node n ∈ N of a process graph P = (N,E, T, A) is an initial
node if and only if n is not the target of any edge. Formally: pre(n) = ∅. �

Definition 5.6 (Final Node) A node n ∈ N of a process graph P = (N,E, T, A) is an final
node if and only if n is not the source of any edge. Formally: post(n) = ∅. �

CHAPTER 5. PROCESSES 113

We define a subset of the possible process graphs that have exactly one initial node and
exactly one final node:

Definition 5.7 (Defined Process Graph) A process graph P = (N,E, T, A) is defined if and
only if there is exactly one initial node, denoted as Ni, that is not the target of any edge and
exactly one final node, denoted as No, that is not the source of any edge. Formally: ∃n ∈ N :
pre(n) = ∅ ∧ ∀n1, n2 ∈ N : pre(n1) = ∅ ∧ pre(n2) = ∅ ⇒ n1 = n2 and ∃n ∈ N : post(n) =
∅ ∧ ∀n1, n2 ∈ N : post(n1) = ∅ ∧ post(n2) = ∅ ⇒ n1 = n2. �

The subset of defined process graphs can be restricted further by requiring that all nodes are
on a path between the initial and final node:

Definition 5.8 (Strongly Connected Process Graph) A defined process graph P = (N,E, T,
A) is strongly connected, if and only if all nodes lie on a path from the initial to the final node.
Formally: ∀n ∈ N : Ni

∗→ n ⇒ n
∗→ No �

This definition is in contrast to common definitions of a strongly connected directed graph,
e.g. by Knuth [80]. This is due to the fact that we do not require a graph to be short circuited for
verification. Since we have introduced all prerequisites, we can define structural soundness:

Definition 5.9 (Structural Sound Process Graph) A process graph P = (N,E, T, A) is
structural sound if and only if:

1. There is exactly one initial node Ni ∈ N .

2. There is exactly one final node No ∈ N .

3. Every node is on a path from Ni to No. �

We use definition 5.8 (Strongly Connected Process Graph) to provide a criterion for struc-
tural soundness:

Lemma 5.1 A strongly connected process graph is structural sound.

Proof 5.1 (Lemma 5.1) Direct proof. Criterion 1 and 2 from definition 5.9 are fulfilled, as a
strongly connected process graph is defined. Criterion 3 follows directly from definition 5.8. �

Finally, we provide an algorithm for deciding structural soundness for process graphs.

Algorithm 5.2 (Deciding Structural Soundness) We describe an algorithm for deciding
structural soundness of a process graph P (N,E, T, A):

1. Check if P is defined, i.e. has exactly one initial and exactly one final node (see definition
5.7).

2. Check if P is strongly connected, i.e. if every node is on a path from the initial to the final
node (see definition 5.8). �

A structural sound process graph builds the foundation for verification that will be introduced
in the following.

114 On the Application of a Theory for Mobile Systems to Business Process Management

Black Box

Start Done

Structural
Sound Process

Graph

Figure 5.11: Black box investigation of a structural sound process graph.

5.3.2 Lazy Soundness

In a first verification of the execution semantics of a given structural sound process graph we
would like to investigate its black box behavior. The black box behavior is given by an external
observer that watches the execution of the initial and the final node. The approach is depicted in
figure 5.11. A structural sound process graph, representing a business process, is placed inside a
black box with a pushbutton and a bulb. The pushbutton is used to start a new process instance,
whereas the bulb denotes the successful end of the process instance. The pushbutton corresponds
to the execution of the initial node of the contained process graph, whereas the bulb denotes the
execution of the final node. Each time the initial node is executed by pressing the pushbutton,
the observer should see the execution of the final node exactly once at a later point in time by
a flash of the bulb. If the observer cannot always observe the execution of the final node, the
process graph must have serious errors leading to deadlocks or livelocks. If the final node is
executed more than once, the observer is unable to detect when the process instance has ended.
Both observations are a desired correctness property for business processes. They guarantee that
once a business process is started it will always deliver a result.

The black box verification closely resembles the first criterion of definition 3.30 (Sound). It
states that a workflow net has the option to always complete:

∀M (i ∗−→ M) ⇒ (M ∗−→ o) .

The main difference is given by the fact that the Petri net based soundness definition is based on
states, whereas we would like to observe the occurrence of nodes. Similar to the given criterion
is our aim of capturing all possible states that can occur in between the start and the end of a
business process. However, the black box verification does not consider the second criterion of
soundness:

∀M (i ∗−→ M ∧M ≥ o) ⇒ (M = o) .

This is due to the fact that the external observer does not have any knowledge about the nodes
executed inside the black box. Hence, he cannot decide if further actions occur inside the black
box. The same holds for the third criterion of soundness:

∀t∈T∃M,M ′i
∗−→ M

t−→ M ′ .

Again, since the external observer has no knowledge about the nodes executed inside the black
box, he cannot judge if all of them participate in the business process.

Due to the lack of supporting other observations beside the execution of the initial and fi-
nal node, the black box verification provides a weaker soundness property than definition 3.30

CHAPTER 5. PROCESSES 115

(Sound) and the subset given by definition 3.39 (Weak Sound). It also misses definition 3.31 (Re-
laxed Sound), since equal to criterion three of soundness, observations regarding the executed
nodes are required. In particular, the black box verification approach gives raise to dead nodes
inside business processes (as forbidden by the third soundness criterion) as well as allowing
nodes to be active after the final node has been reached (as forbidden by the second soundness
criterion).

However, both criteria are dispensable under certain conditions. First of all, dead nodes
can appear in interacting business processes, where a certain business process is defined in a
generic manner with additional paths not used in all possible compositions. This argumentation
has already been given by Martens for defining weak soundness (definition 3.39). Since we
will investigate interacting business processes in chapter 6 (Interactions), a soundness property
supporting arbitrary compositions will be useful. The second criterion, i.e. allowing nodes to
be active after a final node has been reached, requires a differentiation between the termination
and end of a process instance (see definition 3.8). A process instance is ended if it provides its
outcome, i.e. the result it should provide. A process instance is terminated if no more activities
can be executed. According to the soundness definition, the termination and the end of a business
process are the same, given by the state o of a workflow net. However, in a black box verification
approach, we can only observe the end of the business process. Since we cannot observe nodes
other than the initial and the final, the actual termination of the business process is unobservable.

Indeed, a number of process patterns given in section 5.2 can leave nodes active after a dis-
tinguished final node has ended the business process. In particular, pattern 5.9 (Discriminator),
pattern 5.10 (N-out-of-M-Join), and pattern 5.13 (Multiple Instances without Synchronization)
show this behavior. These process patterns are called critical patterns. We denote the activities
that can still be active after the business process has ended as lazy activities. Example 5.2 al-
ready gave a business process that contains two of the critical patterns. The first lazy activity is
created after the n-out-of-m-join collected two incoming sequence flows and started the subse-
quent activity. For instance, after the activities A and B have finished, activity C might still be
active. However, the n-out-of-m-join already triggered the subsequent activity D. Since D itself
represents a multiple instances without synchronization pattern, three concurrent instances of D
are created and the control flow is passed on immediately. Thus, in the worst case four activities
are remaining active while the end event has already ended the business process.

Since the black box verification approach is different to existing soundness properties, we
denote it as lazy soundness as it deals with business processes containing lazy activities. Infor-
mally, lazy soundness guarantees the following property of a business process:

A structural sound process graph representing a business process is lazy sound if in
any case a result is provided exactly once.

The result is provided through the execution of the final node. Thereafter, arbitrary actions,
including those leading to livelocks and deadlocks, might happen. We are not interested in them,
since from the viewpoint of an external observer, the business process has fulfilled its goal. The
requirement of structural soundness for the underlying process graph provides distinguished
initial and final nodes that can be observed.

The black box verification of lazy soundness requires some assumptions on the fairness of
the execution semantics. While the observer is able to trigger the execution of the initial and see

116 On the Application of a Theory for Mobile Systems to Business Process Management

the execution of the final node, it remains unclear, from his point of view, if all possible paths
inside the observed process graph have been taken after a number of executions. In particular,
the observer is interested in an all quantification over the possible paths that can be traversed
during the execution of a process graph. This knowledge would allow the generalization of the
observed deadlock and livelock freedom. Furthermore, if the observer triggers the execution
of the initial node, but cannot detect the execution of the final node at a later point in time,
it remains unclear if he should wait any longer or if the process graph contains deadlocks or
livelocks.

The above mentioned problems can be overcome by using bisimulation equivalences. Due
to the π-calculus semantics of a process graph, we can compare the actual behavior of a process
graph with a wanted, invariant behavior. Since a bisimulation contains an all quantification over
all possible transitions, we can be sure that all possible paths inside the process graph have been
traversed. Furthermore, the existence of a bisimulation renders the waiting problem void. The
only thing that has to be added to the π-calculus mapping of a process graph are two free names
i and o for observing the execution of initial and the final node.

Algorithm 5.3 (Lazy Soundness Annotated π-calculus Mapping) To annotate a π-calculus
mapping D of a process graph P = (N,E, T, M) according to algorithm 5.1 (Mapping Process
Graphs to Agents) for reasoning on lazy soundness, we need to replace the functional abstrac-
tions of the agent definitions. Let n iterate over all elements of N and An be the agent repre-
senting the node n. Furthermore, {i, o} ∩ (fn(D) ∪ bn(D)) = ∅. The functional abstractions
have to be replaced as follows:

• An〈τ〉, if n has incoming and outgoing edges (i.e. |pre(n)| > 0 ∧ |post(n)| > 0),

• An〈i.τ〉, if n has only outgoing edges (i.e. |pre(n)| = 0 ∧ |post(n)| > 0),

• An〈τ.o〉, if n has only incoming edges (i.e. |pre(n)| > 0 ∧ |post(n)| = 0), and

• An〈i.τ.o〉 if n has no incoming or outgoing edges (i.e. |pre(n)| = |post(n)| = 0). �

To annotate example 5.3 (Simple Business Process Formalization), all functional abstrac-
tions have to be replaced by τ , except for the agents representing the initial and the final node.
These are modified as follows (the complete mapping is shown in appendix A.1.1):

N1
def
= i.τ.e1 .0 and N8

def
= e9 .τ.o.N8 .

The invariant behavior, i.e. the expected one, is given by an agent

SLAZY
def
= i.τ.o.0 .

SLAZY is composed of three prefixes representing the invariant behavior of a lazy sound
process graph. First, the initial node is observed by i. Thereafter, arbitrary internal actions
can happen (τ). In the end, the final node is always observed via o. We added the τ -prefix to
represent the black box placed in between the initial and final node. According to the weak

CHAPTER 5. PROCESSES 117

bisimulation semantics, we can also omit it. In any case, we can now give a formal definition of
a lazy sound process graph by comparing its actual behavior with the invariant one:

Definition 5.10 (Lazy Sound Process Graph) A structural sound process graph P = (N,E, T,
A) with a semantics given by the lazy soundness annotated π-calculus mapping D of P is lazy
sound if D ≈ SLAZY holds. �

We conclude this section by providing an algorithm for deciding lazy soundness.

Algorithm 5.4 (Deciding Lazy Soundness) An algorithm for deciding lazy soundness of a
structural sound process graph P = (N,E, T, A) is given as follows:

1. Map the structural sound process graph to π-calculus, following algorithm 5.1.

2. Annotate the π-calculus mapping for lazy soundness, following algorithm 5.3.

3. Check the annotated mapping for weak bisimulation equivalence with SLAZY .

4. If the equivalence holds, P is lazy sound. �

Appendix A.1.1 shows how example 5.3 (Simple Business Process Formalization) is proven
to be lazy sound using existing tools.

5.3.3 Weak Soundness

After the investigation of lazy soundness, which provides a soundness property closely related to
the first criterion of soundness (definition 3.30), we would additionally like to mimic the second
criterion using bisimulation:

∀M (i ∗−→ M ∧M ≥ o) ⇒ (M = o) .

The criterion states that the termination and the end of a process instance are the same. Therefore
it enforces that after the state o no other state can follow. Hence, no lazy activities are allowed
in a business process. As already motivated, this behavior can only be guaranteed by observing
the execution of the nodes inside the black box. In contrast to the Petri net based definition
given above, that enumerates all states, we reduce the investigation to the activities found in a
business process. After the activity that is represented by the final node has been executed, no
other activities should be or become active. Since the first and the second criterion of soundness
are the same as weak soundness, we denote this property also as weak soundness. Informally, it
guarantees the following properties of a business process:

A structural sound process graph representing a business process is weak sound if
in any case a result is provided and the process instance is terminated the moment
the result is provided.

Due to the immediate termination of the business process no lazy activities can remain. Further-
more, the result can only be provided once. For proving weak soundness, we need to be able to
observe the occurrence of nodes. If we can only observe the occurrence of nodes in between the

118 On the Application of a Theory for Mobile Systems to Business Process Management

Enhanced Black Box

Start DoneStep

Structural
Sound Process

Graph

Figure 5.12: Enhanced black box investigation of a structural sound process graph.

observation of the initial and the final node, we can be sure that the business process is termi-
nated at the moment the result is provided via the final node. An enhanced black box is shown
in figure 5.12.

The external observer starts a new instance of the structural sound process graph given into
the enhanced black box with a push of the start button. Thereafter he observes a flash of the step
bulb for each execution of a node. Finally, he is able to observe a flash of the done bulb to denote
the end of the process instance. If he is unable to observe a flash of the done bulb in all cases,
deadlocks or livelocks are contained in the process graph rendering it unsound. If he is able to
observe a flash of the step bulb after a flash of the done bulb, nodes of the process graph are still
executed after the process instance has ended. Hence, the process graph contains lazy activities
and thus is not weak sound.

However, bisimulation equivalences requires knowledge of how often the step bulb flashes
in advance. Since we do not know this, we need a trick. We assume that each each agent of
a process graph representing a node triggers a special agent. This special agent is placed as
a component inside the global agent, so it is available to all other agents by a common name.
The special agent is able to emit via a free name s exactly once, thus denoting the flash of the
step bulb. The trick behind this agent is based on the idea that the emission via s is triggered
non-deterministically. The special agent has the choice between emitting the name s or doing
nothing. If he decided to do nothing, he has again the chance of emitting via s if he is triggered
by another agent representing a node. However, after the emission via s, he cannot emit via s
anymore. Due to the non-deterministic behavior of the special agent, and the all quantification
of bisimulation equivalence, we are able to observe the occurrence of s in between i and o
either zero or one times. If the process graph contains lazy activities, we can observe s after o.
Furthermore, due to still observing o, we are able to detect deadlocks and livelocks as before.
The special agent is denoted as an activity observation agent.

Definition 5.11 (Activity Observation Agent) An activity observation agent is given by:

X(x, s)
def
= x(ack).(τ.ack .0 | X(x, s)) + x(ack).(τ.s.ack .0 | X1 (x))

X1 (x)
def
= x(ack).(τ.ack .0 | X1 (x)) .

�

X(x, s) receives a response channel ack via x and offers the non-deterministic choice be-
tween omitting the free name s and continue as X1 (x) or do an unobservable action τ and
behave as X(x, s) again after triggering the received response channel. X1 (x) has no observ-
able behavior. An activity observation agent gives each instance of a process graph mapped to
π-calculus agents the possibility of emitting via s once. The inclusion of the acknowledgment

CHAPTER 5. PROCESSES 119

via ack is required, due to otherwise the final node can emit via s after o. Furthermore, due to
ack , the more natural way of placing the π-calculus mapping of a process graph in a context is
blocked. The activity observation agent is included in a π-calculus mapping as follows:

Algorithm 5.5 (Weak Soundness Annotated π-calculus Mapping) To annotate the π-
calculus mapping D of a process graph P = (N,E, T, A) according to algorithm 5.1 (Mapping
Process Graphs to Agents) for reasoning on weak soundness, we need to replace the functional
abstractions of the agent definitions. Let n iterate over all elements of N and An be the agent
representing the node n. Furthermore, {i, o, s, x} ∩ (fn(D) ∪ bn(D)) = ∅. The functional
abstractions have to be replaced as follows:

• An〈νack x〈ack〉.ack〉, if n has incoming and outgoing edges (i.e. |pre(n)| > 0 ∧
|post(n)| > 0),

• An〈νack i.x〈ack〉.ack〉, if n has only outgoing edges (i.e. |pre(n)| = 0∧|post(n)| > 0),

• An〈νack x〈ack〉.ack .o〉, if n has only incoming edges (i.e. |pre(n)| > 0∧|post(n)| = 0),
and

• An〈νack i.x〈ack〉.ack .o〉 if n has no incoming or outgoing edges (i.e. |pre(n)| =
|post(n)| = 0).

Furthermore, we need to add the activity observation agent from definition 5.11 to the global
agent D, providing a restricted name x to all components of D:

D
def
= (νe1 , . . . , e|E|, x)(

|N |∏
i=1

(Di) | X) .

�
The introduction of the free names i, o, and s ensures the external observability of the π-

calculus mapping of a process graph regarding weak soundness. An example of a weak sound-
ness annotated π-calculus mapping of a process graph is shown in appendix A.1.2.

The invariant behavior is given by an agent

SWEAK
def
= i.(τ.o.0 + τ.s.o.0) .

SWEAK is composed as SLAZY regarding i and o. After the observation of the initial node
via i, a deterministic choice between observing o or s is made. If o is observed, no other obser-
vations are possible (due to SWEAK becomes inaction). If s is observed, the next observation
has to be o. Thereafter, no other observations are possible. This behavior resembles the en-
hanced black box with the exception that the step bulb might flash only once before the done
bulb flashes. A formal definition of weak soundness for a process graph is now given by:

Definition 5.12 (Weak Sound Process Graph) A structural sound process graph P = (N,E, T,
A) with a semantics given by the weak soundness annotated π-calculus mapping D of P is weak
sound if D ≈ SWEAK holds. �

An algorithm for deciding weak soundness is given accordingly to algorithm 5.4 (Deciding
Lazy Soundness). Examples for π-calculus mappings regarding weak soundness can be found
in appendix A.1.1.

120 On the Application of a Theory for Mobile Systems to Business Process Management

B

A

Figure 5.13: A vicious circle according to [7].

5.3.4 Relaxed Soundness

We conclude the investigations on soundness by a slightly modified version of the third criterion
of definition 3.30 (Sound). Instead of analyzing the reachability of each node of a process graph
as given accordingly for workflow nets by

∀t∈T∃M,M ′i
∗−→ M

t−→ M ′ ,

we additionally would like to include the final node. This property has been given for workflow
nets by definition 3.31 (Relaxed Sound):

∀t∈T∃M,M ′i
∗−→ M

τ−→ M ′ ∗−→ o .

The formula states that each task of a workflow net can participate in at least one transition
sequence leading from the initial to the final state. According to process graphs, we can define
relaxed soundness informally as:

A structural sound process graph representing a business process is relaxed sound
if each node of the process graph has the possibility of being executed in between
the execution of the initial and the final node.

The definition of relaxed soundness does not cover deadlocks, livelocks, or lazy activities. A
relaxed sound business process only guarantees that a minimum number of valid executions
covering all activities are contained. However, it supports business processes containing pattern
5.7 (Synchronizing Merge). The semantics of this pattern is of high interest, since it renders
simple merge and synchronization void, leaving only one merge pattern for a business process
designer. However, a business process containing the synchronizing merge pattern cannot be
lazy or weak sound. Our argumentation is based on two propositions.

Proposition 5.1 A synchronizing merge consisting of more than one incoming edge has always
non-deterministic local behavior.

This proposition is given by the unguarded summations of pattern 5.7 (Synchronizing Merge).
Interestingly, the pattern cannot be given in a deterministic formalization without loosing its uni-
versality. This has already been discussed extensively in other formalization approaches such as
[51, 11, 137]. Hence, we derive a second proposition:

Proposition 5.2 There exists no universal algorithm for deciding the number of incoming edges
for a synchronizing merge consisting of more than one incoming edge.

CHAPTER 5. PROCESSES 121

For the second proposition we refer to the vicious circle introduced in [7]. The proof starts
by assuming that there exists a universal algorithm deciding the number of incoming edges
for a synchronizing merge. However, there exist processes that have an ambiguous behavior
regarding the synchronous merge. Figure 5.13 depicts an example. While a detailed discussion
can be found in the cited paper, it is obvious that the problem occurs at the or-join gateways right
after the and-gateway. Each gateway has to make a decision if it should resume the sequence
flow further downstream or wait for more incoming sequence flows. Since the gateways in both
parallel flows depend on the outcome of the complementary parallel flow, a non-deterministic
decision has to be made. Thus, the universal algorithm has to solve the non-determinism, which
in turn leads to a contradiction, since neither sequence flow is the right one.

According to propositions 5.1 and 5.2, business processes containing the synchronizing
merge pattern always contain deadlocks due to the semantics of the pattern. Since lazy and weak
soundness do not allow deadlocks they are not applicable. To support reasoning on business
processes with synchronizing merges using these properties, we can use several workarounds
ranging from introducing a local semantics (e.g. true/false token [83]) to global analysis (e.g.
delay the synchronizing merge, while other activities can be executed [11]). We do not discuss
these workarounds further, but focus on proving relaxed soundness using the enhanced black
box verification approach.

Similar to weak soundness, we need to be able to observe the execution of nodes inside the
black box for proving relaxed soundness. We can reuse the interface of the enhanced black from
figure 5.12 by preparing the process graph according to the node that should be observed. To be
able to observe the execution of all nodes, we need to prepare as much process graphs as there
are nodes in it. In particular, we need to create a π-calculus mapping of the process graph for
each node that should be observed. The agent representing the node under observation has to
be enhanced with the ability of emitting s. Thereafter we can place all prepared process graphs
into the enhanced black box and investigate if for each process graph we can at least once see
the step and done bulb flashing in sequence after a press of the pushbutton. However, we might
have a problem if a node is contained in the loop that is always executed more than once. In this
case we observe multiple flashes of the step bulb that in turn is difficult to formally analyze. To
overcome this problem, we define a special agent that is triggered by each node.

Definition 5.13 (Activity Loop Observation Agent) An activity loop observation agent is
given by:

Y (y, s)
def
= y(ack).s.ack .Y1 (y) and Y1 (y)

def
= y(ack).τ.ack .Y1 (y) .

�

Y (y, s) receives a response channel ack via y and emits the free name s one time before
sending the acknowledgment and continuing as Y1 . Further interactions via y do not emit the
free name s again. Hence, the free name s is only emitted once even if the agent interacting with
Y represents a node contained inside an arbitrary cycle. The activity loop observation agent is
included in the π-calculus mapping as follows:

Algorithm 5.6 (Relaxed Soundness Annotated π-calculus Mapping) To annotate a π-
calculus mapping D of a process graph P = (N,E, T, M) according to algorithm 5.1 (Map-

122 On the Application of a Theory for Mobile Systems to Business Process Management

ping Process Graphs to Agents) for reasoning on relaxed soundness regarding a certain node
p ∈ N , we need to replace the functional abstractions of the agent definitions. Let n it-
erate over all elements of N and An be the agent representing the node n. Furthermore,
{i, o, s, y} ∩ (fn(D) ∪ bn(D)) = ∅. The functional abstractions have to be replaced as fol-
lows:

• If n = p,

– An〈νack y〈ack〉.ack〉, if n has incoming and outgoing edges (i.e. |pre(n)| > 0 ∧
|post(n)| > 0),

– An〈νack i.y〈ack〉.ack〉, if n has only outgoing edges (i.e. |pre(n)| = 0 ∧
|post(n)| > 0),

– An〈νack y〈ack〉.ack .o〉, if n has only incoming edges (i.e. |pre(n)| > 0 ∧
|post(n)| = 0), and

– An〈νack i.y〈ack〉.ack .o〉 if n has no incoming or outgoing edges (i.e. |pre(n)| =
|post(n)| = 0).

• else

– An〈τ〉, if n has incoming and outgoing edges (i.e. |pre(n)| > 0 ∧ |post(n)| > 0),

– An〈i.τ〉, if n has only outgoing edges (i.e. |pre(n)| = 0 ∧ |post(n)| > 0),

– An〈τ.o〉, if n has only incoming edges (i.e. |pre(n)| > 0 ∧ |post(n)| = 0), and

– An〈i.τ.o〉 if n has no incoming or outgoing edges (i.e. |pre(n)| = |post(n)| = 0)

Furthermore, we need to add the activity loop observation agent from definition 5.13 to the
global agent D, providing a restricted name y to all components of D:

D
def
= (νe1 , . . . , e|E|, y)(

|N |∏
i=1

(Di) | Y) .

�
The introduction of the free names i, o, and s ensures the external observability of the π-

calculus mapping of a process graph regarding relaxed soundness. For a complete reasoning on
relaxed soundness, a mapping for each node of the process graph has to be investigated. An
example of a relaxed soundness annotated π-calculus mapping of a process graph is shown in
appendix A.1.3.

The invariant behavior is given by an agent

SRELAXED
def
= i.s.o.0 .

SRELAXED gives a sequence of free names that must be observable from each π-calculus map-
ping annotated according to relaxed soundness. However, in contrast to SLAZY and SWEAK , not
all possible instances of a process graph have to show this behavior. Instead, it is enough if there

CHAPTER 5. PROCESSES 123

exists an instance of the process graph that fulfill the wanted behavior. The difference between
an exists and an all quantification can be expressed by using simulation instead of bisimulation.
Consider for instance an agent A that simulates an agent B: A can do anything B can. However,
A can contain additional observable behavior. Additional observable behavior is not allowed in
a bisimulation equivalence, that enforces that A has exactly the same observable behavior as B
and vice versa. Since we want a statement if there exists an instance of a process graph, we have
to use simulation instead of bisimulation for defining relaxed soundness for process graphs:

Definition 5.14 (Relaxed Sound Process Graph) A structural sound process graph P = (N,E,
T,A) is relaxed sound if for each relaxed soundness annotated π-calculus mapping D consider-
ing n ∈ N it holds that SRELAXED w D. �

An corresponding algorithm for proving relaxed soundness has to consider all nodes of a
process graph:

Algorithm 5.7 (Deciding Relaxed Soundness) An algorithm for deciding relaxed soundness
of a structural sound process graph P = (N,E, T, A) is given as follows:

1. Map the structural sound process graph to π-calculus, following algorithm 5.1.

2. Annotate a new copy of the π-calculus mapping from the first step according to relaxed
soundness for each n ∈ N as given by algorithm 5.6.

3. Check all annotated mappings for weak similarity with SRELAXED .

4. If all annotated mappings fulfill the simulation, P is relaxed sound.

The algorithm can be optimized by considering only the nodes of a process graph that fulfill
n ∈ N |type(n) = Task . �

An example for deciding relaxed soundness can be found in appendix A.1.3.

124 On the Application of a Theory for Mobile Systems to Business Process Management

Chapter 6

Interactions

In this chapter we discuss how a set of distributed business processes can synchronize and com-
municate based on interaction flows. Therefore all participating process graphs are placed inside
an interaction graph that is complemented with interaction flow. Due to link passing mobility of
the π-calculus, not all interaction flows have to be statically pre-defined but can furthermore be
created dynamically. Possible patterns, given by the service interaction patterns, for realizing
interactions between process graphs are discussed. Finally, we introduce reasoning on inter-
action compatibility for a given process graph and a set of services, as well as a conformance
notion between services.

6.1 Representation

This section describes how distributed, interacting business processes are formally represented
in the π-calculus.

6.1.1 Correlations and Dynamic Binding

A common task between processes invoking other processes is response matching. This match-
making is done using correlations that relate a response with a request. Usually, some kind of
correlation identifier is placed inside each request and response. The invoking as well as the
responding processes have to take care of correlating the requests based on the identifiers. In the
π-calculus, the unique identifier of a request is represented by a restricted name. Since names
are unique and can be used as interaction channels, an unambiguous representation of the corre-
lations is straightforward. Consider for instance the interacting business processes represented
by the agents A and B:

A
def
= νch b〈ch〉.(ch(r).A′ | A) and B

def
= νr b(ch).(τ.ch〈r〉.0 | B) .

Agent A is able to invoke B several times via b, even before a first response is received. B in
turn is able to process multiple request initiated via b at the same time. Hence, matching requests
and responses have to be correlated. This is done by using ch in A as a correlation identifier.
Since ch is unique for each recursive execution of A, the matchmaking is done implicitly via ch .

125

126 On the Application of a Theory for Mobile Systems to Business Process Management

R

B P

P

P R

B P

P

P

Figure 6.1: Dynamic binding in π-calculus.

Beside supporting correlations, the π-calculus directly expresses dynamic binding of in-
teraction partners as found in service-oriented architectures. Figure 6.1 depicts how dynamic
binding is realized using link passing mobility. The left hand side shows the three different roles
of a SOA, denoted as circles. A service requester (R) knows a service broker (B). The service
broker has knowledge about a number of service providers (P). The service broker evaluates
the request of the service requester and returns a corresponding link to a service provider. The
service requester then uses this link to dynamically bind to the service provider. Hence, the link
structure changes over time as shown at the right hand side of the figure. A simple implementa-
tion of a broker having static knowledge of two providers reachable via p1 and p2 is given by
the agent R:

B
def
= b(ch).((τ.ch〈p1 〉.0 + τ.ch〈p2 〉.0) | B) .

The agent B is able to emit either the name p1 or p2 based on an internal decision via the
received name ch . A more elaborate implementation might use list structures, where possible
providers can register and de-register during the runtime of the broker. However, we stuck to the
simple variant for now. The service providers are given by the parameterized agent P :

P (p)
def
= νresp p(req , ch).(τ.ch〈resp〉.0 | P (p)) .

A service requester that is able to dynamically incorporate a service provider according to the
interaction behavior of P is given by:

R
def
= νreq νch1 νch2 b〈ch1 〉.ch1 (p).p〈req , ch2 〉.ch2 (resp).0 .

In the first two transitions, R acquires a link to a specific service provider represented by p.
Thereafter it uses p to dynamically bind to the service provider. The working system is given
by:

SYS
def
= νb νp1 νp2 (B | P1 (p1) | P2 (p2) | R) .

The system is composed out of the requester’s agent R as well as others agents building an
environment inside which R is running. This environment can now be changed, e.g. new service
providers can be added or removed, all without modifying the service requester.

6.1.2 Structure

Interactions take place between processes represented by process graphs. A graph consisting of
multiple connected process graphs representing an interaction structure is called an interaction

CHAPTER 6. INTERACTIONS 127

graph. An interaction graph is a data structure that represents a set of process graphs with their
respective interaction flows.

Definition 6.1 (Interaction Graph) An interaction graph is a three-tuple consisting of process
graphs, directed interaction edges and a mapping of labels to interaction edges. Formally: IG =
(PS , C, L):

• PS is a finite, non-empty set of structural sound process graphs where all nodes are dis-
tinct.

• C ⊆ (P1N × P2N) with P1 (P1N , . . .),P2 (P2N , . . .) ∈ PS is a set of directed inter-
action edges. Furthermore, P1 6= P2 .

• L ⊆ (C × LABEL) is a set of labels attached to directed interaction edges. �

The set PS defines the process graphs participating in the interaction. The directed interaction
edges C connect different, interacting process graphs. Each directed interaction edge has a label
assigned by the set L. The label type will be given in definition 6.2 (Interaction Flow Labels).
We define functions for accessing components of interaction graphs:

• source : C → PN returns the source node of a process graph P (PN , . . .) from the set of
process graphs PS for a directed interaction edge.

• target : C → PN returns the target node of a process graph P (PN , . . .) from the set of
process graphs PS for a directed interaction edge.

• in : N → P(C) returns the set of incoming interaction edges for a node N .

• out : N → P(C) returns the set of outgoing interaction edges for a node N .

• label : C → LABEL returns the label of a directed interaction edge.

Using these functions, we are able to restrict the possible interaction graphs by stating that
each node of a process graph contained in an interaction graph should have at most one interac-
tion edge, either as a target or a source. The only exception is a service node that has exactly
one in- and one outgoing interaction edge. However, a service node cannot be connected via
an interaction edge to another service node. The restrictions are made to keep process behavior
out of a node. If we allow an arbitrary number of interaction edges per node, process decisions
like ordering and data dependencies would have to be solved inside the node. This would cause
unwanted redundancy with the previous chapters. The restrictions are formally denoted as:

1. Generic Nodes: ∀n ∈ PN of PS (PN , . . .) : |in(n) ∪ out(n)| ≤ 1, and

2. Service Nodes: ∀n1 ∈ PN of PS (PN , . . .) : |in(n1)| = 1 ∧ |out(n1)| = 1 ⇒ (∃n2 ∈
PN of PS (PN , . . .) : in(n1) = out(n2) ∧ |in(n2) ∪ out(n2)| = 1) ∧ (∃n3 ∈ PN of
PS (PN , . . .) : out(n1) = in(n3) ∧ |in(n3) ∪ out(n3)| = 1).

128 On the Application of a Theory for Mobile Systems to Business Process Management

In the remainder of this thesis we consider only interaction graphs satisfying the restrictions.

Definition 6.2 (Interaction Flow Labels) Interaction flow labels are derived from π-calculus
names. A label consists of two parts: A name used as channel and optional names used as data,
e.g. channel(data1 , data2 , . . .). Formally:

LABEL ::=CH | [INT] CH (DATA)

CH ::=NAME
DATA ::=NAME | NAME , DATA

NAME ::=π-calculus name

�

The following rules apply to interaction flow labels regarding the π-calculus:

• A name used as a channel represents the subject of an output prefix for the agent where
the interaction flow originates from (source agent) and the subject of an input prefix for
the agent where the interaction flow ends (target agent).

• If the name used as a channel has not been sent to the target agent before, it is restricted
between all π-calculus agents interacting with the target agent.

• A name used as a data value that has not been received or restricted in the source agent
before generates a new restricted name for the source agent.

• Furthermore, all scope extrusion and intrusion rules of the π-calculus apply.

We define functions for accessing elements of a label.

• channel : LABEL → CH returns the channel of a label.

• data : LABEL → P(NAME) returns the set of data names of a label.

To show the coherence between an interaction graph and a graphical notation, we give an exam-
ple of how to map the structurally relevant parts of a BPD, representing two abstract interacting
business processes, to an interaction graph. We assume the messages flows to be labeled as
stated in definition 6.2 (Interaction Flow Labels).

Example 6.1 (Partly Mapping of a BPD to an Interaction Graph) A BPD containing two
or more private or abstract interacting business processes is mapped to an interaction graph
IG = (PS , C, L) as follows:

1. PS is given according to algorithm 5.1 (Partly Mapping of a BPD to a Process Graph).

2. C is given by all message flows of the BPD.

3. L is given by the labels of all messages flows of the BPD. �

CHAPTER 6. INTERACTIONS 129

Order

Receive
Invoice

Receive
Product

CU
ST

O
M

ER

Send
Product

Send
InvoiceSH

O
P

C1 C2 C3

C4

C5

C6 C7

S1 S2 S3 S4

c1 c2

c3

c4

c5

c6

c7

s1 s2 s3

s(order,ch1,ch2) ch1(product) ch2(invoice)

Figure 6.2: Two interacting business processes.

An example of two interacting business processes is given in figure 6.2. The upper pool
represents a Customer process that sends a request to the lower pool representing a Shop pro-
cess. The first interaction flow is labeled s(order , ch1 , ch2), where the cannel used is s and
{order , ch1 , ch2} represent the corresponding payload. The Shop in turn uses the contained
names ch1 and ch2 to ship a product and an invoice to the Customer. The complete interaction
is mapped to an interaction graph according to the mapping rules given in example 6.1.

Example 6.2 (Two Interacting Business Processes) The interaction graph IG = (PS , C, L)
of the interaction from figure 6.2 is given by:

1. PS = {C,S} with C = (NC , EC , TC , AC) given by:

(a) NC = {C1 ,C2 ,C3 ,C4 ,C5 ,C6 ,C7}
(b) EC = {(C1 ,C2), (C2 ,C3), (C3 ,C4), (C3 ,C5), (C4 ,C6), (C5 ,C6),

(C6 ,C7)}
(c) TC = {(C1 ,StartEvent), (C2 ,Task), (C3 ,ANDGateway), (C4 ,Task),

(C5 ,Task), (C6 ,ANDGateway), (C7 ,EndEvent)}
(d) AC = ∅ .

and S = (NS , ES , TS , AS) with:

(a) NS = {S1 ,S2 ,S3 , S4}
(b) ES = {(S1 ,S2), (S2 ,S3), (S3 ,S4)}
(c) TS = {(S1 ,MessageStartEvent), (S2 ,Task), (S3 ,Task), (S4 ,EndEvent)}
(d) AS = ∅

2. C = {(C2 ,S1), (S2 ,C5), (S3 ,C4)}

3. L = {((C2 ,S1), s(order , ch1 , ch2)), ((S2 ,C5), ch1 (product)),
((S3 ,C4), ch2 (invoice))} . �

130 On the Application of a Theory for Mobile Systems to Business Process Management

We define a subtype of an interaction graph for reasoning on compatibility and conformance
based on process graphs with an external visible behavior. The so-called service graph combines
a process graph contained in an interaction graph with an external visible behavior:

Definition 6.3 (Service Graph) A service graph is a subset of an interaction graph containing
in- or outbound interaction edges used as a behavioral interface. Formally, SG = (PS , C, L):

• PS = (N,E, T, A) is a structural sound process graph.

• C ⊆ (N ×⊥) ∪ (⊥×N) is a set of directed interaction edges.

• L ⊆ (C × LABEL) is a set of labels attached to directed interaction edges. �

A service graph differs to an interaction graph by only considering one process graph with its
in- and outgoing interaction edges. The symbol⊥ is used as a connector to an environment. The
environment itself can either be the remaining part of an interaction graph without the service
graph as well as an arbitrary process structure without any limitations as long as it is able to
interact properly with the service graph. For a proper interaction between a service graph and
an environment at least one static interaction edge between both has to exist.

Definition 6.4 (Static Interaction Edge) An interaction edge of a service graph SG = (PS , C,
L) is static if the channel of the label has not been acquired using dynamic binding. Hence, the
channel is not found as the data of any interaction edge. Formally: An interaction edge e1 ∈ C
is static if ∀e2 ∈ C : data(label(e2)) 6= channel(label(e1)). The set of static interaction
edges of SG is denoted as CSTATIC ⊆ C. �

Definition 6.5 (Environment) Let SG = (PS , C, L) be a service graph. An environment E
for SG is given if E uses at least one static interaction edge of SG . The behavioral interface Ei

of E is given by a set consisting of tuples (DIR, L), where DIR → {in, out} and L : LABEL
as given in definition 6.2 (Interaction Flow Labels). E uses a static interaction edge of SG if:

• ∃c ∈ CSTATIC with target(c) = ⊥ : ∃(d, l) ∈ Ei such that d = in ∧
channel(label(c)) = channel(l) ∧ |data(label(c))| = |data(l)|, or

• ∃c ∈ CSTATIC with source(c) = ⊥ : ∃(d, l) ∈ Ei such that d = out ∧
channel(label(c)) = channel(l) ∧ |data(label(c))| = |data(l)|. �

A service graph SG unified with an environment E is denoted as SG] E. Since an envi-
ronment has no formal structure, we cannot give a semantics for] right now. However, after
formalizing interaction and service graphs in the π-calculus in the next section, we will define
an environment as an arbitrary agent being able to interact properly with the π-calculus repre-
sentation of a service graph. By not limiting the structural properties of an environment already
at this point, we gain freedom required to formally represent dynamic binding with participants
unknown at design time.

CHAPTER 6. INTERACTIONS 131

6.1.3 Behavior

A formal semantics is given to an interaction graph by mapping it to π-calculus agents:

Algorithm 6.1 (Mapping Interaction Graphs to Agents) An interaction graph IG = (PS , C,
L) is mapped to π-calculus agents as follows. We denote the components of the process graphs
from PS of IG with PiN , PiE , PiT , and PiA. Furthermore G represents a set of names known
to all interacting processes.

1. Map all processes graphs of PS to agents denoted by Pi according to algorithm 5.1 (Map-
ping Process Graphs to Agents). Use α-conversion, if required, to ensure that bn(Pi) ∩
(channel(l) ∪ data(l)) = ∅ for each l ∈ L.

2. Execute for all nodes of all process graphs from PS that are the target of an interaction
edge. i.e. ∀c ∈ C : target(c) = n, n ∈ PiN , the following sub-procedure:

(a) Replace the functional abstraction of the π-calculus representation of the node n with
an input prefix of the subject channel(label(c)) and the object(s) data(label(c))
followed by ”.〈·〉”. Exception for pattern 5.17 (Deferred Choice): If the node type
of n is an intermediate message event, and another node n2 directly preceding n
has the type event based gateway, the subject has already been inserted in the agent
mapping of n2 before 〈·〉. In this case, only additional objects are added to the prefix
where the subject appears, whereas the agent mapping of n is untouched.

(b) Take care that all received objects are passed to all further nodes of the process graph
containing the node n (i.e. all nodes reachable from n). See algorithm 7.1 (Mapping
Process Graphs with Data Flow to Agents) for details.

3. Execute for all nodes of all process graphs from PS that are the source of an interaction
edge, i.e. if ∀c ∈ C : source(c) = n, n ∈ PiN , the following sub-procedure:

(a) Replace the functional abstraction of the π-calculus representation of the node n
with ”〈·〉.” followed by an output prefix of the subject channel(label(c)) and the
object(s) data(label(c)).

(b) If the subject of the output prefix has not been received during an earlier interaction:

• Default: Add the subject of the output prefix to G to restrict it between the two
interacting agents.

• Interaction edges targeting ⊥ (Service Graphs): Don’t restrict the output prefix.

(c) For all objects contained in the output prefix: If the object has not been received
during an earlier interaction, restrict the object before the output prefix and take care
that the scope is extruded to all agents representing further nodes of the correspond-
ing process graph. See algorithm 7.1 (Mapping Process Graphs with Data Flow to
Agents) for details.

4. Define an agent I
def
= νG (

∏|PS |
i=1 Pi) representing the interaction graph IG . �

132 On the Application of a Theory for Mobile Systems to Business Process Management

The formalization of an interaction graph in the π-calculus starts with a mapping of each
process graph contained in the interaction graph to agents. Thereafter, all agents representing
nodes of an interaction graph with an an incoming interaction edge are modified with additional
preconditions based on the interaction flow label. Finally, all agents representing nodes of an
interaction graph with an outgoing interaction edge are modified with additional postconditions,
again based on the interaction flows label. For instance, an agent representing a node of a process
graph contained inside a sequence pattern is modified as follows:

A
def
= a.〈·〉.b.0 ,

becomes
A

def
= a.ch(x).〈·〉.b.0 ,

with an incoming interaction flow labeled ch(x). If an additional outgoing interaction flow is
connected to the node represented by A, such as x(resp), the agent becomes

A
def
= a.ch(x).〈·〉.νresp x〈resp〉.b.0 .

The name resp has been restricted due to the fact that it has not been received during an earlier
interaction. To decide what an ”earlier interaction” means, an implementation of algorithm
6.1 has to consider all interactions by pre-processing the interaction graph. A more complex
example is introduced below:

Example 6.3 (Two Interacting Business Processes Formalization) The interaction graph
from example 6.2 (Two Interacting Business Processes) is mapped to π-calculus agents accord-
ing to algorithm 6.1 (Mapping Interaction Graphs to Agents). We start by mapping the process
graphs C and S contained in PS :

C
def
= (νc1 , . . . , c7)

7∏
i=1

Ci and S
def
= (νs1 , . . . , s3)

4∏
i=1

Si .

The agents Ci and Si are given accordingly as stated in algorithm 5.1 (Mapping Process Graphs
to Agents). We only consider nodes with in- or outgoing interaction flow and omit recursion
since the example contains no arbitrary cycles. For accuracy with figure 6.2 (Two Interacting
Business Processes), we proceed in a logical order instead of first processing incoming and then
outgoing interaction edges.

First of all, node C2 has an outgoing interaction flow labeled s(order , ch1 , ch2), hence the
corresponding agent is given by:

C2
def
= νorder , ch1 , ch2 c1 .〈·〉.s〈order , ch1 , ch2 〉.c2 〈order , ch1 , ch2 〉.0 .

The names order , ch1 , and ch2 are restricted inside the agent C2 because they have not been re-
ceived during an earlier interaction. The interaction itself takes places via s, where the restricted
names are communicated. Furthermore, they are forwarded to agents representing nodes down-
stream in the process graph via c2 . Additionally, the name s has to be restricted between C and
S:

I
def
= νs (C | S) .

CHAPTER 6. INTERACTIONS 133

The corresponding interaction partner for node C2 is node S1 of the process graph S. This
process graph represents a service as can be conducted from the corresponding BPD shown in
figure 6.2. The service waits for a request and sends two different response messages. The agent
representing node S1 is given by:

S1
def
= s(order , ch1 , ch2).〈·〉.s1 〈order , ch1 , ch2 〉.0 .

The agent S1 has an interaction based precondition s. After receiving via s, the objects received
are forwarded to agents represent subsequent nodes via s1 . The next interaction is contained in
the node S2 , where a restricted name product is returned to node C5 of process graph C:

S2
def
= νproduct s1 (order , ch1 , ch2).〈·〉.ch1 〈product〉.s2 〈order , ch1 , ch2 , product〉.0 .

The response channel is not bound statically, but rather derived from the objects received in
agent S1 . This ensures the correct routing of the responses using an asynchronous callback
mechanisms. The agent representing the corresponding node C5 is given by:

C5
def
= c4 (order , ch1 , ch2).ch1 (product).〈·〉.c6 〈order , ch1 , ch2 , product〉.0 .

Agent C5 interacts via ch1 , which in turn it acquired as an object of c4 . The last interaction is
given by the agent representing the node S3 :

S3
def
= νinvoice s2 (order , ch1 , ch2 , product).〈·〉.ch2 〈invoice〉.s3 〈order , ch1 , ch2 , . . .〉.0 ,

as well as the agent representing the node C4 :

C4
def
= c3 (order , ch1 , ch2).ch2 (invoice).〈·〉.c5 〈order , ch1 , ch2 , invoice〉.0 .

As can already be seen by this small example, algorithm 6.1 (Mapping Interaction Graphs to
Agents) creates a large overhead of names to be forwarded to other agents. To overcome this
problem, only the names required for interactions in agents representing nodes further down-
stream the process graphs can be forwarded. This can either be done by analyzing the interaction
graph beforehand or by optimizing the derived agents afterwards.

To conclude this section, we can now give a formal description of an environment for a
service graph mapped to agents:

Definition 6.6 (Environment Agent) Let S be a service graph mapped to agents (According
to algorithm 6.1). A π-calculus agent E is called an environment agent for S if they share at
least one free name, i.e. fn(E) ∩ fn(S) 6= ∅. The cardinalities of the objects of all prefixes
in E and S whose subjects match the intersection of the free names of E and S have to be the
same. Furthermore, all free names used as subjects of input or output prefixes in S must have a
corresponding input or output prefix in E. This means, that the subjects where the free names
are used have to be inverse between S and E. �

A subject α is inverted by the following function:

inverse(α) =
{

α = x : x
α = x : x

.

134 On the Application of a Theory for Mobile Systems to Business Process Management

AX

ch(msg)

(a) Send.

AX

ch(msg)

(b) Receive.

AX

ch1(ch2,msg)

B

ch2(resp)

QY R

(c) Send/Receive.

Figure 6.3: Single transmission bilateral interaction patterns.

The definition of an environment agent E for a certain agent S representing a service graph
states that S might have the possibility to interact with E. According to definition 6.5 (Environ-
ment), this means that at least one interaction edge of the service graph of S, represented by the
set of free names of S, is used. We can now state how S is formally unified with E, i.e. S] E:

SYS
def
= ν(fn(S) ∪ fn(E)) (S | E) . (6.1)

The unification of an agent S representing a service graph and an environment agent E is given
by the parallel composition of S and E as well as restricting the free names of S and E.

6.2 Interaction Patterns

After having introduced the principles of interactions in the π-calculus, we investigate how
common patterns of interaction can be represented in different process, interaction, or service
graph structures. In particular, we investigate the service interaction patterns as described in [25].
To give a more elaborate presentation of the patterns, we use the BPMN notation as introduced
in chapter 3.3.1 (Business Process Diagrams). Example 5.1 (Partly Mapping of a BPD to a
Process Graph) shows how this notation can be mapped to process graphs. The description of
the service interaction patterns has been adapted to match the terminology used throughout this
thesis.

6.2.1 Single Transmission Bilateral Interaction Patterns

The single transmission bilateral interaction patterns represent basic interaction behavior. Graph-
ical representations are shown in figure 6.3.

Pattern 6.1 (Send) Description: A process sends a message to another process. (According
to [25, p.4])

Implementation: A graphical representation of this pattern is shown in figure 6.3(a). The π-
calculus mapping implements a reliable delivery with a blocking semantics as follows:

A
def
= 〈·〉.ch〈msg〉.0 .

CHAPTER 6. INTERACTIONS 135

The implementation of pattern 6.1 (Send) does not show how A actually acquires the name
ch . If an interaction between A and a composition of other agents E is defined as

I
def
= νch (A | E) ,

a static binding is described. If it is defined as

I
def
= νlookup (lookup(ch).A | E) ,

with E being able to communicate a name used for interaction with a certain component of
itself via lookup, a dynamic binding is described. If an unreliable message transmission should
be modeled, an agent acting as a proxy between A and the environment has to be added (here
with static binding):

I
def
= νch (A | B | E) ,

with B given by B
def
= ch(x).B. Due to the non-determinisms contained in I , interactions

via ch can now be captured by B, thus providing an unreliable delivery. These considerations
on static vs. dynamic and reliable vs. unreliable message transmission hold for the remaining
interaction patterns as well.

Pattern 6.2 (Receive) Description: A process receives a message from another process.
(According to [25, p.5])

Implementation: A graphical representation of this pattern is shown in figure 6.3(b). The π-
calculus mapping implements a reliable reception with a blocking semantics as follows:

A
def
= ch(msg).〈·〉.0 .

Pattern 6.3 (Send/Receive) Description: A process X engages in two causally related inter-
actions. In the first interaction X sends a message to another process Y (the request), while in
the second one X receives a message from Y (the response). (According to [25, p.7])

Implementation: A graphical representation of this pattern is shown in figure 6.3(c). The π-
calculus mapping implements a reliable interaction with a blocking semantics as follows:

I
def
= νch1 (X | Y) with X

def
= νx1 (A | B), and Y

def
= νy1 (Q | R) .

The components of X are given by:

A
def
= νch2 νmsg 〈·〉.ch1 〈ch2 ,msg〉.x1 〈ch2 ,msg〉.0

and
B

def
= x1 (ch2 ,msg).ch2 (resp).〈·〉.0 .

The components of Y are given by:

Q
def
= ch1 (ch2 ,msg).〈·〉.y1 〈ch2 ,msg〉

136 On the Application of a Theory for Mobile Systems to Business Process Management

X
A

B

C

ch1(m)
ch2(m)

ch3(m)EBG

(a) Racing incoming messages.

X

ch_i(msg)

A
n

(b) One-to-many
send.

X

ch_i(msg)

A
n

B

C

(c) One-from-many receive.

X
ch_i(r_i,msg)

A
n

B
n

C

D

r_i(resp)

(d) One-to-many send/receive.

Figure 6.4: Single transmission multilateral interaction patterns.

and
R

def
= νresp y1 (ch2 ,msg).〈·〉.ch2 〈resp〉.0 .

The send and receive interactions are correlated via the restricted name ch2 created inside agent
A.

6.2.2 Single Transmission Multilateral Interaction Patterns

The single transmission multilateral interaction patterns represent one to many or many to one
interactions. Graphical representations are shown in figure 6.4. We use multiple instance tasks
to represent the transmission or reception of multiple names. The names are annotated with
indices, where we assume that the index of each name is unique to an instance. Typically, the
indices will be counted from one to n.

Pattern 6.4 (Racing Incoming Messages) Description: A process expects to receive one
among a set of messages. These messages may be structurally different (i.e. different types) and
may come from different categories of processes. The way a message is processed depends on
its type and/or the category of processes from which it comes. (According to [25, p.8])

Implementation: A graphical representation of this pattern is shown in figure 6.4(a). It resem-
bles pattern 5.17 (Deferred Choice). The π-calculus mapping of the event-based gateway EBG
implements a reliable interaction with a blocking semantics as follows:

EBG
def
= 〈·〉.(c1 (m).x1 〈m〉.0 + c2 (m).x2 〈m〉.0 + c3 (m).x3 〈m〉.0) ,

where x1 , x2 , and x3 represent names used as preconditions for the intermediate message
events. This pattern requires a special processing for the mapping from interaction graphs to

CHAPTER 6. INTERACTIONS 137

agents. The names c1 . . . c3 are actually taken from the interaction flows of the nodes directly
following the node representing the event-based gateway. This is required due to the fact the the
π-calculus supports no transactional transitions.

Pattern 6.5 (One-to-many Send) Description: A process sends messages to several other
processes. The messages all have the same type (although their contents may differ). (According
to [25, p.9])

Implementation: A graphical representation of this pattern is shown in figure 6.4(b). The π-
calculus mapping is given by pattern 6.1 (Send) executed n times using pattern 5.14 (Multiple
Instances with a priori Design Time Knowledge) or pattern 5.15 (Multiple Instances with a priori
Runtime Knowledge), depending on the point in time where the interaction partners are known.

Pattern 6.6 (One-from-many Receive) Description: A process receives a number of logi-
cally related messages that arise from autonomous events occurring at different processes. The
arrival of messages needs to be timely so that they can be correlated as a single logical request.
The interaction may complete successfully or not depending on the set of messages gathered.
(According to [25, p.11])

Implementation: A graphical representation of this pattern is shown in figure 6.4(c). The π-
calculus representation is given by pattern 6.2 (Receive) executed n times using pattern 5.14
(Multiple Instances with a priori Design Time Knowledge) or pattern 5.15 (Multiple Instances
with a priori Runtime Knowledge), depending on the point in time where the interaction part-
ners are known. If a timeout occurs, i.e. not all responses have been gathered within a certain
interval, the control flow is rerouted using the intermediate message event.

Pattern 6.7 (One-to-many Send/Receive) Description: A process sends a request to several
other processes, which may all be identical or logical related. Responses are expected within a
given timeframe. However, some responses may not arrive within the timeframe and some pro-
cesses may even not respond at all. The interaction may complete successfully or not depending
on the set of responses gathered. (According to [25, p.14])

Implementation: This pattern combines the two preceding patterns (One-to-many Send and
One-from-many Receive) into one pattern. A graphical representation is shown in figure 6.4(d).
The forwarding of the names created, i.e. r i, should be implemented according to pattern 4.12
(Data Interaction—From Multiple Instance Activities) and pattern 4.11 (Data Interaction—To
Multiple Instance Activities).

6.2.3 Multi Transmission Interaction Patterns

The multi transmission interaction patterns represent many to many interactions. Graphical
representations are shown in figure 6.5.

Pattern 6.8 (Multi-responses) Description: A process X sends a request to another process Y.
Subsequently, X receives any number of responses from Y until no further responses are required.
The trigger of no further responses can arise from a temporal condition or message content, and
can arise from either X or Y’s side. (According to [25, p.15])

Implementation: A graphical representation of this pattern is shown in figure 6.5(a). Process

138 On the Application of a Theory for Mobile Systems to Business Process Management

AX

ch1(ch2,done,msg)

B

QY R
n

S

ch2(resp_i) done

n

(a) Multi-responses.

A

X

ch_i(r_i,msg)

B

r_i(resp)

(b) Contingent request.

X
ch_i(acc_i,msg)

A
n

B
min, max,t

C

D

acc_i

(c) Atomic multicast notification.

Figure 6.5: Multi transmission interaction patterns.

X as the initiator of the interaction sends two names done and msg beside the response channel
ch2 to Y . The name done is used by Y to signal the stop condition to X , where the reception
of new messages on ch2 is aborted. Furthermore, the reception of new messages by X can be
aborted by a timeout attached to activity B.

Pattern 6.9 (Contingent Request) Description: A process X makes a request to another party
Y. If X does not receive a response within a certain timeframe, X alternatively sends a request to
another process Z, and so on. (According to [25, p.17])

Implementation: A graphical representation of this pattern is shown in figure 6.5(b). In the
beginning of the pattern, a request is send on channel ch i, where i enumerates the different
interaction partners. The subsequent activity B has a timeout attached leading to another iter-
ation of the pattern if the response is not received within time. According to the formalization
of pattern 5.22 (Event-based Rerouting), each response is accepted event if the timeout has been
activated. However, if a timeout occurred, the message is discarded and no further control flow
is enabled.

Pattern 6.10 (Atomic Multicast Notification) Description: A process sends notifications to
several processes such that a certain number of processes are required to accept the notification
within a certain timeframe. For example, all processes or just one process are required to accept
the notification. (According to [25, p.18])

Implementation: A graphical representation of this pattern is shown in figure 6.5(c). This
pattern resembles pattern 6.7 (One-to-many Send/Receive). However, the minimum, maximum,
and thresholds values of activity B have to be set according to the required notifications.

CHAPTER 6. INTERACTIONS 139

AX

ch1(z,msg)

QY R

UZ

z(resp)

(a) Request with a Referral.

AX B

QY R

UZ V

ch1(ch2,msg) ch2(resp)

ch3(ch4,msg) ch4(resp)

(b) Relayed Request.

AX

ch1(z,msg)

QY R

UZ

z(resp)

conf(ch1)

(c) Dynamic Routing.

Figure 6.6: Routing patterns.

6.2.4 Routing Patterns

The routing patterns describe flexible interaction behavior between a set of processes. Graphical
representations are shown in figure 6.6.

Pattern 6.11 (Request with a Referral) Description: Process X sends a request to process
Y indicating that any follow-up response should be sent to a number of other processes (Z1, Z2,
. . . , Zn) depending on the evaluation of certain conditions. While faults are sent by default to
these processes, they could alternatively be sent to another nominated process (which may be
process A). (According to [25, p.20])

Implementation: A graphical representation of this pattern is shown in figure 6.6(a). The referral
is contained as z in the object of ch1 . However, X and Z need to share the name z beforehand.
Instead of incorporating a single interaction partner via z, also a number of interaction partners
can be integrated via z i.

Pattern 6.12 (Relayed Request) Description: Process X makes a request to process Y which
delegates the request to other processes (Z1, . . . , Zn). Processes Z1, . . . , Zn then continue
interacting with process X while process Y observes a ”view” of the interactions including faults.
The interacting parties are aware of this ”view”. (According to [25, p.21])

Implementation: A graphical representation of this pattern is shown in figure 6.6(b). Contained
is a simple interaction. A relayed request is establish by using Y as a proxy for the interaction.
This solutions ensures that Y receives all interactions between X and Z while being able to
capture the important ones.

Pattern 6.13 (Dynamic Routing) Description: A request is required to be routed to several
processes based on a routing condition. The routing order is flexible and more than one process
can be activated to receive a request. When the processes that were issued the request have
completed, the next set of processes are passed the request. Routing can be subject to dynamic
conditions based on data contained in the original request or obtained in one of the intermediate
steps. (According to [25, p.22])

Implementation: A graphical representation of this pattern is shown in figure 6.6(c). The pattern

140 On the Application of a Theory for Mobile Systems to Business Process Management

contains two mechanisms for deciding the routing. From A to Q the corresponding channel is
”injected” dynamically at runtime from the outside via conf . From R to U , the channel is
contained inside a message received in an activity (here Q) before R.

6.3 Properties

In this section we develop correctness properties for interactions. First, we extend lazy sound-
ness for a process graph to include the possible interactions with a certain environment made
up of different services. Thus, we prove a process graph to be free of deadlocks and livelocks
including the invoked behavior of its interaction partners. Since these can be bound dynami-
cally, link passing mobility has to be considered. The soundness property developed is called
accordingly interaction soundness. It provides a compatibility notion between a service and its
environment. Second, the π-calculus representations of two service graphs can be matched for
behavioral equivalence. The property is called interaction equivalence and defines a confor-
mance relation. It can be used for two major purposes. On the one hand it allows for testing
if a service can be replaced by another one. On the other hand, it allows checking if a certain
implementation of a service follows an abstract process.

6.3.1 Interaction Soundness

In this subsection we investigate an extension of the black box verification approach of lazy
soundness to interactions between a service graph and its environment. In particular, we are
interested if a given service graph contains deadlocks. Lazy soundness allows to prove this
property for the internal structure of the process graph contained in the service graph. The
extended property should additionally consider the interaction edges as pre- and postconditions
to the nodes. Notable, only a single interaction edge has to exists initially. All other interaction
edges can be acquired using dynamic binding. To make this work, a service graph has to be
unified with a given environment. Similar to lazy soundness, each time an external observer
executes the initial node, she should be able to observe the execution of the final node at a later
point in time. Informally, interaction soundness can be described as follows:

A service graph SG is interaction sound regarding environment E if SG] E is
lazy sound.

Example 6.4 (Stock Exchange Interaction) Interaction soundness is motivated by an exam-
ple shown in figure 6.7. The example describes the internal process of a Stock Broker and its
environment. The stock broker offers the ability of bidding at two different stock exchanges at
the same time. The order is thereafter placed at the first stock exchange responding positive, i.e.
where the order has been accepted. This functionality is realized inside the process using pattern
5.9 (Discriminator). Since there are many stock exchanges available, with different properties
such as fees, rates, and business hours, a Stock Exchange Repository is contained as a service
in the environment. It is invoked as the first activity of the stock broker, Find & Bind Stock
Exchanges. The repository has knowledge about a number of Stock Exchanges, connected in the

CHAPTER 6. INTERACTIONS 141

Stock Exchange Repository

Stock
Exchange A

Stock
Exchange B

Stock
Exchange C ...

Find & Bind
Stock Exchanges

Bid at first Stock
Exchange

Bid at second
Stock Exchange

1

St
oc

k
Br

ok
er

Place
Order

B1 B2

B3

B4

B5
B6

B7 B8
e1 e2

e3

e4

e5

e6

e7 e8

Figure 6.7: Stock exchange interaction.

BPMN diagram using associations. Two of them matching the requested conditions are returned
to the stock broker. The stock broker is now able to dynamically bind to the stock exchanges
formerly unknown to him. This is denoted using in- and outgoing message flows at the activities
Bid at first Stock Exchange and Bid at second Stock Exchange. Each stock exchange returns a
special token if the bid has been accepted. This token is used inside Place Order to place the
order at the corresponding stock exchange. Of course, only a successful bidder should be able
to place the order.

We now argue why reasoning on the soundness of the example is not trivial. First, the
stock broker’s process contains a discriminator. As has already been shown, a discriminator
leaves running (lazy) activities behind, i.e. one of the activities before the discriminator remains
activated or running after the other one has already been finished. The activated or running
activity might stay in this state even after the final node has been reached. Second, the process is
contained inside an environment where the services are dynamically bound at runtime. Only the
connection between the Service Broker and the Stock Exchange Repository is known at design
time. Thus, reasoning on soundness includes an all quantification over the services that can be
potentially bound at a given point in time. Third, a mechanisms for correlating selected stock
exchanges with the activities Bid at first Stock Exchange and Bid at second Stock Exchange has
to be provided.

As has already been suggested, lazy soundness (definition 5.10) provides a property dealing
with lazy activities. The second and the third issue can be overcome as described in section
6.1.1 (Correlations and Dynamic Binding) by using service graphs mapped to agents (algorithm
6.1) and environment agents (definition 6.6). According to equation 6.1, we can define a system
of agents that represent a service graph unified with an environment. Due to the fact of having
a single representation of the system under investigation, we can use the black box verification
approach without any modifications. The only thing that has to be done is a preparation of the
agent mapping considering the unification and annotation according to lazy soundness.

Algorithm 6.2 (Interaction Soundness Annotated π-calculus Mapping) Let SYS be an
agent consisting of the unification of a π-calculus mapping S of a service graph SG = (PS , C, L)

142 On the Application of a Theory for Mobile Systems to Business Process Management

with an environment agent E as follows:

SYS
def
= ν(fn(S) ∪ fn(E)) (S | E) with i, o 6∈ fn(S) ∪ fn(E) ∪ bn(S) .

The condition i, o 6∈ fn(S)∪ fn(E)∪bn(S) can always be fulfilled inside SYS by α-conversion
if required. Furthermore, we need to replace the functional abstractions of the agent definitions.
Let n iterate over all nodes of PS and An be the agent representing node n in SYS . The
functional abstractions have to be replaced as follows:

• An〈τ〉, if the the corresponding service graph node has incoming and outgoing edges1

(i.e. |pre(n)| > 0 ∧ |post(n)| > 0),

• An〈i.τ〉, if the corresponding service graph node has only outgoing edges (i.e. |pre(n)| =
0 ∧ |post(n)| > 0),

• An〈τ.o〉, if the corresponding service graph node has only incoming edges (i.e. |pre(n)|
> 0 ∧ |post(n)| = 0), and

• An〈i.τ.o〉 if the corresponding service graph node has no incoming or outgoing edges (i.e.
|pre(n)| = |post(n)| = 0). �

The invariant behavior of the agent mapping is given by SLAZY . A formal definition of
interaction soundness based on lazy soundness is then given by:

Definition 6.7 (Interaction Sound Service Graph) Let SYS be a π-calculus representation of
a system consisting of (1) an interaction soundness annotated π-calculus mapping of a service
graph SG unified with (2) an environment agent E according to algorithm 6.2. SG is interaction
sound regarding the environment that E represents if SYS ≈ SLAZY holds. �

Appendix A.2.1 shows how example 6.4 (Stock Exchange Interaction) is proven to be inter-
action sound using existing tools.

6.3.2 Interaction Equivalence

In this subsection we extend the idea behind interaction soundness. While interaction soundness
investigates whether a service is able to interact properly with a given environment, i.e. both are
compatible, we now abstract from certain services using an environment. Instead, we investigate
if an environment behaves like another one, i.e. both are conforming. Two different directions
can be distinguished. Either an environment A is able to behave like another environment B,
meaning A simulates B, or arbitrary interactions of both environments can be mimicked in any
direction by A or B. The former is denoted as interaction simulation, whereas the latter is
denoted accordingly as interaction equivalence.

Example 6.5 (E-Business Solutions) Interaction equivalence is motivated by an example
shown in figure 6.8. Contained are two different environments for the Customer process from
figure 6.2. While the one depicted in figure 6.8(a) shows the original interaction partner, the one

1 Edges refers to control flow edges here.

CHAPTER 6. INTERACTIONS 143

Send
Product

Send
InvoiceSH

O
P

S1 S2 S3 S4

s1 s2 s3

s(order,ch1,ch2) ch1(product) ch2(invoice)

(a) Environment 1.

Place
Invoice

Request

Place
Product
Request

Send
Invoice

Send
Product

RE
SE

LL
ER

PAYM
ENT O

RG
.

M
ANUFACTURER

s(order,ch1,ch2)

m(order,ch1)

ch1(product) ch2(invoice)

p(order,ch2)

R1

R2

R3 R4R5

R6

r1
r2 r3

r4 r5
r6

P1 P2 P3

p1 p2

M1 M2 M3

m1 m2

(b) Environment 2.

Figure 6.8: Two different environments for the customer process from figure 6.2.

from figure 6.8(b) shows a more advanced construction that should replace the first one. Instead
of directly processing the customer’s request by sending a product and an invoice, now a Reseller
enters the scene. As the name suggests, the reseller only redirects the order to a Manufacturer
selected from a set. Furthermore, the reseller supports different payment methods which are
handled by different Payment Organizations. The reseller therefore also selects an applicable
one.

Interaction equivalence deals with the replaceability of different environments in such a way,
that any service using the different environments is not capable of detecting any differences
regarding the interaction behavior. In a weaker scenario, interaction simulation enforces that an
environment is able to behave like another one, but not necessarily the other way around. In case
of the example this means, can we replace the Shop from figure 6.8(a) by the Reseller construct
from figure 6.8(b) such that any service, representing arbitrary customers, is unable to detect a
difference?

Interaction simulation and equivalence can only be given by taking the semantics of an
environment into account. Hence, we have to consider environment agents. Since we already
have a congruence for agents abstracting from all internal actions, the definition of interaction
equivalence is straightforward. This time we have to use weak open bisimulation for supporting
arbitrary in- and outgoing interaction edges, which might only be known at runtime due to

144 On the Application of a Theory for Mobile Systems to Business Process Management

dynamic binding:

Definition 6.8 (Interaction Equivalence) Two environment agents D1 and D2 are interaction
equivalent if D1 ≈D

O D2 . �

Regarding the definition of interaction simulation, we only have to consider one direction
using weak open d-simulation:

Definition 6.9 (Interaction Simulation) An environment agent D2 simulates the interactions
of another environment agent D1 if D1 wD

O D2 . �

Appendix A.2.2 shows how the environments from figure 6.8 perform regarding interaction
simulation and equivalence using existing tools.

Part III

Results

145

Introduction to Part III

Part III discusses the results of the investigations and concludes the thesis. It starts with an illus-
trating example that highlights how the formal models of data, processes, and interactions are
able to provide a unified representation of the investigated areas of BPM. Thereafter, the inves-
tigations are recapitulated and advantages as well as disadvantages are discussed. Furthermore,
the results are set into scene with related work. Finally, the thesis is concluded by a summary
and an outlook on future work.

Structure of Part III Part III is composed of three chapters. The first chapter introduces the
example. The second chapter recapitulates and discusses the investigations. The third chapter
concludes the thesis by summing up and showing further work.

147

148 On the Application of a Theory for Mobile Systems to Business Process Management

Chapter 7

Unification

This chapter discusses how data, processes, and interactions can be brought together in a uni-
fied way. The discussion is based on an example consisting of interacting business processes
with data-based decisions. We showcase a simulation of the formalized system and discuss lazy
soundness, interaction soundness, as well as interaction equivalence regarding the example. Spe-
cial attention is paid on the representation of a service broker that supports dynamic registration
and removal of services during runtime.

7.1 Formal Models

The initial view of the example is shown in figure 7.1. It describes a loan broker interaction
consisting of three participants. The first participant is a customer, shown in the bottom pool.
The pool contains an investment process. If the investment is below a certain threshold, it is
made directly and the process finishes. If it is above the threshold, an interaction with other
participants takes place. In the latter case, the activity Find Bank sends a request to a loan
broker. The request of the customer consists of all relevant data to allow the loan broker to
select a certain bank offering the lowest interest rate for the customer. The relation between the
loan broker and the bank is represented by an association between their corresponding pools.
It is assumed that the loan broker is always able to return a link to a certain bank. This is
denoted via the interaction flow label ch(bank) at the interaction flow between the nodes B3
and C3 . The customer, in turn, is able to request the loan in the activity Request Loan by using
the received link bank . Via this link, a request req and two links used for responses, acc for the
successful grant of the loan and rej for the rejection, are sent. Afterward, the customer either
receives an accept or reject message, leading to either the activity Buy or Reject. Thereafter, the
process of the customer finishes.

Figure 7.1 only represents the static model of the system. However, in each instance of the
system, several banks are available, which all should conform to the interaction behavior of the
bank pool but are not initially bound to the customer. In the example, only the loan broker and
the customer are initially connected, while different banks might register and remove their links
from the loan broker during the evolution of the system. By investigating the example, it will
be shown how data, processes, and interactions can be brought together in one unified formal

149

150 On the Application of a Theory for Mobile Systems to Business Process Management

Lo
an

 B
ro

ke
r

Ba
nk

Buy
direct

Find
Bank

Request
Loan

Buy

Reject
Purchase

v< €1.000

v> €999

Lookup
Banks

Send
Accept

Accept

Reject

Send
Reject

Cu
st

om
er

B1 B2 B3
b1 b2

S1
S2

S3

S4

S5 S6
s1

s2

s3

s4

s5

s6

broker(ch) ch(bank) bank(req,acc,rej) acc rej

C1
C2

C3

C4

C5
C6

C7

C8

C9

C10

C11

C12
c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12 c13

Figure 7.1: Loan broker interaction.

model.

7.1.1 The Customer

The formalization of the customer starts with a mapping of its business process diagram to a
process graph according to example 5.1 (Partly Mapping of a BPD to a Process Graph).

Example 7.1 (Process Graph of the Customer) The process graph PC = (N,E, T, A) of the
customer from figure 7.1 is given by:

1. N = {C1 ,C2 ,C3 ,C4 ,C5 ,C6 ,C7 ,C8 ,C9 ,C10 ,C11 ,C12}

2. E = {(C1 ,C2), (C2 ,C3), (C2 ,C4), (C3 ,C5), (C5 ,C6), (C6 ,C7), (C6 ,C8),
(C7 ,C9), (C8 ,C10), (C9 ,C11), (C10 ,C11), (C11 ,C12)}

3. T = {(C1 ,StartEvent), (C2 ,XORGateway), (C3 ,Task), (C4 ,Task), (C5 ,Task),
(C6 ,EventBasedGateway), (C7 , IntermediateMessageEvent),
(C8 , IntermediateMessageEvent), (C9 ,Task), (C10 ,Task), (C11 ,XORGateway),
(C12 ,EndEvent)}

4. A = ∅

Since the mapping algorithm does not consider data flow, the process graph is incomplete in a
sense that the decision made in the node C2 (XOR Gateway) is not contained. To overcome this
limitation, we provide a lightweight extension to a process graph that does not touch definition
5.1 (Process Graph). Data-based decisions made in a gateway are captured as attributes to the
gateway node together with the corresponding edge. For instance, the attributes for example 7.1
(Process Graph of the Customer) are modified to:

A′ = {(C2 , ((C2 ,C3), ”v > 999”)), (C2 , ((C2 ,C4), ”v < 1000”))} ,

CHAPTER 7. UNIFICATION 151

where we abstract from the currency operator for the sake of simplicity. Furthermore, we have
to initialize the values used and define their types in the initial node. In case of the example this
is C1 :

A′′ = A′ ∪ {(C1 , (variable, ”v : number”))} .

We use the key variable to denote external variables required for the process to operate. Where
these variables are initialized from is out of scope for the formalization. For instance, they could
be received during an earlier interaction with another process or read from a database.

While we worked around a modification of definition 5.1 (Process Graph), additional effort
is required to describe the routing of data through a process. This is given by a data flow graph.
A data flow graph does not only consider data used internally inside processes but also data
received and transmitted during interactions with other processes. Hence, only by combining
the concepts investigated in chapter 5 (Processes) and chapter 6 (Interactions) with chapter 4
(Data), a definition can be given:

Definition 7.1 (Data Flow Graph) A data flow graph is a three tuple consisting of nodes,
directed data flow edges, and markings of the edges. Formally: D = (N,E, M) with

• N as a finite, non-empty set of nodes according to a process graph,

• E ⊆ (N ×N) as a set of directed data flow edges, and

• M : E → STRING as a function mapping directed data flow edges to markings given
by text strings. �

Furthermore, each data flow graph D belongs to a certain process graph P . Hence, the nodes N
of D correspond to nodes N of P . Different nodes of D can be connected by data flow edges,
where we assume transitivity. The data types actually routed through the edges of D are given by
M . M is a total function, so each data flow edges has exactly one marking. As a final constraint,
data flow has to follow control flow, thus fulfilling the following requirement between a data
flow graph D and a process graph P :

∀(a, b) ∈ E of D : ∃c, b ∈ N of P such that a = c ∧ b = d ∧ ∃ε : c
ε→ d . (7.1)

The requirement states that for each two nodes a and b of a data flow graph that are connected
by a data flow edge, two corresponding nodes c and d of a process graph exist. Furthermore,
there has to exists a path between c and d inside the process graph.

To show the coherence between a data flow graph and a graphical notation, we give an
example of how to map the relevant parts of a business process diagram to a data flow graph.

Example 7.2 (Partly Mapping of a BPD to a Data Flow Graph) A BPD with annotated
message flows is mapped to a data flow graph D = (N,E, M) by the following steps (sketch):

1. N is given by all flow objects of the BPD that produce or require data. We consider either:

(a) Gateways with outgoing sequence flows with labels or

(b) Flow objects with incoming or outgoing message flows.

152 On the Application of a Theory for Mobile Systems to Business Process Management

2. E and M are given by constructing the set of data source nodes and data target nodes
combined to tuples:

(a) The set of data sources S is given by: Flow objects with incoming message flows
(the source values are given by the data part of the message flow label), flow objects
with outgoing message flows (the source values are given by a parts of the message
flow label), and each start event (where the source values are given by all other kind
of required data values).

(b) The set of data targets T is given by: Flow objects with incoming message flows
(where the channel part of the message flow label is the target value), flow objects
with outgoing message flows (where all parts of the message flow label are the target
value), and gateways which use the labels from outgoing sequence flows for routing
decisions (where the labels construct the target values).

(c) The elements of E are given by (s, t) with s ∈ S and t ∈ T where the source
value matches the target value. During this step, also the set of M is extended by
((s, t), sourcevalue) for each pair (s, t).

The mapping allows multiple targets for data source nodes as well as multiple sources for data
target nodes. The mapping given is different to algorithm 6.1 (Mapping Interaction Graphs to
Agents), since data values are created in the initial nodes instead in the node where they are
required first. This is due to the generic approach of the mapping. We can now give the initial
data flow graph for the process graph of example 7.1 (Process Graph of the Customer):

DC (N,E, M) = ({C1 ,C2}, {(C1 ,C2)}, {((C1 ,C2), ”v”)} .

The data flow graph DC describes how the number v is routed from the initial activity to the
first gateway. As stated, a complete data flow graph also considers data received and transmitted
during interactions. Accordingly, the complete data flow graph of the example is given by:

Example 7.3 (Data Flow Graph of the Customer) The data flow graph DC = (N,E, M) of
the customer from figure 7.1 is given by:

1. N = {C1 ,C2 ,C3 ,C5 ,C7 ,C8}

2. E = {(C1 ,C2), (C3 ,C5), (C5 ,C7), (C5 ,C8)}

3. M = {((C1 ,C2), ”v”), ((C3 ,C5), ”ch”), ((C5 ,C7), ”acc”), ((C5 ,C8), ”rej”)}

To derive the data flow graph, we used the knowledge from the labeled message flows of the
BPD. These correspond to the interaction edges of the interaction graph that will be discussed
later on. We can prove the consistency between the data flow and the process graph of the
example:

Proof 7.1 (Consistency of the Data Flow and Process Graph of the Customer) Direct
proof. To show the consistency between the data flow graph DC from example 7.3 and the
process graph PC from example 7.1, we have to show the fulfillment of the requirement given
in equation 7.1. Since DC contains four data flow edges, we have to consider four cases for
∀(a, b) ∈ E of D:

CHAPTER 7. UNIFICATION 153

• Case 1: a = C1 , b = C2 : c = C1 ∈ N of P, d = C2 ∈ N of P . Since a = c, b = d,
and 〈C1 ,C2 〉 is a path found in P , the first case holds.

• Case 2: a = C3 , b = C5 : c = C3 ∈ N of P, d = C5 ∈ N of P . Since a = c, b = d,
and 〈C3 ,C5 〉 is a path found in P , the second case holds.

• Case 3: a = C5 , b = C7 : c = C5 ∈ N of P, d = C7 ∈ N of P . Since a = c, b = d,
and 〈C5 ,C6 ,C7 〉 is a path found in P , the third case holds.

• Case 4: a = C5 , b = C8 : c = C5 ∈ N of P, d = C8 ∈ N of P . Since a = c, b = d,
and 〈C5 ,C6 ,C8 〉 is a path found in P , the fourth case holds.

Since all cases hold, the consistency between DC and PC has been proved. �

To derive the formal model of the customer based on the process and data flow graph, we
need to extend algorithm 5.1 (Mapping Process Graphs to Agents) to support data flow graphs.
This algorithm also describes how to process data received or produced during an interaction as
given by algorithm 6.1 (Mapping Interaction Graphs to Agents).

Algorithm 7.1 (Mapping Process Graphs with Data Flow to Agents) A process graph
P = (PN , PE , PT , PA) with a corresponding data flow graph D = (DN , DE , DM) is mapped
to a π-calculus agent N as follows:

1. Map the process graph to agents as given by algorithm 5.1 (Mapping Process Graphs to
Agents). Use α-conversion, if required, to ensure that bn(N) ∩ DM (e) = ∅ for each
e ∈ DE .

2. Find the corresponding path ε in P for each data flow edge d of D. Extend the objects of
the names representing pre- and postconditions in each agent corresponding to a node of
ε with the marking of the data flow edge d.

3. For each node n of P with A(n) = (variable, ∗) find the corresponding agent and restrict
the name contained as the value before it. �

We can apply this algorithm to the process and data flow graph of the customer from figure
7.1.

Example 7.4 (Agent Formalization of the Customer) The process graph from example 7.1
(Process Graph of the Customer) and the data flow graph from example 7.3 (Data Flow Graph
of the Customer) are mapped to π-calculus agents according to algorithm 7.1 (Mapping Process
Graphs with Data Flow to Agents). We start by formalizing the process graph, where we omit
recursive definitions since the process graph is acyclic:

C
def
= (νc1 , . . . , c13)

12∏
i=1

Ci .

The node C1 is a start event placed inside a sequence pattern with only a postcondition given
by:

C1
def
= 〈·〉.c1 .0 .

154 On the Application of a Theory for Mobile Systems to Business Process Management

Node C2 is more complex because it represents a data-based exclusive choice according to the
patterns 4.27 (Data-based Routing) and 5.4 (Exclusive Choice). The pattern is implemented by
taking the attributes of A′ into account:

C2
def
= c1 .〈·〉.if v < 1000 then c2 .0 else c3 .0 .

Note that we already optimized the conditions for an if then else statement, since both are mu-
tually exclusive without a gap. The nodes of the type task are given by:

C3
def
= c2 .〈·〉.c4 .0 , C4

def
= c3 .〈·〉.c5 .0 , C5

def
= c4 .〈·〉.c6 .0 ,

C9
def
= c9 .〈·〉.c11 .0 and C10

def
= c10 .〈·〉.c12 .0 .

The nodes C6 , C7 , and C8 represent an event-based gateway matching to pattern 5.17 (Deferred
Choice):

C6
def
= c6 .〈·〉.(acc.c7 .0 + rej .c8 .0) , C7

def
= c7 .〈·〉.c9 .0 and c8 .〈·〉.c10 .0 .

The environment triggers acc and rej are already contained in agent C6 , since otherwise a
deterministic decision would not be possible. The nodes C11 of the type gateway and C12 of
the type end event are implemented by:

C11
def
= c5 .〈·〉.c13 .0 + c11 .〈·〉.c13 .0 + c12 .〈·〉.c13 .0 and C12

def
= c13 .〈·〉.0 .

We can now apply algorithm 7.1 (Mapping Process Graphs with Data Flow to Agents) to the
data flow graph of the Customer. The first step of the algorithm has already been shown by the
mapping of the process graph to agents. In the second step we have to find the corresponding
paths in the process graph to extend the names representing pre- and postconditions. The first
element of the data flow edges set of the data flow graph is (C1 ,C2), hence the agent extension
is straightforward:

C1
def
= νv : number 〈·〉.c1 〈v〉.0 and C2

def
= c1 (v).〈·〉.if v < 1000 then c2 .0 else c3 .0 .

We already applied step three of the algorithm, since the attribute key of the node C1 matches
variable . The path between the nodes C3 and C5 of the data flow edge (C3 ,C5) is again a
single edge, leading to the definition of

C3
def
= c2 .〈·〉.c4 〈ch〉.0 , and C5

def
= c4 (ch).〈·〉.c6 .0

The corresponding paths for the data flow edges (C5 ,C7) and (C5 ,C8) are ε1 = 〈C5 ,C6 ,C7 〉
and ε2 = 〈C5 ,C6 ,C8 〉. The corresponding extensions of the agents for ε1 are given by:

C5
def
= c4 (ch).〈·〉.c6 〈acc〉.0 , C6

def
= c6 (acc).〈·〉.(acc.c7 〈acc〉.0 + rej .c8 .0) ,

and
C7

def
= c7 (acc).〈·〉.c9 .0 ,

CHAPTER 7. UNIFICATION 155

Se
co

nd
 B

an
k Send

Accept

Send
Reject

T1
T3

T4

T5

T6 T7
t2

t3

t4

t5

t6

t7

bank(req,acc,rej) acc rej

Receive
Security

t1
T2

req(security)

Figure 7.2: A second bank for the loan broker interaction.

where acc is technically not required in C7 , since it is already implemented in C6 . However,
we kept it for completeness. The extensions for ε2 conclude the mapping:

C5
def
= c4 (ch).〈·〉.c6 〈acc, rej 〉.0 , C6

def
= c6 (acc, rej).〈·〉.(acc.c7 〈acc〉.0 + rej .c8 〈rej 〉.0) ,

and
C8

def
= c8 (rej).〈·〉.c10 .0 ,

As can be seen from the example, data flow edges with the same sub-path in the process graph
can add additional values as the objects of the names used as pre- and postconditions.

7.1.2 The Bank

The formalization of the bank starts with a mapping of its business process diagram to a process
graph:

Example 7.5 (Process Graph of the Bank) The process graph PB = (N,E, T, A) of the
bank from figure 7.1 is given by:

1. N = {S1 ,S2 ,S3 ,S4 ,S5 ,S6}

2. E = {(S1 ,S2), (S2 ,S3), (S2 ,S4), (S3 ,S5), (S4 ,S5), (S5 ,S6)}

3. T = {(S1 ,MessageStartEvent), (S2 ,XORGateway), (S3 ,Task), (S4 ,Task),
(S5 ,XORGateway), (S6 ,EndEvent)}

4. A = ∅

To make the reasoning later on more interesting, we add another bank with a different interaction
behavior. The difference is established by requiring an additional security right after the first
request. To distinguish both later on, we talk about the bank, or first bank, for the previous given
one and about the second bank for the one introduced below.

Example 7.6 (Process Graph of the Second Bank) The process graph PB2 = (N,E, T, A)
of the Second Bank from figure 7.2 is given by:

1. N = {T1 ,T2 ,T3 ,T4 ,T5 ,T6 ,T7}

156 On the Application of a Theory for Mobile Systems to Business Process Management

2. E = {(T1 ,T2), (T2 ,T3), (T3 ,T4), (T3 ,T5), (T4 ,T6), (T5 ,T6), (T6 ,T7)}

3. T = {(T1 ,MessageStartEvent), (T2 ,Task)(T3 ,XORGateway), (T4 ,Task),
(T5 ,Task), (T6 ,XORGateway), (T7 ,EndEvent)}

4. A = ∅

Since the processes of the banks are abstract, we do not know how their internal routing deci-
sion is calculated. Hence, we cannot provide a data-based gateway and have to assume a non-
deterministic choice to cover all cases. Nevertheless, we can still provide the data flow graphs
according to example 7.2 (Partly Mapping of a BPD to a Data Flow Graph) for the message
flows of the BPD.

Example 7.7 (Data Flow Graph of the First Bank) The data flow graph DB = (N,E, M)
of the bank from figure 7.1 is given by:

1. N = {S1 ,S3 ,S4}

2. E = {(S1 ,S3), (S1 ,S4)}

3. M = {((S1 ,S3), ”acc”), ((S1 ,S4), ”rej”)}

The data flow graph for the process graph from the second bank is given accordingly, since we
do not know where the security influences the decision making:

Example 7.8 (Data Flow Graph of the Second Bank) The data flow graph DB2 = (N,E, M)
of the second bank from figure 7.2 is given by:

1. N = {T1 ,T4 ,T5}

2. E = {(T1 ,T4), (T1 ,T5), (T1 ,T2)}

3. M = {((T1 ,T4), ”acc”), ((T1 ,T5), ”rej”), ((T1 ,T2), ”req”)}

We can prove the consistency of the data flow and process graph of the First Bank:

Proof 7.2 (Consistency of the Data Flow and Process Graph of the First Bank) Direct
proof. To show the consistency between the data flow graph DB from example 7.7 and the
process graph PB from example 7.5, we have to show the fulfillment of the requirements given
in equation 7.1. Since DB contains two data flow edges, we have to consider two cases for
∀(a, b) ∈ E of DB :

• Case 1: a = S1 , b = S3 : c = S1 ∈ N of PD , d = S3 ∈ N of PD . Since a = c, b = d,
and 〈S1 ,S2 ,S3 〉 is a path found in PB , the first case holds.

• Case 2: a = S1 , b = S4 : c = S1 ∈ N of PD , d = S4 ∈ N of PD . Since a = c, b = d,
and 〈S1 ,S2 ,S4 〉 is a path found in PB , the second case holds.

CHAPTER 7. UNIFICATION 157

Since all cases hold, the consistency between DB and PD has been proved. �

We omit the proof for the second bank and continue with the agent formalization of the
banks.

Example 7.9 (Agent Formalization of the First Bank) The process graph from example 7.5
(Process Graph of the Bank) and the data flow graph from example 7.7 (Data Flow Graph of
the First Bank) are mapped to π-calculus agents according to algorithm 7.1 (Mapping Process
Graphs with Data Flow to Agents). We start by formalizing the process graph, where we omit
recursive definitions since the process graph is acyclic:

S
def
= (νs1 , . . . , s6)

6∏
i=1

Si .

The nodes S1 , S3 , S4 , and S6 are placed inside sequence patterns:

S1
def
= 〈·〉.s1 .0 , S3

def
= s2 .〈·〉.s4 .0 , S4

def
= s3 .〈·〉.s5 .0 and S6

def
= s6 .〈·〉.0 .

Node S2 represents an exclusive choice according to pattern 5.4 (Exclusive Choice) and S5
represents a merge according to pattern 5.5 (Simple Merge):

S2
def
= s1 .〈·〉.(s2 .0 + s3 .0) and S5

def
= s4 .〈·〉.s6 .0 + s5 .〈·〉.s6 .0 .

The enhancements for data flow touch the agents S1 , S2 , S3 , and S4 :

S1
def
= 〈·〉.s1 〈acc, rej 〉.0 , S2

def
= s1 (acc, rej).〈·〉.(s2 〈acc〉.0 + s3 〈rej 〉.0) ,

S3
def
= s2 (acc).〈·〉.s4 .0 and S4

def
= s3 (rej).〈·〉.s5 .0 .

Example 7.10 (Agent Formalization of the Second Bank) The process graph from example
7.6 (Process Graph of the Second Bank) and the data flow graph from example 7.8 (Data Flow
Graph of the Second Bank) are mapped to π-calculus agents according to algorithm 7.1 (Map-
ping Process Graphs with Data Flow to Agents). We start by formalizing the process graph,
where we omit recursive definitions since the process graph is acyclic:

T
def
= (νt1 , . . . , t7)

7∏
i=1

Ti .

The nodes T1 , T2 , T4 , T5 , and T7 are placed inside sequence patterns:

T1
def
= 〈·〉.t1 .0 , T2

def
= t1 .〈·〉.t2 .0 , T4

def
= t3 .〈·〉.t5 .0 , T5

def
= t4 .〈·〉.t6 .0

and T7
def
= t7 .〈·〉.0 .

158 On the Application of a Theory for Mobile Systems to Business Process Management

Node T3 represents an exclusive choice according to pattern 5.4 (Exclusive Choice) and T6
represents a merge according to pattern 5.5 (Simple Merge):

T3
def
= t2 .〈·〉.(t3 .0 + t4 .0) and T6

def
= t5 .〈·〉.t7 .0 + t6 .〈·〉.t7 .0 .

The enhancements for data flow touch the agents T1 , T2 , T3 , and T4 , and T5 :

T1
def
= 〈·〉.t1 〈acc, rej , req〉.0 , T2

def
= t1 (acc, rej , req).〈·〉.t2 〈acc, rej 〉 ,

T3
def
= t2 (acc, rej).〈·〉.(t3 〈acc〉.0 + t4 〈rej 〉.0) , T4

def
= t3 (acc).〈·〉.t5 .0 and

T5
def
= t4 (rej).〈·〉.t6 .0 .

7.1.3 The Broker

We start again by showing how the broker’s business process is mapped to a process graph.

Example 7.11 (Process Graph of the Loan Broker) The process graph PLB = (N,E, T, A)
of the loan broker from figure 7.1 is given by:

1. N = {B1 ,B2 ,B3}

2. E = {(B1 ,B2), (B2 ,B3)}

3. T = {(B1 ,MessageStartEvent), (B2 ,Task), (S3 ,MessageEndEvent)}

4. A = ∅

Example 7.12 (Data Flow Graph of the Loan Broker) The data flow graph DLB =
(N,E, M) of the loan broker from figure 7.1 is given by:

1. N = {B1 ,B2 ,B3}

2. E = {(B1 ,B3)}

3. M = {((B1 ,B3), ”ch”)}

We omit the proof of the consistency of the data flow and process graph for the loan broker and
continue with the agent formalization:

Example 7.13 (Agent Formalization of the Loan Broker) The process graph from example
7.11 (Process Graph of the Loan Broker) and the data flow graph from example 7.12 (Data Flow
Graph of the Loan Broker) are mapped to π-calculus agents according to algorithm 7.1 (Mapping
Process Graphs with Data Flow to Agents). We start by formalizing the process graph, where
we omit recursive definitions since the process graph is acyclic:

B
def
= (νb1 , b2)

3∏
i=1

Bi .

CHAPTER 7. UNIFICATION 159

All three nodes of the process graph are placed inside sequence patterns:

B1
def
= 〈·〉.b1 .0 , B2

def
= b1 .〈·〉.b2 .0 and B3

def
= b2 .〈·〉.0 .

The enhancements for data flow are given by:

B1
def
= 〈·〉.b1 〈ch〉.0 , B2

def
= b1 (ch).〈·〉.b2 〈ch〉.0 and B3

def
= b2 (ch).〈·〉.0 .

7.1.4 The Loan Broker Interaction

After having defined the process graphs and corresponding agents of the different participants
of the example, we can specify the complete interaction. We start by deriving the interaction
graph:

Example 7.14 (Interaction Graph of the Loan Broker Interaction) The interaction graph
IG = (PS , C, L) of the example shown in figure 7.1 is given according to example 6.1 (Partly
Mapping of a BPD to an Interaction Graph) by:

• PS = {PC ,PB ,PLB}

• C = {(C3 ,B1), (B3 ,C5), (C5 ,S1), (S3 ,C7), (S4 ,C8)}

• L = {((C3 ,B1), broker(ch)), ((B3 ,C5), ch(bank)), ((C5 ,S1), bank(req , acc, rej)),
((S3 ,C7), acc), ((S4 ,C8), rej)}

We furthermore need to distinguish a subset of the interaction graph given by the service
graph of the customer:

Example 7.15 (Service Graph of the Customer) The service graph SG = (PS , C, L) of the
customer from figure 7.1 is given by:

• PS = PC

• C = {(C3 ,⊥), (⊥,C5), (⊥,S1), (S3 ,⊥), (S4 ,⊥)}

• L = {((C3 ,⊥), broker(ch)), ((B3 ,⊥), ch(bank)), ((⊥,S1), bank(req , acc, rej)),
((S3 ,⊥), acc), ((S4 ,⊥), rej)}

The interaction graph is used to modify the agent representations of the customer, the first
bank, and the loan broker according to their interaction schemas. The service graph is used for
reasoning later on.

Example 7.16 (Agent Formalization of the Loan Broker Interaction) The interaction graph
from example 7.14 (Interaction Graph of the Loan Broker Interaction) is mapped to π-calculus
agents according to algorithm 6.1 (Mapping Interaction Graphs to Agents). For the first step
(mapping the process graphs contained in PS), we revert to the examples 7.4 (Agents of the
Customer), 7.9 (Agents of the First Bank), and 7.13 (Agents of the Loan Broker).

160 On the Application of a Theory for Mobile Systems to Business Process Management

In the second step, we iterate over all nodes of all process graphs from IG that are the target
of an interaction edge. The π-calculus representation of these nodes is modified as follows:

B1
def
= broker(ch).〈·〉.b1 〈ch〉.0 , C5

def
= c4 (ch).ch(bank).〈·〉.c6 〈acc, rej 〉.0 and

S1
def
= bank(req , acc, rej).〈·〉.s1 〈acc, rej 〉.0 .

Note that the deferred choice construct of the customer needs a specific processing, since the in-
coming interaction flows are technically already required at C6 instead of C7 and C8 (see pat-
tern 5.17). Since no objects are contained in the interaction flow edges (S3 ,C7) and (S4 ,C8),
the mapping of the process graph to agents is already sufficient. The second sub-step (passing
received objects to all further nodes) has already been done with the help of the data flow graphs.

In the third step, we iterate over all nodes of all process graphs from IG that are the source
of an interaction edge. The π-calculus representation of these nodes is modified as follows:

C3
def
= νch c2 .〈·〉.broker〈ch〉.c4 〈ch〉.0 ,

C5
def
= νreq νacc νrej c4 (ch).ch(bank).〈·〉.bank〈req , acc, rej 〉.c6 〈acc, rej 〉.0 ,

S3
def
= s2 (acc).〈·〉.acc.s4 .0 and S4

def
= s3 (rej).〈·〉.rej .s5 .0 .

The global agent I that represents the interaction graph IG of the example is given by:

I
def
= νbroker (C | S | B) .

We restricted the name broker inside the interaction, because it is the only channel already
known at design time. The binding between the banks and the loan broker is discussed later on.

Up to now, we have only considered the concepts introduced in chapter 6 (Interactions)
regarding the interaction between customer, first bank, and loan broker. Regarding practical
feasibility, one concept left out so far is the replication of process graphs acting as services. The
provided formalizations only allow one time evolution and cannot process requests at the same
time. This limitation can be overcome by modifying the agent representation of a process graph
with data flow and interaction edges to a service agent:

Algorithm 7.2 (Deriving Service Agents) A π-calculus mapping D of a process graph and
data flow graph according to algorithm 7.1 (Mapping Process Graphs with Data Flow to Agents),
contained inside a mapping of an interaction graph to agents according to algorithm 6.1 (Map-
ping Interaction Graphs to Agents) is enhanced to provide (1) multiple executions, and (2) par-
allel processing of different requests as follows:

1. The input prefix of the agent mapping representing the first node of the process graph is
moved before the global agent representing the complete process graph.

2. Sequentially after the moved prefix follows the original definition of the global agent as
well as in parallel a statement of the global agent identifier.

CHAPTER 7. UNIFICATION 161

Add
Bank

Remove
Bank

Lookup
BankAd

va
nc

ed
 L

oa
n

Br
ok

er
broker(ch,req)

[req=add]

[req=rem]

[req=src]

ch(resp)

A1

A2

A3

A4

A5
A6

A7
a1

a2

a3

a4

a5

a6

a7

a8

ch(id) ch(bank)

Figure 7.3: An advanced loan broker.

The algorithm is only applicable to structural sound process graphs contained inside an inter-
action graph, where there exists an incoming interaction edge for the first node of the process
graph. Formally, ∃n ∈ N with N being the set of nodes of all process graphs : type(n) =
MessageStartEvent ∧ ∃e ∈ E of IG : target(e) = n. �

According to this algorithm, the agent formalization of the loan broker can be enhanced to
support multiple executions and parallel processing of requests:

B
def
= broker(ch).(((νb1 , b2)

3∏
i=1

Bi) | B) with B1
def
= 〈·〉.b1 〈ch〉.0 .

The modification of the first bank is given by:

S
def
= bank(req , acc, rej).(((νs1 , . . . , s6)

6∏
i=1

Si) | S) with S1
def
= 〈·〉.s1 〈acc, rej 〉.0 .

The second ban is enhanced accordingly by changing agent T (omitted). The formalization
of the loan broker interaction is concluded by an extension of the loan broker with capabilities
for dynamic registration and de-registration of different banks.

Example 7.17 (Loan Broker Extension—First Variant) The loan broker is extended with
dynamic registrations capabilities as given by figure 7.3. The figure shows that the advanced
loan broker is able to execute three different activities depending on the req value. All activities
work on a banklist data structure that is globally available through all instances of the advanced
loan broker. The Add Bank activity allows the addition of news banks during runtime, whereas
the Remove Bank activity allows the removal of already registered banks. Both activities modify
the banklist data structure, whereas the Lookup Bank activity only iterates over the structure.
Since the advanced loan broker touches the functional perspective it cannot be mapped by the
algorithms provided. Instead we provide a manual construction of the matching agents to show
how (1) a broker can be represented formally, and (2) give an example of how the functional
perspective can be represented formally using the π-calculus.

We start by denoting the service agent of the advanced loan broker, where we add a globally
available list according to pattern 4.6 (Business Process Management System Data). Instead of

162 On the Application of a Theory for Mobile Systems to Business Process Management

a BPMS we use the service agent as environment.

AB(add , rem, src, ok)
def
= list(ladd , lrem , lit).AB1

and

AB1
def
= broker(ch, req).(((νa1 , . . . , a8)

7∏
i=1

Ai) | AB1) .

The parameters app, rem , and src of AB provide constants used for routing the control flow
inside the process based on req . Ok is used to commit the removal of a bank. The agent A1
starts the processing of a new request:

A1
def
= 〈·〉.a1 〈ch, req〉.0 ,

and A2 routes it corresponding to the value of req :

A2
def
= a1 (ch, req).〈·〉.

([req = add]a2 〈ch〉.0 + [req = rem]a3 〈ch〉.0 + [req = src]a4 〈ch〉.0) .

The agent A3 is capable of dynamically register new banks, where the id inside the list is
forwarded as a reference used for removing the registered bank later on:

A3
def
= νr a2 (ch).ch(bank).ladd 〈bank , r〉.r(id).〈·〉.a5 〈ch, id〉.0 .

Note that the formalization as given allows the same bank to register multiple times. A bank is
removed from the list in agent A4 by using the id returned after registration:

A4
def
= a3 (ch).ch(id).lrem〈id〉.〈·〉.a6 〈ch, ok〉.0

The search operation is contained inside agent A5 , that non-deterministically returns a bank
from the list. If currently no bank is available, the operation is blocked until a bank registers:

A5
def
= a4 (ch).lit(i, e).i(id , value).A51 (value)

with

A51 (value)
def
= i(id ,nextvalue).(A51 (nextvalue) + A51 (value)) + e.〈·〉.a7 〈ch, value〉.0 .

The sequence flows are joined in agent A6 :

A6
def
= a5 (resp, ch).〈·〉.a8 〈resp, ch〉.0 + a6 (resp, ch).〈·〉.a8 〈resp, ch〉.0+

a7 (resp, ch).〈·〉.a8 〈resp, ch〉.0 .

Finally, agent A7 returns the result:

A7
def
= a8 (resp, ch).〈·〉.ch〈resp〉.0 .

CHAPTER 7. UNIFICATION 163

C

BB

SS

broker_add

C

BB'

SS'
ch

ch

C

BB1

S
b

b

broker

Figure 7.4: Initialization (first bank registers at the loan broker).

The formalization of the advanced loan broker can be extended further. However, we omit
the discussion since the main concepts should have become clear by now. Instead, we provide a
second variant of the loan broker extension that is not mapped from a process graph but instead
direct encoded in π-calculus expressions. Due to the simplification, we are able to drop lists and
provide a representation applicable for reasoning.

Example 7.18 (Loan Broker Extension—Second Variant) The second variant of the Loan
Broker supports dynamic registration capabilities via a name broker add . At any time, a non-
deterministic selection of a registered bank can be received from the loan broker via a name
broker . Banks can remove their registration from the loan broker by interacting via a restricted
name they receive after the interaction via broker add . The second variant of the loan broker is
given by:

BB
def
= broker add(name, ch).((νrem ch〈rem〉.BB1) | BB)

with
BB1

def
= broker(ch).(ch〈name〉.0 | BB1) + rem.0 .

In contrast to the derived agents of the first example, the second solution has a lower computa-
tional effort.

Before continuing with simulation in the next chapter, we provide the first and the second
bank with a capability to register themselves at the second variant of the loan broker:

SS
def
= νb νch broker add〈b, ch〉.ch(rem).S .

TT
def
= νb νch broker add〈b, ch〉.ch(rem).T .

7.2 Simulation

In this subsection, we show excerpts of how the formalized system of the loan broker interaction
can be simulated in a graphical manner using flow graphs. Therefore we assume all functional
abstractions of the agent definitions to be filled with τ to abstract from the functional perspective
of the different nodes that they represent. The initial state of the system is given by

I
def
= νbroker νbroker add (BB | SS | C)

164 On the Application of a Theory for Mobile Systems to Business Process Management

C1 C2

C3

C4

C5 C6

C7

C8

C9

C10
 C11

C12
c1 c1

c2

c2 c4 c4 c6 c6
c7

c7

c8

c8

c9

c10

c9

c10

c11

c11
c12 c12

c5

c5
c13 c13

c3

c3

C2'

C3

C4

C5 C6

C7

C8

C9

C10
 C11

C12c2

c2 c4 c4 c6 c6
c7

c7

c8

c8

c9

c10

c9

c10

c11

c11
c12 c12

c5

c5
c13 c13

c3

c3

C3'

C4

C5 C6

C7

C8

C9

C10
 C11

C12

c4 c4 c6 c6
c7

c7

c8

c8

c9

c10

c9

c10

c11

c11
c12 c12

c5

c5
c13 c13

c3

Figure 7.5: Evolution of the customer.

and depicted at the left hand side of figure 7.4. The system evolves as represented in the center
of the figure by an interaction between SS and BB via broker add . In this step, the first bank
registers itself at the loan broker:

I
τ−→ I ′ = νbroker νbroker add (BB ′ | SS ′ | C) .

The components evolve to

BB ′ = (νrem ch〈rem〉.BB1) | BB and SS ′ def
= νbank νch ch(rem).S ,

where we omit BB in the flow graph. Afterwards, an interaction between BB ′ and SS ′ takes
place, where a restricted name rem is transmitted from BB ′ to SS ′ via ch . The name rem can
be used by the first bank to remove its registration from the loan broker. However, this is not
required for this simulation. The next state of the system is shown at the right hand side of figure
7.4. Since all agents contained have been given beforehand, we omit their duplicate definitions.

The first evolutions of the customer agents are shown in figure 7.5. We assume to make
a purchase above the threshold limit, such that agent C2 decides to emit the name c2 used to

CHAPTER 7. UNIFICATION 165

C'

BB1

S
b

b

broker

C''

BB1'

S
b

bch

ch
C'''

BB1

S

b

b b

Figure 7.6: Discovery and dynamic binding in the example.

trigger agent C3 . This agent corresponds to the Find Bank activity of the customer. In this
activity, the loan broker is asked for an available bank. The agent C3 ′ is given by:

C3 ′ = νch broker〈ch〉.c4 〈ch〉.0 .

Right now, an interaction between the customer, given by C ′ and the loan broker given by
BB1 is possible. C ′ is given by the evolved state of C:

C ′ = (νc3 , . . . , c13)((
12∏
i=4

Ci) | C3 ′) .

In this interaction, the customer acquires the link to a bank that is currently registered at the loan
broker. This evolution is depicted at the left hand side of figure 7.6. The evolved agents BB1 ′

and C ′′ are given by

BB1 ′ = ch〈name〉.0 | BB1 and C ′′ = (νc3 , c5 , . . . , c13)((
12∏
i=6

Ci) | C4 | C5 ′) ,

with
C5 ′ = νreq , acc, rej ch(b).τ.b〈req , acc, rej 〉.c6 〈acc, rej 〉.0 .

We α-converted the name bank from the original definition of C5 to b for a shorter represen-
tation in the figure. In the evolution shown at the right hand side of figure 7.6, the dynamic
binding between the customer and the bank received from the loan broker takes places via ch .

Since BB1 ′ evolves with
ch〈name〉−→ to BB1 again, only the evolved structure of C ′′′ has to be

considered:

C ′′ ch(b)−→ C ′′′ = (νc3 , c5 , . . . , c13)((
12∏
i=6

Ci) | C4 | C5 ′′) ,

with
C5 ′′ = νreq νacc νrej τ.b〈req , acc, rej 〉.c6 〈acc, rej 〉.0 .

The evolution of the interactions between the customer and the first bank is shown in figure
7.7. We added rectangles to the flow graphs for denoting the participants where the agent defini-
tions belong to. In the upper part of the figure, an interaction between the customer and the first
bank is possible. In this interaction three restricted names req , acc, and rej are transmitted via
b. The system evolves in several steps to the flow graph shown in the lower part of the figure. As

166 On the Application of a Theory for Mobile Systems to Business Process Management

Bank

Customer

C4

C5'' C6

C7

C8

C9

C10
 C11

C12

c6 c6
c7

c7

c8

c8

c9

c10

c9

c10

c11

c11
c12 c12

c5

c5
c13 c13

c3

S1 S2

S3

S4

S5 S6s1 s1
s2

s2

s3

s3

s4

s4

s5

s5
s6 s6

b

b

Bank

Customer

C4

C6'

C7

C8

C9

C10
 C11

C12

c7
c7

c8

c8

c9

c10

c9

c10

c11

c11
c12 c12

c5

c5
c13 c13

c3

S3'

S4

S5 S6

s3

s4

s4

s5

s5
s6 s6

acc

acc

Figure 7.7: Interaction between customer and first bank.

can be conducted, the exclusive choice in agent S2 of the first bank has been resolved in favor
of accepting the loan request. Hence, agent S3 ′ of the first bank can interact via acc with agent
C6 ′ of the customer:

S3 ′ = acc.s4 .0 and C6 ′ = acc.c7 〈acc〉.0 + rej .c8 〈rej 〉.0 .

The remaining components belonging to S and C of the system I are depicted in figure
7.8. As can bee seen, while no further actions are possible, agents are remaining. These agents
can never be evolved, since the names used as their preconditions are restricted inside either
the remainder of S or C. However, inside I another recursive copy of SS can register itself at
BB as a new representation of the first bank. Since no more agents representing a customer are
available, this case is out of scope for the simulation.

CHAPTER 7. UNIFICATION 167

Bank

Customer

C4

C8 C10
c8 c10 c10 c12

c5c3

S4s3 s5

Figure 7.8: Final System of the first bank and the customer.

7.3 Reasoning

In this section, properties of the formal representation of the loan broker interaction are investi-
gated. In particular, we investigate lazy soundness for the process graph of the customer, extend
it to interaction soundness with a given set of banks, and finally evaluate if the two different
banks given are interaction equivalent.

7.3.1 Lazy Soundness of the Customer

The first property that we investigate is lazy soundness (definition 5.10) for the customer. Lazy
Soundness states that a structural sound process graph is deadlock and livelock free as long
as the final node has not been executed. Once the final node has been executed for the first
time, other nodes might still be executed, however the final node is not executed again. Since
lazy soundness is given for structural sound process graphs, we first have to show the structural
soundness of the customer’s process graph.

Proof 7.3 (Structural Soundness of the Customer’s Process Graph) Direct proof. According
to definition 5.9 (Structural Sound) we have to show three properties for the process graph PC =
(N,E, T, A) from example 7.1 (Process Graph of the Customer):

• C1 is the only initial node, since pre(C1) = ∅ ∧ ∀n ∈ N\{C1} : pre(n) 6= ∅ holds.

• C12 is the only final node, since post(C12) = ∅ ∧ ∀n ∈ N\{C12} : post(n) 6= ∅ holds.

• Every node is on a path from C1 to C12 . We give three paths from PC that cover all
nodes betwen C1 and C12 :

1. 〈C1 ,C2 ,C3 ,C5 ,C6 ,C7 ,C9 ,C11 ,C12 〉,
2. 〈C1 ,C2 ,C3 ,C5 ,C6 ,C8 ,C10 ,C11 ,C12 〉, and

3. 〈C1 ,C2 ,C4 ,C11 ,C12 〉.

Since all three properties are fulfilled, the process graph of the customer is structural sound. �

To prove the structural sound process graph of the customer to be lazy sound, we first have
to annotate the π-calculus mapping C and thereafter show that it is weak ground bisimilar to

168 On the Application of a Theory for Mobile Systems to Business Process Management

SLAZY . The annotation of C is done according to algorithm 5.3 (Lazy Soundness Annotated π-
calculus Mapping). The functional abstractions of the agent definitions C2 , . . . ,C11 are filled
with τ , while C1 and C12 are given by:

C1
def
= i.τ.c1 .0 and C12

def
= c13 .τ.o.0 .

Furthermore, we need to abstract from data-based exclusive choices (see pattern 5.4) and envi-
ronmental triggered deferred choices (see pattern 5.17) to simplify the reasoning. Using these
abstractions, the formalization of the process graph is sufficient to prove lazy soundness. We do
not require the formalization of the data flow graph. The abstractions require a modification of
the agents C2 and C6 defined inside C:

C2
def
= c1 .τ.(c2 .0 + c3 .0) and C6

def
= c6 .τ.(c7 .0 + c8 .0) . (7.2)

Proof 7.4 (Lazy Soundness of the Customer’s Process Graph) Using weak ground bisimu-
lation equivalence. According to definition 5.10 (Lazy Sound Process Graph), the process graph
PC of the customer is lazy sound if for the lazy soundness annotated π-calculus mapping C of
PC it holds that C ≈ SLAZY . Since C ≈ SLAZY holds, the process graph of the customer is
lazy sound. �

A tool supported proof of C ≈ SLAZY is given in appendix A.3.1.

7.3.2 Interaction Soundness of the Customer

After having shown lazy soundness for the process graph of the customer, we now extend the
reasoning to include the interactions of the customer. By proving interaction soundness, we
can show that all given services that can be used by the customer will not lead to deadlock
situations. Due to performance reasons, we use the second variant of the loan broker as given by
example 7.18 (Loan Broker Extension - Second Variant). Furthermore, we need to include the
environmental triggered deferred choice found in agent C6 that has been removed for the lazy
soundness proof as well as a mapping of the customer’s data flow graph. Due to performance
reasons, we still abstract from the data-based exclusive choice found in agent C2 .

In a first investigation, we place banks of the first variant as given by example 7.5 (Process
Graph of the Bank) together with the loan broker and the customer. The initial state of the system
corresponds with I from section 7.2 (Simulation), with the exception of annotating C1 and C12
according to interaction soundness (algorithm 6.2) as shown below:

I1
def
= νbroker νbroker add (BB | SS | C)

with
C1

def
= i.τ.c1 .0 and C12

def
= c13 .τ.o.0 .

Further modifications have to be made according the removal of the data-based choice in agent
C2 . The complete set of agent definitions is shown in appendix A.3.2. I1 is composed out of
two different parts, a service graph mapped to agents and an environment agent. The former is

CHAPTER 7. UNIFICATION 169

given by the component C of I1 , while the latter is given by the components BB and SS of I1 .
Both can be unified as shown ((BB | SS)] C).

Proof 7.5 (Unification of the Customer’s π-calculus Mapping with an Environment Agent)
Direct proof. According to definition 6.6 (Environment Agent), the π-calculus mapping of the
customer given by C has to have at least one common free name with the environment agent
given by BB | SS . Since broker add ∈ fn(C) ∩ fn(BB | SS), the unification is possible. �.

After having shown that the customer has the possibility to interact with the environment
given by the loan broker and the first bank with at least one static interaction edge, we can prove
the interaction soundness of the customer:

Proof 7.6 (Interaction Soundness of the Customer with an Environment containing the
First Bank) Using weak ground bisimulation equivalence. According to definition 6.7 (Inter-
action Sound Service Graph), the service graph of the customer represented inside I1 is inter-
action sound if I1 ≈ SLAZY . Since I1 ≈ SLAZY holds, the service graph of the customer is
interaction sound regarding the environment contained inside I1 . �

The second investigation shows if the service graph of the customer is still interaction sound
even if an instance of the second bank is contained in the environment. The interaction soundness
annotated system I2 is given y:

I2
def
= νbroker νbroker add (BB | SS | TT | C)

with
C1

def
= i.τ.c1 .0 and C12

def
= c13 .τ.o.0 .

The complete set of agent definitions is shown in appendix A.3.2. In contrast to the last proof,
the π-calculus mapping of the service graph of the customer unified with an environment agent
E containing the first and the second bank is not interaction sound (we omit the proof for the
unification):

Proof 7.7 (Disrupted Interaction Soundness of the Customer with an Environment con-
taining the First and the Second Bank) Using weak ground bisimulation equivalence. Ac-
cording to definition 6.7 (Interaction Sound Service Graph), the service graph of the customer
represented inside I2 is interaction sound if I2 ≈ SLAZY . Since I2 6≈ SLAZY , the service
graph of the customer is not interaction sound regarding the environment contained inside I2 .

�

Tool supported proofs of I1 ≈ SLAZY and I2 6≈ SLAZY are given in appendix A.3.2.

7.3.3 Interaction Equivalence of the Banks

As a final investigation, we analyze if the first bank and the second bank are interaction equiva-
lent. If both are interaction equivalent, they can be exchanged by each other, so that any service
using them is not aware of any differences. The agent formalization of the first bank is given by
S, whereas the agent formalization of the second bank is given by T , according to examples 7.9

170 On the Application of a Theory for Mobile Systems to Business Process Management

and 7.10.

Proof 7.8 (Interaction Equivalence of the First and the Second Bank) Using weak open
d-bisimulation. According to definition 6.8 (Interaction Equivalence), the environment agents
S and T representing the first bank and the second bank are interaction equivalent if S ≈D

O T .
Since S 6≈D

O T , the agents are not interaction equivalent and hence the banks they represent have
a different interaction behavior. �

A tool supported proof is given in appendix A.3.3.

7.3.4 Conclusion

The different kinds of reasoning applied to the loan broker interaction showed the expected
results. However, even in this comparatively small example several errors have been made
during the preparation. Fortunately, most of them have been detected with the help of existing
tools as described in chapter A. Hence, even if we think the formalization is correct, automated
reasoning on different properties helps in making sure that the process and interaction models
are indeed formally correct. For larger processes and interactions, this is even more important.

Regarding the example investigated, it has been shown that the process graph of the customer
is deadlock and livelock free (as long as the final node has not been reached). Since no cycles or
critical patterns (Discriminator, N-out-of-M-Join, Multiple Instances without Synchronization)
are contained, this even holds without the condition stated in brackets. Indeed, the process
graph of the customer fulfills weak and relaxed soundness (proofs omitted). By having formally
proved these properties, we can be sure that each instance of the customer’s process graph will
terminate.

Since the customer is not isolated, we also investigated its interaction soundness regarding
two different environments. While the customer’s service graph can be executed without dead-
locks in the first environment where only the first bank is contained, we should avoid enabling it
without modifications in the second environment. If the loan broker returns a link to the second
bank, the process of the customer deadlocks, since the interaction behavior does not match.

As can already be conducted from the investigation on interaction soundness, the different
banks cannot replace each other. This holds for a certain customer, as has been shown using
interaction soundness, as well as in the general case, as has been shown using interaction equiv-
alence. The banks are not even able to simulate their interactions in one direction (proof omit-
ted). If we want to integrate a bank that requires a security and is at least interaction simulation
compliant to the first bank, we have to find another solution.

Chapter 8

Discussion

This chapter discusses the results that have been presented in the previous part. It starts by
re-examining the trends sketched as the shifting focus, continues with gathering restrictions on
using the π-calculus for BPM, and concludes with a classification of related work.

8.1 Revisiting the Shifting Focus

In this section we explain how the shifting focus from WfM to BPM is supported by the results
of this thesis. The discussion is split into three parts, reflecting the shifting requirements as
introduced in section 1.1.

8.1.1 Dynamic Binding

As has been shown in chapter 6 (Interactions), the π-calculus is able to directly express the
concept of dynamic binding by its link passing mobility capability. Hence, it fulfills the first
requirement. The investigations led to interaction and service graphs (see definitions 6.1 and
6.3). The added value in contrast to existing approaches is given by the interaction flow labels
(see definition 6.2). Due to the labeling of interaction edges, derived from π-calculus names, the
dynamic passing of interaction channels can be described. Consider for instance a service graph
SGReq = (PS , C, L) according to figure 8.1 with the following components:

1. PS = {N1 , . . . ,N5},

2. C = {(N2 ,⊥), (⊥,N3), (N4 ,⊥)}, and

3. L = {((N2 ,⊥),find(ch)), ((⊥,N3), ch(resp)), ((N4 ,⊥), resp(req))} .

Node N2 is the source of an interaction edge with the label find(ch). The data of the label
is given by ch , which is used in node N3 as a response channel. The name ch has been used
to correlate the request sent in N2 with the response received in N3 . According to figure 3.9
(The service-oriented architecture), these two interactions correspond to the find arrow between
a service requestor and a service provider. The dynamic binding is established by the interaction
edge originating from node N4 . Its label contains the name resp received in node N3 that is

171

172 On the Application of a Theory for Mobile Systems to Business Process Management

N2 N3 N4

find(ch) ch(resp) resp(req)

N1 N5

Figure 8.1: A business process with dynamic binding.

used to establish a connection to a service provider. The mapping of interaction and service
graphs to π-calculus agents is further on described in algorithm 6.1.

Since restrictions on interaction and service graphs require that each node of the contained
process graphs should have at most one interaction edge (with the exception of service nodes),
complex interactions can only be modeled by providing a complex process graph structure.
These restrictions are necessary, because otherwise a redundant definition of process behavior
inside nodes had to be given. We introduced interpretations of the service interaction patterns in
an extended BPMN notation to represent complex interactions. Due to the informal description
of the service interaction patterns, only a reduced subset based on implicit assumptions has
been investigated. Beside the practical value of having patterns for graphically modeling service
interactions, the descriptions given cannot be exhaustive—due to the informal description of the
patterns—and thus might not be applicable in all cases.

Furthermore, we introduced reasoning on systems of services connected using dynamic
binding. The property developed is interaction soundness (definition 6.7), which defines when
a service graph interacting with a given set of services inside an environment is deadlock free
under consideration of all possible bindings. Formally, link passing mobility is only required
inside the investigated system made up of the π-calculus mapping of a service graph and an
environment agent. The formal representation has the advantage of being compact, since only
required components, but not all possible bindings have to be enumerated.

8.1.2 Composition and Visibility

Composition and visibility of components are given by the π-calculus concepts of parallel com-
position and restricted names, thus fulfilling the second requirement. At any time during the evo-
lution of a system, additional components can be added. If the added components have knowl-
edge about free names of the initial system, they may interact. An initial system can be given
by an agent representing a service broker according to example 7.18. The broker offers two free
names, broker add and broker . Using these names, additional components given by π-calculus
agents can register themselves as services or request names of registered services. As suggested,
π-calculus components can represent services. According to algorithm 6.1 (Mapping Interaction
Graphs to Agents), all internal dependencies of a service are handled by restricted names. Due
to this, they cannot be disturbed by external events beside the ones especially denoted. By using
restricted names, the visibility of the services can be defined. Both concepts—composition and
visibility—depend on link passing mobility to share knowledge about interaction possibilities
via scope extrusion. Beside the application of concepts provided directly by the π-calculus, we
developed algorithms for describing how the business processes inside services can be modeled,

CHAPTER 8. DISCUSSION 173

encapsulated, and verified.
A key concept required for business processes is the representation of data. Data is used

for internal calculations and decision-making, it describes cases that run through a BPMS, and it
also describes environmental values. Since the π-calculus can encode the λ-calculus, all kinds of
data can be represented. Furthermore, using restricted names, the visibility of data is supported.
In chapter 4 we investigated how basic structures like memory cells, stacks, and queues can be
formally represented. The investigations led to the definition of natural numbers as a lightweight
extension to the π-calculus. We also showed examples of how the data patterns can be formally
represented.

Another key concept is the representation of control flow dependencies between activities.
We introduced process graphs (see definition 5.1) that provide a formal model for the structure
of business processes. A formal semantics is given by applying algorithm 5.1 (Mapping Process
Graphs to Agents). The nodes of a process graph are mapped according to a formalization of
common process patterns given in section 5.2. Due to the construction of the mapping algorithm
and the pattern formalizations, each formalized process graph is encapsulated inside a common
agent denoted as N . Furthermore, N contains no free names and is thus completely encapsulated
from the outside. The business process is enacted by evolving N .

To verify the internal business processes of components representing services, soundness
properties have been investigated. We developed bisimulation-based verification techniques for
process graphs mapped to agents according to weak soundness (definition 3.31) and relaxed
soundness (definition 3.39). If both properties hold for a given process graph, soundness (def-
inition 3.30) is given. However, since the former kinds of soundness are too strong regarding
business processes containing patterns that can leave running (lazy) activities behind, we de-
veloped lazy soundness (definition 5.10). Lazy soundness proves a process graph to be free of
deadlocks and livelocks as long as the final node has not been reached. Thereafter, activities
might remain active but are not permitted to trigger the final node again. Besides supporting
lazy activities, the main advantage of the π-calculus characterization of lazy soundness using
bisimulation is given by its simplicity. Due to this, the efforts for reasoning are lower than for
weak and relaxed soundness, as will be discussed later on.

8.1.3 Change

The requirement of supporting change is fulfilled by different concepts investigated in chapter
6 (Interactions). They are once again based on link passing mobility as well as the prototypical
nature of the π-calculus. First of all, we provided the definition of an environment made up of
agents (definition 6.6) that can be unified with the π-calculus mapping of a service graph. Due
to this, business processes encapsulated as services can be plugged into different environments.
The minimum requirement on a service graph unified with an environment is at least one static
interaction edge between both. This static interaction edge provides an initial communication
channel, where all other interaction edges can be retrieved from using link passing mobility.
The compatibility of a service graph with an environment made up of different services can be
verified using interaction soundness. Two other properties regard the replaceability of (parts of)
environments. Using interaction equivalence and interaction simulation (definition 6.8 and 6.9),

174 On the Application of a Theory for Mobile Systems to Business Process Management

we can formally show that two environments have the same observable behavior. In contrast to
existing approaches, we consider dynamic binding using link passing mobility.

The prototypical nature of the π-calculus has already been discussed in section 5.1.3. In
WfMS, a distinction is made between processes (schemas) and process instances. In a BPMS
implementing a SOA, this distinction is blurred. Most notable, this is due to the distributed na-
ture of service-oriented environments. The business processes inside services can still be divided
into processes and process instances. However, the deployment of new services into already run-
ning systems requires special care. An illustrating example is given by the deployment of a new
service to the Internet. Does this deployment require the re-deployment of the Internet? Since
from a practical viewpoint it does not, a change to a running system (the Internet) is made. By
using the π-calculus, exactly this prototypical approach can be analyzed from a theoretical point
of view.

8.2 Formal Foundations

This section critically discusses the π-calculus as a formal foundation for business process man-
agement by exposing limitations and drawbacks of the investigations regarding the formal the-
ory.

8.2.1 Minimum Bisimulation Equivalence Requirements

We start with discussing the minimum bisimulation requirements for the different kinds of
soundness. Lazy soundness requires at least a weak ground bisimulation equivalence. Even
while the patterns 5.15 (Multiple Instances with a priori Runtime Knowledge) and 5.16 (Multi-
ple Instances without a priori Runtime Knowledge) use link passing mobility, the corresponding
interactions occur inside the system. According to transition rule COMM, these interactions re-
sult in τ -transitions. Since SLAZY contains no objects in its prefixes, a ground bisimulation is
sufficient. Weak soundness and relaxed soundness contain the activity (loop) observation agents
(definition 5.11 and 5.13), which use link passing mobility for acknowledgment. Again, a weak
ground bisimulation equivalence is sufficient, where the same arguments apply as for lazy sound-
ness. Even interaction soundness can be proved using weak ground bisimulation equivalence,
since the link passing mobility, required for dynamic binding, is kept inside the observed sys-
tem. In contrast, interaction equivalence requires a weak open d-bisimulation equivalence, since
it shows the conformance of two environment agents in arbitrary contexts. Hence, a congruence
on agent terms supporting link passing mobility is required.

Instead of using a ground bisimulation, we can also apply open bisimulation for compar-
ing SLAZY , SWEAK , and SRELAXED . Open bisimulation is sufficient because no internal in-
teraction can be provoked inside SLAZY , SWEAK , and SRELAXED by any substitution. The
interesting case is given by equating i and o for the π-calculus mapping of an arbitrary process
graph. Hence, an interaction according to COMM between the agent representing the initial and
the agent representing the final node could be possible. However, this can never occur since all
described algorithms derive the agent terms from a structural sound process graph. According
to structural soundness, the final node has a precondition given by a restricted name before o,

CHAPTER 8. DISCUSSION 175

A B C

Figure 8.2: A defective business process with loops.

that can only be fulfilled after the preceding node has emitted the postcondition given by the
restricted name. If this happens, the free name i has already emitted by the agent representing
the initial node.

8.2.2 Efforts for Bisimulation

An interesting constraint of using bisimulation equivalence for proving formal properties of busi-
ness process and interactions is the practical applicability. From a theoretical point of view, even
ground bisimulation between two π-calculus terms is undecidable due to the halting problem.
The halting problem can be applied, since the π-calculus is Turing complete, as for instance
shown by a mapping to the λ-calculus in [118]. A practical example is already given by pattern
5.16 (Multiple Instances without a priori Runtime Knowledge). In theory this pattern allows
an infinite number of instances to be created. Thus, we can reason an infinite amount of time
on simulating its transitions. Furthermore, applying loop detection algorithms would hardly
succeed, since restricted names and link passing mobility are used for synchronizing the cre-
ated instances. As can be concluded, existing π-calculus reasoners fail on deciding any kind
of soundness for business processes containing this pattern. They also fail on deciding sound-
ness for business processes with interleaved loop structures that reach the final node more than
once in reasonable time (see for instance figure 8.2). This might be due to their restriction on
depth-first search. The evaluated tools are introduced in appendix A.

A more elaborate evaluation of the efforts is given by a measurement of the execution times
for deciding different kinds of soundness. Therefore we applied lazy, weak, and relaxed sound-
ness to different examples given in the appendix of this thesis. Table 8.1 shows the results taken
from the user output of the Unix tool time. An optimization has been made on example A.3.
Since a process containing the synchronizing merge pattern can never be lazy or weak sound,
these measurements have been skipped. Furthermore, weak soundness analysis for example A.1
has been aborted, since it did not finish within a reasonable timeframe. Lazy and weak sound-
ness have been analyzed with two different tools, Another Bisimulation Checker (ABC) and the
Mobility Workbench (MWB); see appendix A for an introduction. Relaxed soundness has only
been measured with ABC since it requires simulation. Currently, only ABC is able to prove
simulation using an undocumented command. Regarding example A.6 (Lazy Soundness of the
Customer’s Process Graph), we replaced the task labeling with letters for a shorter representa-
tion. The task Buy Direct is denoted as A, Find Bank as B, Request Loan as C, Buy as D, and
Reject Purchase as E.

Since all measured examples are lazy sound, the respective times in the corresponding rows
investigate the full state space. Unsound processes might require a smaller subset that contains a

176 On the Application of a Theory for Mobile Systems to Business Process Management

Example A.1 Example A.2 Example A.3 Example A.6Soundness
(8 nodes) (10 nodes) (12 nodes) (12 nodes)

(ABC) 6.066s 0.598s − 1.077sLazy
(MWB) 7.973s 0.360s − 0.397s

(ABC) > 20m (aborted) 13.327s − 8.971sWeak
(MWB) > 20m (aborted) 18.364s − 6.346s

A : 16.547s A : 1.588s A : 3:55.161s A : 2.260s
B : 16.352s B : 2.060s B : 3:11.245s B : 3.025s
C : 16.415s C : 0.976s C : 6:20.794s C : 2.871s

Relaxed (ABC) D : 10.479s D : 1.603s D : 6:03.905s D : 2.232s
E : 1.568s E : 2.234s∑

= 59.793s
∑

= 7.795s
∑

≈ 19m
∑

= 12.622s

Setup: 1.8GHz iMac G5 with 2GB DDR SDRAM, MacOS 10.4.8, ABC.opt v1.0.7, and MWB v4.136.

Table 8.1: Measured efforts for bisimulation based soundness proofs.

counterexample, or have an infinite state space. Nevertheless, due to defective process structures,
the state space can also easily explode as for instance in figure 8.2. The measured times for
deciding lazy soundness can be seen as a baseline for comparing weak and relaxed soundness.
The computation of weak soundness for example A.2 is nearly 22–51 times slower than deciding
lazy soundness. Again, the full state space is investigated since the example is weak sound.
Deciding weak soundness for example A.6, which is also weak sound, is 8–16 times slower.
As can be seen, there is no preference for a certain tool. The measurement of relaxed sound
business processes has been reduced to analyzing nodes of the type Task. The differences of the
examples range between twice as fast as weak soundness (example A.2) up to 31 times as slow
(example A.6). Noteworthy, example A.3, which includes a synchronizing merge pattern, has a
high effort. The measurements only give examples of possible efforts. A further investigation
would require the analysis of a large set of common reference business process models.

To conclude the measurements, we also provide results for interaction soundness, equiva-
lence, and simulation given in table 8.2. Exemplary, we discuss example A.7 in detail. The
example contains a service broker, which is able to dynamically register services at runtime, re-
turn a registered service in a non-deterministic manner, and also allows the removal of registered
services. In the example given, the services can register at any time during the execution of the
system. However, the service broker blocks a find request until a service has been registered.
This way, a service registration is enforced. The results for interaction soundness differentiate
between the tools as shown in the table. If we define the agent I2 to contain three services of
the same type, such as

I2
def
= νbroker νbroker add (BB | SS | SS | SS | C) ,

reasoning on interaction soundness was not possible in reasonable time (< 30m) on the given

CHAPTER 8. DISCUSSION 177

Interaction InteractionInteraction Soundness
Equivalence Simulation

Ex. A.4a Ex. A.4c Ex. A.7 Ex. A.8 Ex. A.5a Ex. A.9 Ex. A.5b

(ABC) 3:39.342s 18.812s 17.289s 1:4.376s 6.599s > 3m 2.130s
(MWB) 19.157s 2.117s 3.205s 26.906s 4.647s 1.446s −
Setup: 1.8GHz iMac G5 with 2GB DDR SDRAM, MacOS 10.4.8, ABC.opt v1.0.7, and MWB v4.136.

Table 8.2: Measured efforts for (bi)-simulation based interaction proofs.

setup. By enforcing all services to register before the agent C could start, as given by

I2
def
= νbroker νbroker add νb1 νb2 νb3 (BB | S(b1) | S(b2) | S(b3) | CC) ,

with

CC
def
= νr broker add〈b1 , r〉.r(c).broker add〈b2 , r〉.r(c).broker add〈b3 , r〉.r(c).C ,

interaction soundness was decided in 59 .458s using MWB. Thus, by limiting the state space
(early registration of services instead of any time registration), reasoning is more applicable.

As has already been shown by the small examples measured, reasoning on soundness and
equivalence on processes and interactions represented by π-calculus agents is costly, often inef-
ficient, and sometimes impossible. Solutions include further abstractions, inclusion of additional
knowledge, or domain specific reasoners. Regarding abstractions, we already abstracted from
data flow for reasoning. While reasoning on formalized business processes that contain data-
based exclusive choices is theoretically possible, the effort is way too high. Other abstractions
reduce for instance the complexity of a process, e.g. by separating it into different complex
activities that can be analyzed independently, map complex patterns to simple ones, e.g. replace
multiple instance patterns by simple activities, or modify the process and interaction structure,
as for instance given by enforcing an early registration of services. Regarding additional knowl-
edge and domain specific reasoners, an optimized reasoner could for instance take the process or
interaction graph into consideration, as well as apply heuristics and breadth-first search. How-
ever, the last techniques can only find counterexamples more efficiently or give a feasibility for
bisimulation equivalence. Regarding the investigated soundness properties, lazy soundness is
most likely to be practically applicable due to its simple representation.

8.2.3 Expressiveness of Bisimulations for Soundness

Another interesting topic is the expressiveness of bisimulation for soundness. While a proven
equivalence clearly states that the process graph fulfills a certain property, a mismatch of the
agent terms is currently only of restricted use. Since bisimulation is a binary criteria, its answer
is either yes or no. While analyzing business processes, however, we are interested in the place
where the error occurs. Existing tools provide a trace of actions that led to a contradiction of

178 On the Application of a Theory for Mobile Systems to Business Process Management

the bisimulation. While these do not provide a solution, they nevertheless give hints where the
problem occurs. Additionally, knowledge of the visited states is required, since non-determinism
can occur, as the simple sequence ϕ = 〈a, b〉 shows:

T
def
= a.(b.T ′ + b.T ′′)

ϕ−→ T ′ or
ϕ−→ T ′′ .

Regarding formalized processes and interaction, this knowledge is also of restricted use, since
interactions inside the system are only denoted as τ .

An exemplary debugging session with an available tool is shown in appendix A.3.4. The
report of a broken bisimulation equivalence contains several issues. First, restricted names are
α-converted. While this is technically correct, it complicates the correlation between the edges
of a process graph and the π-calculus names. Second, all agent identifiers beside recursive
enumerations are lost. Furthermore, no meta information can be attached to an agent, such
as providing a link back to a node of a process graph. Regarding the example shown, it can
be deduced from the last transition o−→ (Which SLAZY can follow, while N cannot), that a
deadlock somewhere in N occurs. Since further possible transitions inside N might have been
executed, the provided trace is just one possibility and not the shortest trace. Indeed, we modified
agent 1138 (representing an AND gateway) to represent an XOR gateway before executing the
bisimulation test. Thus, the problem occurs in the beginning of the process, while the complete
trace consists of nine actions (with seven unobservable ones). Hence, the problem is difficult to
detect. However, all discussed problems can be solved by a domain specific reasoner that also
allows round trip engineering and simulation of process and interaction graphs.

8.2.4 Drawbacks of (Bi)-Simulation for Service Equivalence

Beside the high effort and (reduced) expressiveness of bisimulation for soundness, bisimulation
as well as simulation have also drawbacks as a conformance notion. The definitions of interac-
tion equivalence (definition 6.8) and interaction simulation (definition 6.9) are either too strong
or too weak regarding the conformance of different environments. To focus on the problem, we
use different environment agents that represent placeholders for π-calculus mappings of service
graphs. Consider two environment agents P and P ′ given by:

P
def
= a.(τ.b.0 + τ.c.0) and P ′ def

= a.b.0 .

P represents a specification, whereas P ′ represents an implementation. From the viewpoint
of interaction equivalence, P 6≈D

O P ′, since P has the choice to emit via c that P ′ is unable
to mimic. From the implementation’s viewpoint, P ′ is conforming to P , since the decision of
which part of the summation is chosen should be internal to the implementation. This behavior
can be shown using interaction simulation, where P ′ wD

O P holds. Thus, bisimulation is too
strong regarding the example. A more elaborate example is given in appendix A.2.2.

While simulation solves the problem of the first example, it also relates environments that
cause problem regarding interaction soundness. Consider for instance two environments P and
Q given by:

P
def
= a.(b.0 + c.0) and Q

def
= a.(b.0 + c.0) .

CHAPTER 8. DISCUSSION 179

By annotating another P according to interaction soundness, it can be shown that P] Q is
interaction sound:

νa νb νc (Pi | Q) ≈ SLAZY with Pi
def
= i.a.(b.o.0 + c.o.0) .

Since we consider interaction simulation as a conformance relation, we can give P ′ and Q′ as
implementations of P and Q by:

P ′ def
= a.c.0 wD

O P and Q′ def
= a.b.0 with Q′ wD

O Q .

However, the expected property of interaction soundness is lost for P ′ unified with Q′ :

νa νb νc (P ′
i | Q′) 6≈D

O SLAZY with P ′
i

def
= i.a.c.o.0 .

In a nutshell, while the specifications are interaction sound—and each implementation conforms
to a specification according to interaction simulation—the implementations themselves might
contain deadlock behavior not found in the specification. Thus, bisimulation as well as simula-
tion have only limited applicability in real application domains. A possible solution discarding
dynamic binding has been presented by Baldoni et al. [22].

8.2.5 Drawbacks of the Pi-Calculus Semantics

The π-calculus semantics as given in chapter 2 has two drawbacks regarding the application
of the π-calculus into the domain of business process management. The first drawback is the
unenforceability of a transition, meaning that a transition can occur. A transition can only be
enforced in a distributed system described in the π-calculus by synchronizing all concurrent
components. Consider for instance

S
def
= νa (a.P ′ | a.Q′) | R ,

where the transition τ−→ between the first two components cannot be enforced at a given point
in time (however, by assuming fairness it will occur at some point in time). Instead, arbitrary
transitions that might be contained inside R can be executed first. The only possible solution is
given by a global synchronization, as for instance by a modification

S
def
= νsync (νa (a.sync.P ′ | a.Q′) | sync.R) .

However, global synchronizations contradict the concurrent execution of different activities or
services in the BPM domain. We provide two example where the enforcement of transitions at
a given point in time is required.

Consider for instance pattern 5.17 (Deferred Choice), which per definition should make the
decision inside a node occurring after the pattern. Therefore the succeeding node should cancel
concurrent nodes:

A
def
= 〈·〉.(b.0 | c.0) , B

def
= b.(benv .kill .〈·〉.B′+kill .0) and C

def
= c.(cenv .kill .〈·〉.C ′+kill .0)

180 On the Application of a Theory for Mobile Systems to Business Process Management

inside a system
A | νkill (B | C) .

After a transition benv−→ occurred, the node represented by agent C should be ”killed”, i.e. become
inaction. This behavior can occur if an interaction between the components B and C via kill
occurs. However, sometimes after transition benv−→, but before the interaction between B and
C, another transition cenv−→ might occur, leading to a deadlock. This is the reason why pattern
5.17 (Deferred Choice) could not be directly implemented and hence requires a more complex
processing. A solution to the first problem might be to permit the environment to either signal
exclusively benv or cenv . However, this is difficult with a deferred choice inside a loop (when
should the environment be permitted to emit a name again?) as well as with timers. A timer
is given by an agent running concurrently with the π-calculus mapping of a process graph. A
timer agent abstracts from concrete time but rather states that after activation it is able to signal
a timeout or receive a cancel signal:

TIMER
def
= set timer(timeout , cancel).((τ.timeout .0 + cancel .0) | TIMER) .

The actual timeout is represented by the execution of τ . Again, since τ cannot be enforced at any
point in time, the timer only can work as expected. Possible extensions for time and transactions
have been provided for instance by Laneve and Zavattaro in [82]. Since the extensions are not
lightweight (i.e. can be mapped to the syntax and semantics introduced in chapter 2), we do not
investigate them further.

The second drawback, regarding simulation and execution of process and interaction graphs
mapped to π-calculus agents, is missing garbage collection. Without garbage collection, remain-
ing—but no longer required—agents can flood the memory. An example is given by a process
graph containing pattern 5.4 (Exclusive Choice). A node of the type exclusive choice is always
followed by at least two other nodes of which only one will be executed. The agent that rep-
resents the unchosen node will never be activated if no loop is contained. Another example is
given by the agent STACK (definition 4.3). A stack uses fresh TRIPLE agents each time a
name is pushed on the stack. After each pop operation, the agent structure of the correspond-
ing tuple remains. A structural congruence rule for garbage collection of agents prefixed by
restricted inputs as given by

(SC-INPUT-GARBAGE) νz z.P ≡ 0

is in most cases sufficient. Consider for instance two agents representing a sequence of activities
that have been neglected by a preceding exclusive choice:

A
def
= a.τ.b.0 and B

def
= b.τ.0 inside νa νb (A | B) .

Due to SC-RES-COMP, the term is structural congruent to

νb ((νa A) | B) .

Using SC-INPUT-GARBAGE and SC-COMP-INACT, component A is dropped and the remaining
term is given by

νb B .

CHAPTER 8. DISCUSSION 181

Again, SC-INPUT-GARBAGE can be applied resulting in inaction. As a concluding remark, the
drawbacks of the introduced semantics of the π-calculus can be overcome by using existing
extensions.

8.3 Related Work

This section discusses the contributions of this thesis in contrast to related work.

8.3.1 Data, Process, and Interaction Patterns

In sections 4.3 (Data Patterns), 5.2 (Process Patterns), and 6.2 (Interaction Patterns), we provided
formal representations of data, process, as well as interaction patterns. While the former and the
latter are shown by exemplary applications, the process patterns are described in a generic man-
ner. By using the process pattern formalizations, algorithm 5.1 (Mapping Process Graphs to
Agents) provides a mapping from process graphs to π-calculus agents. Due to the nature of
the patterns—that are only given in natural language—some implicit assumptions have been
made explicit in the formalizations. Consider for instance pattern 5.9 (Discriminator). Accord-
ing to the corresponding documentation [12], a discriminator activates subsequent activities if
one of the incoming branches is completed. Thereafter it waits for all remaining branches and
resets itself. While the pattern formalization captures exactly the textual description, practical
application has led to different variants of the discriminator. One variant of the discriminator
is given in the YAWL language [11], where all remaining activities beforehand a discriminator
are canceled if one incoming branch is activated. Another example is given by the patterns 5.5
(Exclusive Choice) and 5.8 (Multiple Merge). If the former pattern is applied inside a loop, its
formal definition and semantics matches the latter one. The same assumptions have been made
in YAWL.

Regarding the formal representation of the process patterns, related work is available. First
of all, YAWL can be cited once again. YAWL has been designed with direct support for the
workflow patterns. Since the semantics of YAWL is given by a transition system (see figure
3.7), it provides a means of formalizing the given process patterns. In contrast to the approach
proposed in this thesis, the YAWL semantics does not formally support data and interactions.
Furthermore, the transition system of YAWL is proprietary and fixed to the workflow patterns.
While it provides a direct support for the patterns, it might be difficult to extend. In contrast,
the pattern formalizations given in this thesis are based on a common process calculus that also
proved able to support data and interactions.

Cook et al. have proposed other formalizations of process pattern in [47] using Orc, Ste-
fansen in [120] using CCS, Wong and Gibbons in [135] using CSP, as well as Dong and Shen-
Sheng in [53] using π-calculus. All approaches claim to support all workflow patterns. This
has not been confirmed for [120] and [135], since the related articles are unpublished. Beside
the work of Dong and Shen-Sheng, all formalizations use theories without link passing mobil-
ity, which complicates the representation of dynamic binding. Since dynamic binding is crucial
to support the requirements from section 1.1, the proposed approaches are limited regarding
extensions to interacting business processes.

182 On the Application of a Theory for Mobile Systems to Business Process Management

8.3.2 Extended BPMN

In section 3.3 (Graphical Notations) and 6.1.2 (Interaction Graphs) we extended the BPMN to
provide a more direct representation of process patterns and means for representing dynamic
binding in public and global business process diagrams. Wohed et al. concluded in their inves-
tigation on the suitability of BPMN regarding common process patterns, that not all patterns are
supported [134]. Since advanced patterns furthermore require utilization of BPMN attributes
which are not graphically represented, we provided proprietary extensions to denote multiple in-
stance and discriminator patterns. The author knows no other approach of representing dynamic
binding in BPMN.

8.3.3 Abstract Views of Processes and Interactions with Dynamic Binding

In definitions 5.1 (Process Graph), 6.1 (Interaction Graphs), and 6.3 (Service Graphs) we pro-
vided abstract views of processes and interactions. The abstract views represent a layer between
graphical notations and formal representations. The given graphs capture the structures of pro-
cesses and interactions, while graphical notations give visualizations and the formalization a
formal semantics. Due to their complex nature, we provided only sketches for mapping business
process diagrams to process and interaction graphs, as given by examples 5.1 (Partly Mapping
of a BPD to a Process Graph) and 6.1 (Partly Mapping of a BPD to an Interaction Graph). Map-
pings to π-calculus are given by algorithms 5.1 (Mapping Process Graphs to Agents) and 6.1
(Mapping Interaction Graphs to Agents). Process and interaction graphs are used to define dif-
ferent soundness properties at a level above concrete formalization in an informal manner. The
approach has the advantage of being generic, since different formalizations can be applied to
prove soundness as will be shown in the next section. Furthermore, other graphical notations
can be mapped to process and interaction graphs with low effort. Due to the pattern-based map-
ping from process and interaction graphs to π-calculus, the definition of a formal semantics is
straightforward.

Regarding related work, a number of direct mappings from graphical notations to formal
representations exist. A strong focus is set on Petri nets that provide a rich formal foundation
as shown in chapter 3. Contributions regarding major notations are given for instance by van
der Aalst for Event-driven process chains [4] and Stoerrle for UML2 activity diagrams [121].
Regarding BPMN, a mapping via BPEL—as given in the specification—to Petri nets is proposed
for instance by Hinz et al. in [70]. Beside direct mappings, other approaches use existing
notations as intermediate layers. For instance, Brogi and Popescu map BPEL to YAWL [39],
which in turn is mapped to Petri nets for analysis. However, all these approaches are fixed to
specific notations and do not support dynamic binding.

8.3.4 Lazy Soundness

In chapter 5 we introduced lazy soundness (definition 5.10). Lazy soundness advances the state-
of-the-art in two directions. First of all, it provides a property for proving business processes
containing lazy activities to be free of deadlocks and livelocks. Second, it provides bisimulation-
based reasoning that is extended to weak and relaxed soundness. Regarding the first issue, also

CHAPTER 8. DISCUSSION 183

t

i o

Figure 8.3: A lazy sound Petri net.

weak termination (definition 3.46) is applicable. In contrast to lazy soundness, it enforces the
explicit enumeration of all final markings resulting in a complex representation. Regarding the
second issue, the author knows no other approach. However, projection inheritance by Basten
(definition 3.38) can be applied for reasoning on lazy soundness. A net corresponding to SLAZY

is given in figure 8.3. By applying an abstraction (definition 3.37) to all transitions of a more
complex net, weak branching bisimulation between the complex net and the one shown in fig-
ure 8.3 can be decided. Using branching bisimulation, tokens can remain in the complex net
representing a business process. The bisimulations for weak and relaxed soundness require a
complex preparation of the investigated Petri net, since the activity observation agent (definition
5.11) and the activity loop observation agent (definition 5.13) have to be included accordingly.

8.3.5 Interaction Soundness and Equivalence

Interaction soundness (definition 6.7) and equivalence (definition 6.8) introduce compatibility
and conformance notions for service graphs and environment agents. Composed systems (def-
inition 3.41) and environments (definition 3.42) for workflow modules by Martens match defi-
nition 6.5 (Environment) and definition 6.6 (Environment Agent) for service graphs and agents.
Interaction soundness resembles usability (definition 3.43) for workflow modules. In addition to
usability, interaction soundness supports dynamic binding and thus does not require knowledge
of all interaction edges at design time. Benatallah et al. introduced a notion of partial compat-
ibility in [29]. This notion has the advantage of considering only subsets of behavior, but does
also not support dynamic binding. Equivalence of workflow modules (definition 3.44) is related
to interaction equivalence. The latter has the advantage of supporting dynamic binding, which
is not possible in the former.

The author knows no other approach that supports dynamic binding via link passing mobility
for compatibility or conformance. The only slightly related approach is given by Canal et al.
in [43], where the authors discuss the representation of compatibility in software architectures
with runtime binding via a π-calculus representation. The lack of related work is especially
interesting, since the recent standard BPEL4WS supports link passing mobility via the assign
fromPartnerLink statement. Indeed, any asynchronous callback behavior such as given by
pattern 6.3 (Send/Receive) requires link passing. Formal semantics for BPEL4WS, such as given
in [70, 39, 62], explicitly state that they abstract from link passing mobility. In contrast to lazy
soundness, interaction soundness and equivalence cannot be proved using Petri nets as given by
definition 3.26, since Petri nets do no support dynamic binding due to their static structure.

184 On the Application of a Theory for Mobile Systems to Business Process Management

8.3.6 Related Formalizations

Regarding support for dynamic binding, other theories can be used as well. First of all, ac-
tors as introduced by Agha in [17] has to be mentioned. Actors introduce several concepts
closely related to the topics of this thesis. They describe a dynamic topology, where channels
are determined dynamically. Furthermore, they derive the need for dynamic resource alloca-
tion in open systems. Channel passing as well as dynamic resource allocation then build the
foundation for reconfigurable and extensible systems. Both concepts are closely related to the
π-calculus concepts of link passing mobility and the restriction operator. Regarding extensions
to Petri nets, several approaches that might be able to represent dynamic binding are available.
However, no publication on how dynamic binding in a SOA can be represented using extended
Petri nets is known to the author. A promising approach might be using object Petri nets by
Lakos [81] that formally describe umbrellas and subscribers as special kinds of nets that can
interact dynamically. Object Petri nets are based on colored Petri nets. While colored Petri nets
are Turing-complete (and thus should be able to somehow represent dynamic binding), they eas-
ily allow the representation of correlations using colored tokens. Common patterns have been
collected by Mulyar and van der Aalst in [102]. As stated, also this pattern catalogue lacks the
representation of dynamic binding. A last approach that should be mentioned are nets in nets,
that has been applied to workflow in [13].

8.3.7 Work in Progress

This subsection introduces miscellaneous related work that is currently in progress but has al-
ready generated publications. All approaches include investigations on how to formally repre-
sent processes and interactions based on different theoretical foundations. Due to their prelimi-
nary nature, a detailed discussion is omitted.

SOCK. A holistic approach considering foundational theories, techniques, and methods inside
a software engineering approach is investigated inside the SENSORIA project funded as an IST
project in the 6th framework program of the European union.1 The project is due on August
2009, thus only preliminary results are available. They include a service-oriented computing
kernel, abbreviated as SOCK [68]. SOCK is composed out of different calculi focusing on
service behavior, service declaration, service engine, and service systems. In contrast to this
thesis, which investigates the π-calculus for description on and reasoning about process and
interaction behavior, the scope investigated is much larger. An example is given by another
publication of the SENSORIA project, the service centered calculus (SCC) [34]. In advantage to
the concept of link passing mobility found in the π-calculus, SCC supports explicit modeling of
sessions, which can be named and scoped, as well as interruption and cancelation mechanisms.
Eventually, SOCK will provide a uniform foundation for service-oriented architectures. It is
expected that a more consolidated representation of interactions than in the π-calculus will be
possible.

1 URL: http://sensoria.fast.de/

http://sensoria.fast.de/

CHAPTER 8. DISCUSSION 185

CPN Pattern. A draft technical report on a revised view of the control flow patterns is avail-
able in [112]. In contrast to the original publication [12], a more fine grained distinction between
the patterns is made, leading to a total of 43 patterns. Furthermore, many implicit assumptions
have been made explicit by providing each pattern with a colored Petri net semantics. However,
the preliminary report does not explain how dynamic binding can be represented in colored Petri
nets, thus leaving the extension from processes to interactions open. Furthermore, it has to be
seen how the algorithms developed for Petri nets, i.e. soundness, can be adapted to colored
nets. Due to the fact that colored Petri nets as well as π-calculus are Turing complete—and thus
are computational equivalent—both are applicable to the BPM domain. Hence, the discussion
narrows down to the suitability of either one or the other formalism for representing processes
and interactions. We presented results on how the π-calculus can be applied. The reader might
individually find his or her view on the suitability. A comparison is out of scope of this thesis.

186 On the Application of a Theory for Mobile Systems to Business Process Management

Chapter 9

Conclusion

This chapter concludes the thesis by summarizing the results and showing paths for future re-
search. Additionally, an outlook on a broader area of computer science will be given as a con-
cluding remark.

9.1 Summary

This thesis investigated the application of a theory for mobile systems, the π-calculus, as a
formal foundation for business process management. The investigated areas included the formal
representation and verification of data, processes, and interactions. In contrast to existing formal
foundations for workflow management, the π-calculus inherently supports dynamic binding via
link passing mobility. While link passing mobility is not required for the representation of static
processes, it builds the core of dynamic interactions. By supporting link passing mobility, the
π-calculus allows the direct extension from processes to interactions. Since interactions occur
between a set of processes, composition and visibility requirements arise. Once again, the π-
calculus inherently fulfills these by its composition and restriction operators. Furthermore, the
π-calculus supports change due to link passing mobility as well as the prototypical nature of
the calculus. The prototypical representation of mobile systems of processes directly resembles
the structure of the Internet. New processes representing services can be deployed, changed,
or removed without affecting the Internet as a whole. There is no need to re-deploy the whole
system such as static system theory would enforce.

During the investigations, several results have been achieved that are not yet to be found
in related work. We were among the first that provided formal representations of the different
patterns given in the chapters of Part II. Due to the informal nature of the pattern descriptions,
which are given in natural language only, several implicit assumptions had to be made explicit. In
particular, the scope of the data and interaction patterns is too broad for a complete formalization,
hence we focused on key issues. In contrast, the process patterns, that build the heart of BPM,
have been captured completely in a generalized manner. Using these formalizations, algorithms
for mapping graphical notations to π-calculus have been introduced. Furthermore, an extension
for the representation of dynamic binding in graphical notations has been proposed.

187

188 On the Application of a Theory for Mobile Systems to Business Process Management

Beside providing an unambiguous description of processes and interactions, the formal rep-
resentations opened the door for verification. We introduced lazy soundness as a new kind of
soundness that is able to deal with lazy activities, i.e. activities that might remain active while
the business process itself already reached its final node. These clean-up activities can be found
for instance before an n-out-of-m-join, a pattern frequently used in interactions. Reasoning
on lazy soundness has been grounded in bisimulation equivalence. We furthermore provided
reasoning based on bisimulation for weak and relaxed soundness. Lazy soundness has then
been extended to interaction soundness, a compatibility notion between a set of services and a
business process. In addition to lazy soundness, interaction soundness considers internal and
external dependencies between activities, ensuring deadlock freedom. In contrast to existing
work, dynamic binding of, and between, services is supported. The investigations have been
concluded with a conformance notion between environments made up of different services. The
conformance is called interaction equivalence and is grounded in weak open bisimulation. This
kind of bisimulation takes care of link passing mobility regarding arbitrary contexts and hence
supports dynamic binding.

The investigated concepts have been brought together in a larger example. It has been shown
how data and processes can be integrated as well as how processes can interact together. All
kinds of soundness have been practically applied using a tool chain developed during this thesis.
Process and interaction models depicted in an enhanced graphical variant of the BPMN have
been mapped to process and interaction graphs, which in turn have been converted to π-calculus
agents. However, while reasoning on lazy soundness, interaction soundness, and interaction
equivalence is practically possible, the effort is high. This is on the one hand due to the lack of
efficient tools and on the other hand based on the size of the state space that has to be investi-
gated. In a sentence, the π-calculus has its strengths in representing interacting processes with
dynamic binding, whereas verification based on bisimulation equivalence requires high efforts.

9.2 Future Work

Future research on mobile systems for business process management can be split into several
directions according to the BPM lifecycle. Regarding the Design and Analysis activity, that has
partly been investigated in this thesis, several steps are conceivable. First of all, the practical
effort for verification has to be dropped by developing bisimulation checkers that are optimized
for the BPM domain. These checkers should use additional knowledge as given by process and
interaction graphs. Second, the drawbacks of bisimulation and simulation for interaction equiv-
alence can be overcome by constructing an asymmetric bisimulation, which differentiates input
and output prefixes under a summation. Third, type systems can be defined for further reasoning
on static properties. Regarding the Configuration and Enactment activity, a BPM engine based
on some kind of π-calculus bytecode can be developed. For performance issues, the engine
has to natively support different data types by intercepting access to π-calculus names typed
as data. Since the π-calculus is Turing complete, all kinds of existing standards, either graph-
ical (e.g. BPMN) or XML–structured (e.g. BPEL4WS), should be executable by the engine
after a mapping has been defined. The architectural style should be based on REST [59], since
the prototypical representation of processes and interactions in the π-calculus closely resembles

CHAPTER 9. CONCLUSION 189

the architecture of the Internet. The Evaluation activity of the lifecycle can be supported by
developing round-trip environments. These should allow a graphical design of processes and
interactions as well as supporting verification, simulation, deployment, execution, and mining
of runtime data.

9.3 Concluding Remarks

Business process management and service-oriented architectures can be seen as driving tech-
nologies for programming-in-the-large, which means assembling instead of programming. To-
day, this comprises nearly every it-related business. However, assembling is very different to
programming and hence requires different methodologies and theories. We like to quote a clas-
sic from DeRemer and Kron, already published in 1975:

”We argue that structuring a large collection of modules to form a ”system” is an
essentially distinct and different intellectual activity from that of constructing the
individual modules.” [52]

They continue by motivating the need for a programming-in-the-large notation:

”That is, we distinguish between block structure and module interconnectivity. Blo-
ck structure works well on a small scale, but humans simply cannot keep track of
nesting levels after a few pages. Furthermore, and perhaps most important, module
interconnectivity must in many cases take the shape of a graph or partial ordering.
The more limited tree structure of nested blocks forces us to place some low-level
modules at high places, extending their scope of definition to inappropriate places.
It follows, then, that we need a separate language, or at least separate language con-
structs, for describing module interconnectivity, rather than complicating existing
constructs that are well suited for modeling in the small.” [52]

Programming-in-the-large has been brought forward since then, where service-oriented architec-
ture form one branch. Indeed, by replacing the term module by service, one can easily motivate
the need for service orchestration languages from the quotes above. However, what has not been
seen at this time is the distributed, concurrent execution of ”modules” in open environments with
constant change. The π-calculus is a theory for describing systems in the large that support dis-
tribution, concurrency, and link passing mobility. This thesis showed how the π-calculus might
be applied to the domain of business process management, acting as a programming-in-the-large
language.

The End.

190 On the Application of a Theory for Mobile Systems to Business Process Management

Part IV

Appendix

191

Appendix A

Examples

This chapter contains examples that support the practical feasibility of the investigations. We
used two existing π-calculus bisimulation checkers, the Advanced Bisimulation Checker (ABC)
[37] and the Mobility Workbench (MWB) [125]. Most of the examples have been converted
from BPMN to π-calculus agents with the help of a tool chain that has been developed during
the work on this thesis.1 To make the presentation as authentic as possible, we provide the
generated XML and π-calculus agents in the original format without any other modifications
than line wraps.

The tool chain is based on the concepts and algorithms presented in chapter 5 (Processes)
and 6 (Interactions). The theoretical foundations are based on chapter 2 (The Pi-Calculus). Fig-
ure A.1 depicts the tool dependencies and document flows in the tool chain. Tools or scripts
are shown as rectangles, whereas documents are denoted as notes. The components developed
during the thesis are highlighted. First of all, we use a graphical editor for designing business
process diagrams. The editor is equipped with a set of BPMN stencils annotated with additional
information. Based on this information, an XML exporter script is able to generate an XML
description of the business process diagram by interacting with the editor. The XML representa-
tion of the business process can be checked for structural soundness by a structural soundness
checker script. Furthermore, it can be used as input for a pi-calculus converter script that maps
the XML file to a proprietary ASCII notation representing π-calculus agents. The implemen-
tation is based on example 5.1 (Partly Mapping of a BPD to a Process Graph), algorithm 5.1
(Mapping Process Graphs to Agents), example 6.1 (Partly Mapping of a BPD to an Interac-
tion Graph), and algorithm 6.1 (Mapping Interaction Graphs to Agents). The generated file
containing the π-calculus agents can then directly be used as an input for existing π-calculus
bisimulation checkers or the PiVizTool [31] for simulation. The PiVizTool is a graphical envi-
ronment for simulating interacting business processes represented in the π-calculus according
to chapter 6 (Interactions) and chapter 7 (Unification). It has been developed as part of a Master
thesis supervised by the author of this work.

Technically, the feasibility study has been developed on Mac OS X. OmniGraffle Profes-
sional is used as a graphical editor.2 It is fully programmable in AppleScript, which was used

1 http://bpt.hpi.uni-potsdam.de/twiki/bin/view/Piworkflow/Reasoner
2 http://www.omnigroup.com/applications/omnigraffle

193

http://bpt.hpi.uni-potsdam.de/twiki/bin/view/Piworkflow/Reasoner
http://www.omnigroup.com/applications/omnigraffle

194 On the Application of a Theory for Mobile Systems to Business Process Management

XMLGraphical
Editor

XML
Exporter

Struct. Sound.
Checker

Pi-Calculus
Converter Pi

Advanced
Bisimulation

Checker

BPMN Stencils

Mobility
Workbench

PiVizTool

Figure A.1: Architecture of the tool chain.

for implementing the XML exporter. The π-calculus converter and the structural soundness
checker have been implemented as os-independend Ruby scripts. The π-calculus tools compat-
ible with the tool chain are the bisimulation checkers MWB and ABC for verification as well as
the PiVizTool. MWB and ABC are written in the functional programming languages SML and
OCaml that are available for a wide variety of platforms. The PiVizTool is written in Java.

A.1 Processes

This section contains examples for chapter 5 (Processes).

A.1.1 Lazy Soundness

We illustrate lazy soundness by example in the corresponding input style for MWB/ABC.

Example A.1 (Lazy Soundness Tool Example) The XML representation of the process graph
according to the business process diagram shown in figure A.2 is given by:

<model>
<process id="1" type="BPMN">

<node id="1155" type="MI without Sync" name="D" count="3"/>
<node id="1146" type="End Event"/>
<node id="1145" type="Task" name="B"/>
<node id="1144" type="Task" name="C"/>
<node id="1143" type="Task" name="A"/>
<node id="1138" type="AND Gateway"/>
<node id="1137" type="N-out-of-M-Join" continue="2"/>
<node id="1136" type="Start Event"/>
<flow id="1163" type="Sequence Flow" from="1155" to="1146"/>
<flow id="1154" type="Sequence Flow" from="1137" to="1155"/>
<flow id="1153" type="Sequence Flow" from="1144" to="1137"/>
<flow id="1152" type="Sequence Flow" from="1145" to="1137"/>
<flow id="1151" type="Sequence Flow" from="1143" to="1137"/>
<flow id="1150" type="Sequence Flow" from="1138" to="1144"/>
<flow id="1149" type="Sequence Flow" from="1138" to="1145"/>
<flow id="1148" type="Sequence Flow" from="1138" to="1143"/>
<flow id="1147" type="Sequence Flow" from="1136" to="1138"/>

</process>
</model>

The lazy soundness annotated π-calculus mapping of the process graph is given by:

APPENDIX A. EXAMPLES 195

2

A

C

B D
3

Figure A.2: Business process example 1.

agent N1155(e1154,e1163)=e1154.(t.0 | t.0 | t.0 | ’e1163.0 | N1155(e1154,e1163))
agent N1138(e1147,e1150,e1149,e1148)=e1147.t.(’e1150.0 | ’e1149.0 | ’e1148.0 |

N1138(e1147,e1150,e1149,e1148))
agent N1137(e1153,e1152,e1151,e1154)=(ˆh,run)(N1137_1(e1153,e1152,e1151,e1154,h,run) |

N1137_2(e1153,e1152,e1151,e1154,h,run))
agent N1137_1(e1153,e1152,e1151,e1154,h,run)=e1153.’h.0 | e1152.’h.0 | e1151.’h.0
agent N1137_2(e1153,e1152,e1151,e1154,h,run)=h.h.’run.h.

N1137(e1153,e1152,e1151,e1154) | run.t.’e1154.0
agent N1136(e1147,i)=i.t.’e1147.0
agent N1146(e1163,o)=e1163.t.’o.N1146(e1163,o)
agent N1145(e1149,e1152)=e1149.t.(’e1152.0 | N1145(e1149,e1152))
agent N1144(e1150,e1153)=e1150.t.(’e1153.0 | N1144(e1150,e1153))
agent N1143(e1148,e1151)=e1148.t.(’e1151.0 | N1143(e1148,e1151))
agent N(i,o)=(ˆe1163,e1154,e1153,e1152,e1151,e1150,e1149,e1148,e1147)(

N1155(e1154,e1163) | N1138(e1147,e1150,e1149,e1148) |
N1137(e1153,e1152,e1151,e1154) | N1136(e1147,i) |
N1146(e1163,o) | N1145(e1149,e1152) | N1144(e1150,e1153) |
N1143(e1148,e1151))

agent S_LAZY(i,o)=i.t.’o.0

We can ask MWB for deciding weak open d-bisimulation equivalence on N and SLAZY , thus
deciding lazy soundness for the process graph from example 5.2 (Simple Business Process):

MWB>weq N(i,o) S_LAZY(i,o)
The two agents are equal.
Bisimulation relation size = 317.

Since N ≈D
O SLAZY holds, the corresponding process graph is lazy sound. By modifying the

AND Gateway of the example given in figure A.2 to an XOR Gateway in the corresponding lazy
soundness annotated π-calculus mapping, we can prove the corresponding process graph to be
not lazy sound:

MWB>agent N1138(e1147,e1150,e1149,e1148)=e1147.t.((’e1150.0 + ’e1149.0 + ’e1148.0) |
N1138(e1147,e1150,e1149,e1148))
MWB>weq N(i,o) S_LAZY(i,o)
The two agents are NOT equal.

Obviously, the modified process graph is not lazy sound as it contains a deadlock.

A.1.2 Weak Soundness

Weak soundness is illustrated in the corresponding input style for MWB/ABC.

Example A.2 (Weak Soundness Tool Example) The XML representation of the process
graph according to the business process shown in figure A.3 is given by:

196 On the Application of a Theory for Mobile Systems to Business Process Management

A B C

DE

Figure A.3: Business process example 2.

<model>
<process id="1" type="BPMN">

<node id="924" type="AND Gateway"/>
<node id="782" type="Task" name="E"/>
<node id="781" type="Task" name="D"/>
<node id="773" type="XOR Gateway"/>
<node id="772" type="End Event"/>
<node id="1189" type="Task" name="C"/>
<node id="1188" type="Task" name="B"/>
<node id="1183" type="AND Gateway"/>
<node id="1182" type="Task" name="A"/>
<node id="1181" type="Start Event"/>
<flow id="1194" type="Sequence Flow" from="782" to="773"/>
<flow id="1193" type="Sequence Flow" from="781" to="782"/>
<flow id="1192" type="Sequence Flow" from="773" to="781"/>
<flow id="1191" type="Sequence Flow" from="773" to="924"/>
<flow id="1190" type="Sequence Flow" from="1183" to="773"/>
<flow id="788" type="Sequence Flow" from="1189" to="772"/>
<flow id="787" type="Sequence Flow" from="924" to="1189"/>
<flow id="786" type="Sequence Flow" from="1188" to="924"/>
<flow id="785" type="Sequence Flow" from="1183" to="1188"/>
<flow id="784" type="Sequence Flow" from="1182" to="1183"/>
<flow id="783" type="Sequence Flow" from="1181" to="1182"/>

</process>
</model>

The weak soundness annotated π-calculus mapping is given by:

agent N924(e1191,e786,e787,x)=e1191.e786.(ˆack)’x<ack>.ack.(’e787.0 |
N924(e1191,e786,e787,x))

agent N1189(e787,e788,x)=e787.(ˆack)’x<ack>.ack.(’e788.0 | N1189(e787,e788,x))
agent N1188(e785,e786,x)=e785.(ˆack)’x<ack>.ack.(’e786.0 | N1188(e785,e786,x))
agent N1183(e784,e1190,e785,x)=e784.(ˆack)’x<ack>.ack.(N1183(e784,e1190,e785,x) |

’e1190.0 | ’e785.0)
agent N1182(e783,e784,x)=e783.(ˆack)’x<ack>.ack.(’e784.0 | N1182(e783,e784,x))
agent N1181(e783,i,x)=i.(ˆack)’x<ack>.ack.’e783.0
agent N782(e1193,e1194,x)=e1193.(ˆack)’x<ack>.ack.(’e1194.0 | N782(e1193,e1194,x))
agent N781(e1192,e1193,x)=e1192.(ˆack)’x<ack>.ack.(’e1193.0 | N781(e1192,e1193,x))
agent N773(e1194,e1190,e1192,e1191,x)=(e1194.N773_1(e1194,e1190,e1192,e1191,x) +

e1190.N773_1(e1194,e1190,e1192,e1191,x))
agent N773_1(e1194,e1190,e1192,e1191,x)=(ˆack)’x<ack>.ack.((’e1192.0 + ’e1191.0) |

N773(e1194,e1190,e1192,e1191,x))
agent N772(e788,o,x)=e788.(ˆack)’x<ack>.ack.’o.N772(e788,o,x)
agent N(i,o,s)=(ˆe1194,e1193,e1192,e1191,e1190,e788,e787,e786,e785,e784,e783,x)

(N924(e1191,e786,e787,x) | N1189(e787,e788,x) | N1188(e785,e786,x) |
N1183(e784,e1190,e785,x) | N1182(e783,e784,x) | N1181(e783,i,x) |
N782(e1193,e1194,x) | N781(e1192,e1193,x) | N773(e1194,e1190,e1192,e1191,x) |

APPENDIX A. EXAMPLES 197

N772(e788,o,x) | X(x,s))
agent X(x,s)=x(ack).(t.’ack.0 | X(x,s)) + x(ack).(’s.’ack.0 | X_1(x))
agent X_1(x)=x(ack).(t.’ack.0 | X_1(x))
agent S_WEAK(i,o,s)=i.(t.’o.0 + t.’s.’o.0)

We can ask MWB for deciding weak open d-bisimulation equivalence on N and SWEAK , thus
deciding weak soundness for the process graph:

MWB>weqd (i,o,s) N(i,o,s) S_WEAK(i,o,s)
The two agents are equal.
Bisimulation relation size = 258.

Since N ≈D
O SWEAK holds, the corresponding process graph is weak sound. A counterexam-

ple can be given by checking weak soundness for the process graph from example A.1. The
corresponding weak soundness annotated π-calculus mapping is given by:

agent N1155(e1154,e1163,x)=e1154.(t.0 | t.0 | t.0 | ’e1163.0 | N1155(e1154,e1163,x))
agent N1138(e1147,e1150,e1149,e1148,x)=e1147.(ˆack)’x<ack>.ack.(’e1150.0 | ’e1149.0 |

’e1148.0 | N1138(e1147,e1150,e1149,e1148,x))
agent N1137(e1153,e1152,e1151,e1154,x)=(ˆh,run)(

N1137_1(e1153,e1152,e1151,e1154,x,h,run) |
N1137_2(e1153,e1152,e1151,e1154,x,h,run))

agent N1137_1(e1153,e1152,e1151,e1154,x,h,run)=e1153.’h.0 | e1152.’h.0 | e1151.’h.0
agent N1137_2(e1153,e1152,e1151,e1154,x,h,run)=

h.h.’run.h.N1137(e1153,e1152,e1151,e1154,x) |
run.(ˆack)’x<ack>.ack.’e1154.0

agent N1136(e1147,i,x)=i.(ˆack)’x<ack>.ack.’e1147.0
agent N1146(e1163,o,x)=e1163.(ˆack)’x<ack>.ack.’o.N1146(e1163,o,x)
agent N1145(e1149,e1152,x)=e1149.(ˆack)’x<ack>.ack.(’e1152.0 | N1145(e1149,e1152,x))
agent N1144(e1150,e1153,x)=e1150.(ˆack)’x<ack>.ack.(’e1153.0 | N1144(e1150,e1153,x))
agent N1143(e1148,e1151,x)=e1148.(ˆack)’x<ack>.ack.(’e1151.0 | N1143(e1148,e1151,x))
agent N(i,o,s)=(ˆe1163,e1154,e1153,e1152,e1151,e1150,e1149,e1148,e1147,x)

(N1155(e1154,e1163,x) | N1138(e1147,e1150,e1149,e1148,x) |
N1137(e1153,e1152,e1151,e1154,x) | N1136(e1147,i,x) | N1146(e1163,o,x) |
N1145(e1149,e1152,x) | N1144(e1150,e1153,x) | N1143(e1148,e1151,x))

agent X(x,s)=x(ack).(t.’ack.0 | X(x,s)) + x(ack).(’s.’ack.0 | X_1(x))
agent X_1(x)=x(ack).(t.’ack.0 | X_1(x))
agent S_WEAK(i,o,s)=i.(t.’o.0 + t.’s.’o.0)

We can ask MWB again for deciding weak open d-bisimulation equivalence:

MWB>weqd (i,o,s) N(i,o,s) S_WEAK(i,o,s)
The two agents are NOT equal.

This time, the process graph is not weak sound, since it contains lazy activities which can be
active after the final node has been reached.

A.1.3 Relaxed Soundness

Relaxed soundness is illustrated by example in the corresponding input style for ABC.

Example A.3 (Relaxed Soundness Tool Example) The XML representation of the process
graph according to the business process shown in figure A.4 is given by:

198 On the Application of a Theory for Mobile Systems to Business Process Management

A

B

C

D

Figure A.4: Business process example 3.

<model>
<process id="1" type="BPMN">

<node id="538" type="End Event"/>
<node id="1346" type="Task" name="D"/>
<node id="1339" type="AND Gateway"/>
<node id="1335" type="Task" name="C"/>
<node id="714" type="OR Gateway"/>
<node id="1324" type="XOR Gateway"/>
<node id="1318" type="AND Gateway"/>
<node id="1316" type="Task" name="B"/>
<node id="1306" type="XOR Gateway"/>
<node id="1305" type="Task" name="A"/>
<node id="1300" type="AND Gateway"/>
<node id="1299" type="Start Event"/>
<flow id="1350" type="Sequence Flow" from="1339" to="538"/>
<flow id="1349" type="Sequence Flow" from="1346" to="1339"/>
<flow id="1347" type="Sequence Flow" from="1324" to="1346"/>
<flow id="1344" type="Sequence Flow" from="1335" to="1339"/>
<flow id="1338" type="Sequence Flow" from="1318" to="714"/>
<flow id="1337" type="Sequence Flow" from="714" to="1335"/>
<flow id="1336" type="Sequence Flow" from="1300" to="714"/>
<flow id="1333" type="Sequence Flow" from="1306" to="1324"/>
<flow id="1332" type="Sequence Flow" from="1318" to="1324"/>
<flow id="1323" type="Sequence Flow" from="1316" to="1318"/>
<flow id="1317" type="Sequence Flow" from="1306" to="1316"/>
<flow id="1315" type="Sequence Flow" from="1300" to="1305"/>
<flow id="1314" type="Sequence Flow" from="1305" to="1306"/>
<flow id="671" type="Sequence Flow" from="1299" to="1300"/>

</process>
</model>

The relaxed soundness annotated π-calculus mapping is given as follows. Since relaxed sound-
ness requires n − 2 different agent representations of a process graph with n > 2 nodes, we
only give an example regarding the activities A and B to showcase the reasoning. The relaxed
soundness annotated π-calculus mapping for investigating activity A is given by:

agent N538(e1350,o)=e1350.t.’o.N538(e1350,o)
agent N1324(e1333,e1332,e1347)=(e1333.N1324_1(e1333,e1332,e1347) +

e1332.N1324_1(e1333,e1332,e1347))
agent N1324_1(e1333,e1332,e1347)=t.(’e1347.0 | N1324(e1333,e1332,e1347))
agent N1318(e1323,e1338,e1332)=e1323.t.(’e1338.0 | ’e1332.0 | N1318(e1323,e1338,e1332))
agent N1316(e1317,e1323)=e1317.t.(’e1323.0 | N1316(e1317,e1323))
agent N1306(e1314,e1333,e1317)=e1314.t.((’e1333.0 + ’e1317.0) |

N1306(e1314,e1333,e1317))
agent N1305(e1315,e1314,x)=e1315.(ˆack)’x<ack>.ack.(’e1314.0 | N1305(e1315,e1314,x))
agent N1300(e671,e1336,e1315)=e671.t.(’e1336.0 | ’e1315.0 | N1300(e671,e1336,e1315))

APPENDIX A. EXAMPLES 199

agent N1299(e671,i)=i.t.’e671.0
agent N1346(e1347,e1349)=e1347.t.(’e1349.0 | N1346(e1347,e1349))
agent N1339(e1349,e1344,e1350)=e1349.e1344.t.(’e1350.0 | N1339(e1349,e1344,e1350))
agent N1335(e1337,e1344)=e1337.t.(’e1344.0 | N1335(e1337,e1344))
agent N714(e1338,e1336,e1337)=(ˆc,w,d)((e1338.(’d.0 + w.c.0) + c.0) |

(e1336.(’d.0 + w.c.0) + c.0) | ’w.0 | d.’c.t.(’e1337.0 |
N714(e1338,e1336,e1337)))

agent N(i,o,s)=(ˆe1350,e1349,e1347,e1344,e1338,e1337,e1336,e1333,e1332,e1323,e1317,
e1315,e1314,e671,x)(N538(e1350,o) | N1324(e1333,e1332,e1347) |
N1318(e1323,e1338,e1332) | N1316(e1317,e1323) | N1306(e1314,e1333,e1317) |
N1305(e1315,e1314,x) | N1300(e671,e1336,e1315) | N1299(e671,i) |
N1346(e1347,e1349) | N1339(e1349,e1344,e1350) | N1335(e1337,e1344) |
N714(e1338,e1336,e1337) | X(x,s))

agent X(x,s)=x(ack).(t.’ack.0 | X(x,s)) + x(ack).(’s.’ack.0 | X_1(x))
agent X_1(x)=x(ack).(t.’ack.0 | X_1(x))
agent S_RELAXED(i,o,s)=i.’s.’o.0

We can ask ABC for deciding weak open simulation equivalence:

abc > wlt S_RELAXED(i,o,s) N(i,o,s)
The two agents are weakly related (4).
Do you want to see the core of the simulation (yes/no) ? no

Since SRELAXED wD
O N holds, activity A participates in the process in at least one valid execu-

tion sequence. The relaxed soundness annotated π-calculus mapping for investigating activity B
is given by:

agent N538(e1350,o)=e1350.t.’o.N538(e1350,o)
agent N1324(e1333,e1332,e1347)=(e1333.N1324_1(e1333,e1332,e1347) +

e1332.N1324_1(e1333,e1332,e1347))
agent N1324_1(e1333,e1332,e1347)=t.(’e1347.0 | N1324(e1333,e1332,e1347))
agent N1318(e1323,e1338,e1332)=e1323.t.(’e1338.0 | ’e1332.0 | N1318(e1323,e1338,e1332))
agent N1316(e1317,e1323,x)=e1317.(ˆack)’x<ack>.ack.(’e1323.0 | N1316(e1317,e1323,x))
agent N1306(e1314,e1333,e1317)=e1314.t.((’e1333.0 + ’e1317.0) |

N1306(e1314,e1333,e1317))
agent N1305(e1315,e1314)=e1315.t.(’e1314.0 | N1305(e1315,e1314))
agent N1300(e671,e1336,e1315)=e671.t.(’e1336.0 | ’e1315.0 | N1300(e671,e1336,e1315))
agent N1299(e671,i)=i.t.’e671.0
agent N1346(e1347,e1349)=e1347.t.(’e1349.0 | N1346(e1347,e1349))
agent N1339(e1349,e1344,e1350)=e1349.e1344.t.(’e1350.0 | N1339(e1349,e1344,e1350))
agent N1335(e1337,e1344)=e1337.t.(’e1344.0 | N1335(e1337,e1344))
agent N714(e1338,e1336,e1337)=(ˆc,w,d)((e1338.(’d.0 + w.c.0) + c.0) |

(e1336.(’d.0 + w.c.0) + c.0) | ’w.0 |
d.’c.t.(’e1337.0 | N714(e1338,e1336,e1337)))

agent N(i,o,s)=(ˆe1350,e1349,e1347,e1344,e1338,e1337,e1336,e1333,e1332,e1323,e1317,
e1315,e1314,e671,x)(N538(e1350,o) | N1324(e1333,e1332,e1347) |
N1318(e1323,e1338,e1332) | N1316(e1317,e1323,x) | N1306(e1314,e1333,e1317) |
N1305(e1315,e1314) | N1300(e671,e1336,e1315) | N1299(e671,i) |
N1346(e1347,e1349) | N1339(e1349,e1344,e1350) | N1335(e1337,e1344) |
N714(e1338,e1336,e1337) | X(x,s))

agent X(x,s)=x(ack).(t.’ack.0 | X(x,s)) + x(ack).(’s.’ack.0 | X_1(x))
agent X_1(x)=x(ack).(t.’ack.0 | X_1(x))
agent S_RELAXED(i,o,s)=i.’s.’o.0

We can ask ABC for deciding weak open simulation equivalence:

abc > wlt S_RELAXED(i,o,s) N(i,o,s)
The two agents are weakly related (4).
Do you want to see the core of the simulation (yes/no) ? no

200 On the Application of a Theory for Mobile Systems to Business Process Management

Stock Exchange Repository

Stock
Exchange A

Stock
Exchange B

Stock
Exchange C ...

Find & Bind
Stock Exchanges

Bid at first Stock
Exchange

Bid at second
Stock Exchange

1

St
oc

k
Br

ok
er

Place
Order

B1 B2

B3

B4

B5
B6

B7 B8
e1 e2

e3

e4

e5

e6

e7 e8

Figure A.5: Stock broker interaction.

Since again SRELAXED wD
O N holds, activity B also participates in the process. We omit the

proofs for further activities.

A.2 Interactions

A.2.1 Interaction Soundness

We illustrate interaction soundness by example in the corresponding input style for MWB/ABC.

Example A.4 (Interaction Soundness Tool Example) The π-calculus representation of the
interaction shown in figure A.5 is given by:

agent SE_A(ch) = (ˆo)ch(b).t.’b<o>.o.SE_A(ch)
agent SE_B(ch) = (ˆo)ch(b).t.’b<o>.o.SE_B(ch)
agent SE_C(ch) = (ˆo)ch(b).t.’b<o>.o.SE_C(ch)

agent R(r,s1,s2,s3)=r(ch).’ch<s1>.r(ch).’ch<s2>.R(r,s1,s2,s3) +
r(ch).’ch<s2>.r(ch).’ch<s3>.R(r,s1,s2,s3) +
r(ch).’ch<s1>.r(ch).’ch<s3>.R(r,s1,s2,s3)

agent B(i,o,r)=(ˆe1,e2,e3,e4,e5,e6,e7,e8)(B1(e1,i) | B2(e1,e2,r) | B3(e2,e3,e4) |
B4(e3,e5) | B5(e4,e6) | B6(e5,e6,e7) | B7(e7,e8) |B8(e8,o))

agent B1(e1,i)=i.t.’e1.0
agent B2(e1,e2,r)=(ˆch)e1.’r<ch>.ch(s1).’r<ch>.ch(s2).t.(’e2<s1,s2>.0 | B2(e1,e2,r))
agent B3(e2,e3,e4)=e2(s1,s2).t.(’e3<s1>.0 | ’e4<s2>.0 | B3(e2,e3,e4))
agent B4(e3,e5)=(ˆb)e3(s).’s.b(o).t.(’e5<o>.0 | B4(e3,e5))
agent B5(e4,e6)=(ˆb)e4(s).’s.b(o).t.(’e6<o>.0 | B5(e4,e6))
agent B6(e5,e6,e7)=(ˆh,run)(B6_1(e5,e6,e7,h,run) | B6_2(e5,e6,e7,h,run))
agent B6_1(e5,e6,e7,h,run)=e5(o).’h<o>.0 | e6(o).’h<o>.0
agent B6_2(e5,e6,e7,h,run)=h(o).’run<o>.h(o).B6(e5,e6,e7) | run(o).t.’e7<o>.0
agent B7(e7,e8)=e7(o).’o.t.(’e8.0 | B7(e7,e8))
agent B8(e8,o)=e8.t.’o.B8(e8,o)

agent SYS(i,o) = (ˆs1,s2,s3,r)(SE_A(s1) | SE_B(s2) | SE_C(s3) | R(r,s1,s2,s3) |
B(i,o,r))

agent S_LAZY(i,o)=i.t.’o.0

APPENDIX A. EXAMPLES 201

The first three lines of the example denote simple kinds of services that are used for reasoning.
They create an order token o and wait for a connection via ch(b), where b is a response channel
used to signal back the o token. In between, however, complex computation takes place that is
abstracted from by τ . Note that the different services do not differ in their interaction behavior,
thus we may use each of them inside the stock broker.

The agent R denotes a simple kind of a repository that returns two arbitrary services. We
omitted a complex structure based on lists that would allow arbitrary services to register and
to de-register. The stock broker’s process is represented in the third block. B is a π-calculus
agent containing all activities of the stock broker, that in turn are represented according to figure
A.5 by B1 . . .B8 . Note the agents B2 , where the stock exchanges are found at the reposi-
tory (’r<ch>.ch(s1).’r<ch>.ch(s2)), and B4 and B5 , where the stock exchanges are
dynamically bound and invoked (’s.b(o)). Furthermore, the successful bidding activity
forwards the order token to B7 , where the order is finally placed. To allow agents to be observed
according to lazy soundness, B1 and B8 are enhanced with i and ’o accordingly. The agent
SYS (i , o) places all participants into a system leaving only i and o as free names. SYS can then
be compared to S LAZY required for deciding lazy soundness.

Part A. A tool session using MWB to prove interaction soundness is shown below:

MWB>weq SYS(i,o) S_LAZY(i,o)
The two agents are equal.

The agent of the stock broker inside the environment represented by SYS is weak open d-
bisimulation equivalent to S LAZY , hence the service graph contained is interaction sound.
Since the service graph includes the interactions with the repository and stock exchanges, all
possible behaviors of the services are acceptable and will not lead to a deadlock.

Part B. But what happens if one of the possible interaction partners, e.g. one of the services,
shows a different interaction behavior? This can be investigated, for instance, by changing the
definition of SE A(ch) to wait for a confirmation of the bidding via b before proceeding.

MWB>agent SE_A(ch) = (ˆo)ch(b).b(confirm).t.’b<o>.o.SE_A(ch)
MWB>weq SYS(i,o) S_LAZY(i,o)
The two agents are equal.

Once again, the service graph SG related to SYS is interaction sound. This is even true if the
”defective” service represented by agent SE A(ch) is dynamically bound. In this case, always
the second service will be used (due to the discriminator). Hence, the service graph will not
deadlock even if a non-matching, defective service is contained in the environment.

Part C. However, if we introduce a second defective service by changing SE B(ch), the
possibility of selecting and binding to two defective services exists, thus leading to a serious
problem:

MWB>agent SE_B(ch) = (ˆo)ch(b).b(confirm).t.’b<o>.o.SE_A(ch)
MWB>weq SYS(i,o) S_LAZY(i,o)
The two agents are NOT equal.

202 On the Application of a Theory for Mobile Systems to Business Process Management

Send
Product

Send
InvoiceSH

O
P

S1 S2 S3 S4

s1 s2 s3

s(order,ch1,ch2) ch1(product) ch2(invoice)

(a) Environment 1.

Place
Invoice

Request

Place
Product
Request

Send
Invoice

Send
Product

RE
SE

LL
ER

PAYM
ENT O

RG
.

M
ANUFACTURER

s(order,ch1,ch2)

m(order,ch1)

ch1(product) ch2(invoice)

p(order,ch2)

R1

R2

R3 R4R5

R6

r1
r2 r3

r4 r5
r6

P1 P2 P3

p1 p2

M1 M2 M3

m1 m2

(b) Environment 2.

Figure A.6: Two different environments.

The service graph SG contained in the modified system is not interaction sound anymore, since
there exist possible combinations of services in it that will lead to deadlock situations.

A.2.2 Interaction Equivalence

We illustrate interaction simulation and interaction equivalence by example in the corresponding
input style for ABC.
Example A.5 (Interaction Equivalence Tool Example) The environment agents of the envi-
ronments shown in figure A.6 are given by:

agent S(x) = (ˆs1,s2,s3)(S1(x,s1) | S2(s1,s2) | S3(s2,s3) | S4(s3))
agent S1(x,s1) = x(ch1).ch1(ch2).ch1(order).t.’s1<ch1,ch2>.0
agent S2(s1,s2) = (ˆinvoice)(s1(ch1,ch2).t.’ch1<invoice>.’s2<ch2>.0)
agent S3(s2,s3) = (ˆproduct)(s2(ch2).t.’ch2<product>.’s3.0)
agent S4(s3) = s3.t.0

agent R(x,p,m) = (ˆr1,r2,r3,r4,r5,r6)(R1(x,r1) | R2(r1,r2,r3) | R3(r2,p,r4) |
R4(r3,m,r5) | R5(r4,r5,r6) | R6(r6))

agent R1(x,r1) = x(ch1).ch1(ch2).ch1(order).t.’r1<ch1,ch2,order>.0
agent R2(r1,r2,r3) = r1(ch1,ch2,order).t.(’r2<ch1,order>.0 | ’r3<ch2,order>.0)
agent R3(r2,p,r4) = r2(ch1,order).t.’p<ch1,order>.’r4.0
agent R4(r3,m,r5) = r3(ch2,order).t.’m<ch2,order>.’r5.0
agent R5(r4,r5,r6) = r4.r5.t.’r6.0
agent R6(r6) = r6.t.0

APPENDIX A. EXAMPLES 203

agent M(m) = (ˆm1,m2,product)(M1(m,m1) | M2(m1, product, m2) | M3(m2))
agent M1(m,m1) = m(ch,order).t.’m1<ch,order>.0
agent M2(m1, product, m2) = m1(ch,order).t.’ch<product>.’m2.0
agent M3(m2) = m2.t.0

agent P(p) = (ˆp1,p2,invoice)(P1(p,p1) | P2(p1,invoice,p2) | P3(p2))
agent P1(p,p1) = p(ch,order).t.’p1<ch,order>.0
agent P2(p1,invoice,p2) = p1(ch,order).t.’ch<invoice>.’p2.0
agent P3(p2) = p2.t.0

Part A. We can ask ABC for deciding interaction equivalence between the shop, represented
by S and the reseller-construct, represented by R, P , and M :

abc > weq S(x) (ˆp,m)(R(x,p,m) | P(p) | M(m))
The two agents are not weakly related (8).
Do you want to see some traces (yes/no) ? no

Interestingly, the shop cannot be simply replaced by the reseller-construct, since they are not
interaction equivalent. Further analysis showed indeed a different behavior. The shop always
sends the invoice first followed by the product, whereas the reseller has non-deterministic be-
havior.

Part B. What can be proven, however, is an interaction simulation. Since the shop implements
a part of the reseller behavior, the latter should be able to simulate the interactions of the former:

abc > wlt S(x) (ˆp,m)(R(x,p,m) | P(p) | M(m))
The two agents are weakly related (18).
Do you want to see the core of the simulation (yes/no) ? no

The reseller extends the possible behavior of the shop, so that whenever an interaction behavior
as given by the shop is required, also the reseller can be used.

Part C. The opposite direction should not hold:

abc > wlt (ˆp,m)(R(x,p,m) | P(p) | M(m)) S(x)
The two agents are not weakly related (24).
Do you want to see some traces (yes/no) ? no

As expected, ABC proves the anticipations.

A.3 Unification

The figures A.7 and A.8 give an illustration of the examples described in chapter 7 (Unification).
In this section we show the tool supported proofs for lazy and interaction soundness of the
customer and interaction equivalence of the banks.

204 On the Application of a Theory for Mobile Systems to Business Process Management

Lo
an

 B
ro

ke
r

Ba
nk

Buy
direct

Find
Bank

Request
Loan

Buy

Reject
Purchase

v< €1.000

v> €999

Lookup
Banks

Send
Accept

Accept

Reject

Send
Reject

Cu
st

om
er

B1 B2 B3
b1 b2

S1
S2

S3

S4

S5 S6
s1

s2

s3

s4

s5

s6

broker(ch) ch(bank) bank(req,acc,rej) acc rej

C1
C2

C3

C4

C5
C6

C7

C8

C9

C10

C11

C12
c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12 c13

Figure A.7: Loan broker interaction.

Se
co

nd
 B

an
k Send

Accept

Send
Reject

T1
T3

T4

T5

T6 T7
t2

t3

t4

t5

t6

t7

bank(req,acc,rej) acc rej

Receive
Security

t1
T2

req(security)

Figure A.8: Another bank for the loan broker interaction.

A.3.1 Lazy Soundness of the Customer

Example A.6 (Tool Supported Investigation of Proof 7.4 (Lazy Soundness of the Cus-
tomer’s Process Graph)) The lazy soundness annotated π-calculus mapping of the customer’s
process graph is given by:

agent C(i,o) = (ˆc1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13)(C1(c1,i) | C2(c1,c2,c3) |
C3(c2,c4) | C4(c3,c5) | C5(c4,c6) | C6(c6,c7,c8) | C7(c7,c9) | C8(c8,c10) |
C9(c9,c11) | C10(c10,c12) | C11(c5,c11,c12,c13) | C12(c13,o))

agent C1(c1,i) = i.t.’c1.0
agent C2(c1,c2,c3) = c1.t.(’c2.0 + ’c3.0)
agent C3(c2,c4) = c2.t.’c4.0
agent C4(c3,c5) = c3.t.’c5.0
agent C5(c4,c6) = c4.t.’c6.0
agent C6(c6,c7,c8) = c6.t.(’c7.0 + ’c8.0)
agent C7(c7,c9) = c7.t.’c9.0
agent C8(c8,c10) = c8.t.’c10.0
agent C9(c9,c11) = c9.t.’c11.0
agent C10(c10,c12) = c10.t.’c12.0
agent C11(c5,c11,c12,c13) = c5.t.’c13.0 + c11.t.’c13.0 + c12.t.’c13.0
agent C12(c13,o) = c13.t.’o.0

agent S_LAZY(i,o) = i.t.’o.0

APPENDIX A. EXAMPLES 205

Note that the abstraction from the deferred choice in agent C6 . We can ask MWB for deciding
weak open d-bisimulation on C and SLAZY , thus deciding lazy soundness for the process graph
of example 7.1 (Process Graph of the Customer):

MWB>weq S_LAZY(i,o) C(i,o)
The two agents are equal.
Bisimulation relation size = 32.

Since C ≈D
O SLAZY , the process graph of the customer is lazy sound.

A.3.2 Interaction Soundness of the Customer

Example A.7 (Tool Supported Investigation of Proof 7.6 (Interaction Soundness of the
Customer with an Environment containing the First Bank)) The interaction soundness
annotated system I1 consisting of the customer, the loan broker, and the bank is given by:

agent BB(broker,broker_add) = broker_add(name,ch).(((ˆrem)
’ch<rem>.BB1(broker,name,rem)) | BB(broker,broker_add))

agent BB1(broker,name,rem) = broker(ch).(’ch<name>.0 | BB1(broker,name,rem)) + rem.0

agent S_S(broker_add) = (ˆb,ch) ’broker_add<b,ch>.ch(rem).S(b)
agent S(b) = (ˆs1,s2,s3,s4,s5,s6) b(req,acc,rej).(S1(s1,req,acc,rej) | S2(s1,s2,s3) |

S3(s2,s4) | S4(s3,s5) | S5(s4,s5,s6) | S6(s6) | S(b))
agent S1(s1,req,acc,rej) = t.’s1<acc,rej>.0
agent S2(s1,s2,s3) = s1(acc,rej).t.(’s2<acc>.0 + ’s3<rej>.0)
agent S3(s2,s4) = s2(acc).t.’acc.’s4.0
agent S4(s3,s5) = s3(rej).t.’rej.’s5.0
agent S5(s4,s5,s6) = s4.t.’s6.0 + s5.t.’s6.0
agent S6(s6) = s6.t.0

agent C(broker,i,o) = (ˆc1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13)(C1(c1,i) |
C2(c1,c2,c3) | C3(c2,c4,broker) | C4(c3,c5) | C5(c4,c6) | C6(c6,c7,c8) |
C7(c7,c9) | C8(c8,c10) | C9(c9,c11) | C10(c10,c12) | C11(c5,c11,c12,c13) |
C12(c13,o))

agent C1(c1,i) = i.t.’c1.0
agent C2(c1,c2,c3) = c1.t.(’c2.0 + ’c3.0)
agent C3(c2,c4,broker) = (ˆch)c2.t.’broker<ch>.’c4<ch>.0
agent C4(c3,c5) = c3.t.’c5.0
agent C5(c4,c6) = (ˆreq,acc,rej)c4(ch).ch(bank).t.’bank<req,acc,rej>.’c6<acc,rej>.0
agent C6(c6,c7,c8) = c6(acc,rej).t.(acc.’c7.0 + rej.’c8.0)
agent C7(c7,c9) = c7.t.’c9.0
agent C8(c8,c10) = c8.t.’c10.0
agent C9(c9,c11) = c9.t.’c11.0
agent C10(c10,c12) = c10.t.’c12.0
agent C11(c5,c11,c12,c13) = c5.t.’c13.0 + c11.t.’c13.0 + c12.t.’c13.0
agent C12(c13,o) = c13.t.’o.0

agent I1(i,o) = (ˆbroker,broker_add)(BB(broker,broker_add) | S_S(broker_add) |
C(broker,i,o))

agent S_LAZY(i,o) = i.t.’o.0

For technical reasons regarding MWB, we had to denote the agent SS as S S. Interaction
soundness for the service graph of the customer is decided by evaluating I1 ≈D

O SLAZY :

MWB>weq S_LAZY(i,o) I1(i,o)
The two agents are equal.
Bisimulation relation size = 151.

206 On the Application of a Theory for Mobile Systems to Business Process Management

Since I1 ≈D
O SLAZY holds, the service graph of the customer is interaction sound inside an

environment consisting of the loan broker and the first bank.

Example A.8 (Tool Supported Investigation of Proof 7.7 (Disrupted Interaction Soundness
of the Customer with an Environment containing the First and the Second Bank)) The
interaction soundness annotated system I2 consisting of the customer, the loan broker, the first
bank, and the second bank is given by:

agent BB(broker,broker_add) = broker_add(name,ch).(((ˆrem)
’ch<rem>.BB1(broker,name,rem)) | BB(broker,broker_add))

agent BB1(broker,name,rem) = broker(ch).(’ch<name>.0 | BB1(broker,name,rem)) + rem.0

agent S_S(broker_add) = (ˆb,ch) ’broker_add<b,ch>.ch(rem).S(b)
agent S(b) = (ˆs1,s2,s3,s4,s5,s6) b(req,acc,rej).(S1(s1,req,acc,rej) | S2(s1,s2,s3) |

S3(s2,s4) | S4(s3,s5) | S5(s4,s5,s6) | S6(s6) | S(b))
agent S1(s1,req,acc,rej) = t.’s1<acc,rej>.0
agent S2(s1,s2,s3) = s1(acc,rej).t.(’s2<acc>.0 + ’s3<rej>.0)
agent S3(s2,s4) = s2(acc).t.’acc.’s4.0
agent S4(s3,s5) = s3(rej).t.’rej.’s5.0
agent S5(s4,s5,s6) = s4.t.’s6.0 + s5.t.’s6.0
agent S6(s6) = s6.t.0

agent T_T(broker_add) = (ˆb,ch) ’broker_add<b,ch>.ch(rem).T(b)
agent T(b) = (ˆt1,t2,t3,t4,t5,t6,t7) b(req,acc,rej).(T1(t1,req,acc,rej) | T2(t1,t2) |

T3(t2,t3,t4) | T4(t3,t5) | T5(t4,t6) | T6(t5,t6,t7) | T7(t7) | T(b))
agent T1(t1,req,acc,rej) = t.’t1<acc,rej,req>.0
agent T2(t1,t2) = t1(acc,rej,req).req(security).t.’t2<acc,rej>.0
agent T3(t2,t3,t4) = t2(acc,rej).t.(’t3<acc>.0 + ’t4<rej>.0)
agent T4(t3,t5) = t3(acc).t.’acc.’t5.0
agent T5(t4,t6) = t4(rej).t.’rej.’t6.0
agent T6(t5,t6,t7) = t5.t.’t7.0 + t6.t.’t7.0
agent T7(t7) = t7.t.0

agent C(broker,i,o) = (ˆc1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13)(C1(c1,i) |
C2(c1,c2,c3) | C3(c2,c4,broker) | C4(c3,c5) | C5(c4,c6) | C6(c6,c7,c8) |
C7(c7,c9) | C8(c8,c10) | C9(c9,c11) | C10(c10,c12) | C11(c5,c11,c12,c13) |
C12(c13,o))

agent C1(c1,i) = i.t.’c1.0
agent C2(c1,c2,c3) = c1.t.(’c2.0 + ’c3.0)
agent C3(c2,c4,broker) = (ˆch)c2.t.’broker<ch>.’c4<ch>.0
agent C4(c3,c5) = c3.t.’c5.0
agent C5(c4,c6) = (ˆreq,acc,rej)c4(ch).ch(bank).t.’bank<req,acc,rej>.’c6<acc,rej>.0
agent C6(c6,c7,c8) = c6(acc,rej).t.(acc.’c7.0 + rej.’c8.0)
agent C7(c7,c9) = c7.t.’c9.0
agent C8(c8,c10) = c8.t.’c10.0
agent C9(c9,c11) = c9.t.’c11.0
agent C10(c10,c12) = c10.t.’c12.0
agent C11(c5,c11,c12,c13) = c5.t.’c13.0 + c11.t.’c13.0 + c12.t.’c13.0
agent C12(c13,o) = c13.t.’o.0

agent I2(i,o) = (ˆbroker,broker_add)(BB(broker,broker_add) | S_S(broker_add) |
T_T(broker_add) | C(broker,i,o))

agent S_LAZY(i,o) = i.t.’o.0

Interaction soundness for the service graph of the customer is again decided by evaluating I1 ≈D
O

SLAZY :

MWB>weq S_LAZY(i,o) I2(i,o)
The two agents are NOT equal.

APPENDIX A. EXAMPLES 207

Since I2 ≈D
O SLAZY does not hold, the service graph of the customer is not interaction sound

inside an environment consisting of the loan broker, the first bank, and the second bank.

A.3.3 Interaction Equivalence of the Banks

Example A.9 (Tool Supported Investigation of Proof 7.8 (Interaction Equivalence of the
First and the Second Bank)) For proving interaction equivalence of the first bank and the sec-
ond bank, we can re-use the agents defined in example A.8. Interaction equivalence is shown by
deciding if S (the agent representation of the first bank) is weak open d-bisimulation equivalent
to T (the agent representation of the second bank:

MWB>weq S(b) T(b)
The two agents are NOT equal.

Since S 6≈D
O T , the banks are not interaction equivalent.

A.3.4 Debugging Session

A modified version of example A.1 gives an impression of a ”debugging” session using ABC:

abc > weq N(i,o) S_LAZY(i,o)
The two agents are not weakly related (9).
Do you want to see some traces (yes/no) ? yes
traces of

N i o
S_LAZY i o

-i->
=i=>

(ˆx0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)(x0.t.’o.#1 | x1.#2 | x2.’x9.0 | x3.’x9.0 |
x4.’x9.0 | x5.t.#3 | x6.t.#4 | x7.t.#5 | x8.t.#6 | x9.x9.#8 | x10.t.’x1.0 | t.’x8.0)
’o.0

-t->
=t=>

(ˆx0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)(’x8.0 | x0.t.’o.#1 | x1.#2 | x2.’x9.0 |
x3.’x9.0 | x4.’x9.0 | x5.t.#3 | x6.t.#4 | x7.t.#5 | x8.t.#6 | x9.x9.#8 | x10.t.’x1.0)
’o.0

-t->
=t=>

(ˆx0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)(x0.t.’o.#1 | x1.#2 | x2.’x9.0 | x3.’x9.0 |
x4.’x9.0 | x5.t.#3 | x6.t.#4 | x7.t.#5 | x9.x9.#8 | x10.t.’x1.0 | t.#6)
’o.0

[...]

(ˆx0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)(x0.t.’o.#1 | x1.#2 | x3.’x9.0 | x4.’x9.0 |
x5.t.#3 | x6.t.#4 | x7.t.#5 | x8.t.#6 | x9.#8 | x10.t.’x1.0)
’o.0

208 On the Application of a Theory for Mobile Systems to Business Process Management

=’o=>
-’o->

*
0

#1 ::= N1146 x0 o
#2 ::= (N1155 x1 x0 | ’x0.0 | t.0 | t.0 | t.0)
#3 ::= (N1144 x5 x2 | ’x2.0)
#4 ::= (N1145 x6 x3 | ’x3.0)
#5 ::= (N1143 x7 x4 | ’x4.0)
#6 ::= (N1138 x8 x5 x6 x7 | (’x5.0 + ’x6.0 + ’x7.0))
#7 ::= N1137 x2 x3 x4 x1
#8 ::= ’x10.x9.#7

Appendix B

Bibliography

[1] AALST, W.: Verification of Workflow Nets. In AZÉMA, P.; BALBO, G. (Eds.): Applica-
tion and Theory of Petri Nets 1997, volume 1248 of LNCS. Springer Verlag, Berlin, 1997,
pages 407–426

[2] AALST, W.: The Application of Petri Nets to Workflow Management. In The Journal of
Circuits, Systems and Computers 8(1), 1998: pages 21–66

[3] AALST, W.: Three Good Reasons for Using a Petri-net-based Workflow Management
System. In WAKAYAMA, T.; KANNAPAN, S.; KHOONG, C.; NAVATHE, S.; YATES,
J. (Eds.): Information and Process Integration in Enterprises: Rethinking Documents,
volume 428 of The Kluwer International Series in Engineering and Computer Science.
Kluwer Academic Publishers, Boston, Massachusetts, 1998, pages 161–182

[4] AALST, W.: Formalization and Verification of Event-driven Process Chains. In Informa-
tion and Software Technology 41(10), 1999: pages 639–650

[5] AALST, W.: Inheritance of Workflow Processes: Four Problems - One Solution?. In
CUMMINS, F. (Eds.): Proceedings of the Second OOPSLA Workshop on the Implemen-
tation and Application of Object-Oriented Workflow Management Systems. Denver, Col-
orado, 1999, pages 1–22

[6] AALST, W.; BASTEN, T.: Inheritance of Workflows: An approach to tackling problems
related to change. Computing science reports 99/06, Eindhoven University of Technol-
ogy, Eindhoven, 1999

[7] AALST, W.; DESSEL, J.; KINDLER, E.: On the Semantics of EPCs: A Vicious Cir-
cle. In NÜTTGENS, M.; RUM, F. (Eds.): EPK 2002 - Geschäftsprozessmanagement mit
Ereignisgesteuerten Prozessketten. Trier, 2002, pages 71–79

[8] AALST, W.; DUMAS, M.; HOFSTEDE, A.: Pattern Based Analysis of BPEL4WS. Tech-
nical report FIT-TR-2002-04, Queensland University of Technology, Brisbane, 2002

[9] AALST, W.; HEE, K.: Workflow Management. MIT Press, 2002

209

210 On the Application of a Theory for Mobile Systems to Business Process Management

[10] AALST, W.; HEE, K.; HOUBEN, G.: Modeling and Analysing Workflow using a Petri-net
based Approach. In DE MICHELIS, G.; ELLIS, C.; MEMMI, G. (Eds.): Proceedings of
the second Workshop on Computer-Supported Cooperative Work, Petri nets and related
formalisms. 1994, pages 31–50

[11] AALST, W.; HOFSTEDE, A.: YAWL: Yet Another Workflow Language (Revised version).
Technical report FIT-TR-2003-04, Queensland University of Technology, Brisbane, 2003

[12] AALST, W.; HOFSTEDE, A.; KIEPUSZEWSKI, B.; BARROS, A.: Workflow Patterns. In
Distributed and Parallel Databases 14(1), 2003: pages 5–51

[13] AALST, W.; MOLDT, D.; VALK, R.; WIENBERG, F.: Enacting Interorganizational
Workflow Using Nets in Nets. In BECKER, J.; MUEHLEN, M.; ROSEMANN, M. (Eds.):
Workflow Management ’99. University of Munster, 1999, pages 117–136

[14] AALST, W.; TER HOFSTEDE, A.; WESKE, M.: Business Process Management: A Sur-
vey. In AALST, W.; HOFSTEDE, A.; WESKE, M. (Eds.): Business Process Management,
volume 2678 of LNCS. Springer Verlag, Berlin, 2003, pages 1–12

[15] AALST, W.; WESKE, M.: The P2P Approach to Interorganizational Workflow. In DIT-
TRICH, K.; GEPPERT, A.; NORRIE, M. (Eds.): Advanced Information Systems Engineer-
ing: 13th International Conference, CAiSE 2001, volume 2068 of LNCS. Springer Verlag,
Berlin, 2001, pages 140–156

[16] ABADI, M.; GORDON, A. D.: A Calculus for Cryptographic Protocols: The Spi Calcu-
lus. In CCS ’97: Proceedings of the 4th ACM conference on Computer and communica-
tions security. ACM Press, New York, NY, USA, 1997, pages 36–47

[17] AGHA, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986

[18] ALONSO, G.; CASATI, F.; KUNO, H.; MACHIRAJU, V.: Web Services: Concepts, Ar-
chitectures and Applications. Springer Verlag, Berlin, 2004

[19] ARPINAR, Ï.; HALICI, U.; ARPINAR, S.; DOĞAÇ, A.: Formalization of Workflows and
Correctness Issues in the Presence of Concurrency. In Distributed and Parallel Databases
7(2), 1999: pages 199–248

[20] BAETEN, J.: A Brief History of Process Algebra. In Theoretical Computer Science 335(2-
3), 2005: pages 131–146

[21] BAETEN, J.; WEIJLAND, W.: Process Algebra. Cambridge Tracts in Theoretical Com-
puter Science, Cambridge University Press, Cambridge, 1990

[22] BALDONE, M.; BAROGLIO, C.; MARTELLI, A.; PATTI, V.: A Priori Conformance Veri-
fication for Guaranteeing Interoperability in Open Environments. In DAM, A.; LAMERS-
DORF, W. (Eds.): Service-Oriented Computing – ICSOC 2006, volume 4294 of LNCS.
Springer Verlag, Berlin, 2006, pages 339–351

BIBLIOGRAPHY 211

[23] BARENDREGT, H. P.: The Lambda Calculus. Elsevier, Amsterdam, 1985

[24] BARROS, A.; DUMAS, M.; HOFSTEDE, A.: Service Interaction Patterns. In AALST,
W.; BENATALLAH, B.; CASATI, F. (Eds.): Business Process Management, volume 3649
of LNCS. Springer Verlag, Berlin, 2005, pages 302–318

[25] BARROS, A.; DUMAS, M.; HOFSTEDE, A.: Service Interaction Patterns: Towards a
Reference Framework for Service-oriented Business Process Interconnections. Technical
report, Faculty of Information Technology, Queensland University of Technology, Bris-
bane, Australia, 2005

[26] BARROS, A.; DUMAS, M.; OAKS, P.: A Critical Overview of the Web Services Chore-
ography Description Language (WS-CDL). In BPTrends Newsletter 3(3), March 2005

[27] BASTEN, T.: In Terms of Nets: System Design with Petri Nets and Process Algebra. PhD
thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1998

[28] BEA Systems, IBM, Microsoft, SAP, Siebel Systems: Business Process Execution
Language for Web Services Version 1.1 (BPEL4WS), May 2003.
http://www-128.ibm.com/developerworks/library/
specification/ws-bpel/

[29] BENATALLAH, B.; CASATI, F.; TOUMANI, F.: Analysis and Management of Web Service
Protocols. In ATZENI, P.; CHU, W.; LU, H.; ZHOU, S.; LING, T. (Eds.): 23rd Interna-
tional Conference on Conceptual Modeling (ER 2004), volume 3288 of LNCS. Springer
Verlag, Berlin, 2004, pages 524–541

[30] BLOOM, B.; ISTRAIL, S.; MEYER, A. R.: Bisimulation can’t be Traced. In Journal of
the ACM 42(1), 1995: pages 232–268

[31] BOG, A.: A Visual Environment for the Simulation of Business Processes based on the
Pi-Calculus. Master thesis, Hasso-Plattner-Institute, Potsdam, Germany, 2006

[32] BORDEAUX, L.; SALAÜN, G.: Using Process Algebra for Web Services: Early Results
and Perspectives. In SHAN, M.; DAYAL, U.; HSU, M. (Eds.): Technologies for E-
Services, volume 3324 of LNCS. Springer Verlag, Berlin, 2005, pages 54–68

[33] BORDEAUX, L.; SALAÜN, G.; BERARDI, D.; MECELLA, M.: When are Two Web Ser-
vices Compatible?. In SHAN, M.; DAYAL, U.; HSU, M. (Eds.): Technologies for E-
Services, volume 3324 of LNCS. Springer Verlag, Berlin, 2005, pages 15–28

[34] BOREALE, M.; BRUNI, R.; L. CAIRE AND, R. D.; LANESE, I.; LORETI, M.; MAR-
TINS, F.; MONTANARI, U.; RAVARA, A.; SANGIORGI, D.; VASCONCELOS, V.; ZA-
VATTARO, G.: SCC: A Service Centered Calculus. In BRAVETTI, M.; NÚÑEZ, M.; ZA-
VATTARO, G. (Eds.): Web Services and Formal Methods, volume 4184 of LNCS. Springer
Verlag, Berlin, 2006, pages 38–59

[35] BPMI.ORG: Business Process Modeling Language, 2002

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

212 On the Application of a Theory for Mobile Systems to Business Process Management

[36] BPMI.ORG: Business Process Modeling Notation, 1. edition, May 2004.
http://www.bpmn.org/Documents/BPMN%20V1-0%20May%203%202004.
pdf

[37] BRIAIS, S.: ABC Bisimulation Checker, 2003.
http://lamp.epfl.ch/∼sbriais/abc/abc.html

[38] BROGI, A.; CANAL, C.; E.PIMENTEL; VALLECILLO, A.: Formalizing Web Service
Choreographies. In Proceedings of First International Workshop on Web Services and
Formal Methods. Electronic Notes in Theoretical Computer Science, Elsevier, 2004

[39] BROGI, A.; POPESCU, R.: From BPEL Processes to YAWL Workflows. In BRAVETTI,
M.; NÚÑEZ, M.; ZAVATTARO, G. (Eds.): Web Services and Formal Methods, volume
4184 of LNCS. Springer Verlag, Berlin, 2006, pages 107–122

[40] BROOKES, S.; HOARE, C.; ROSCOE, A.: A Theory of Communicating Sequential Pro-
cesses. In Journal of the ACM 31(3), 1984: pages 560–599

[41] BURBECK, S.: The Tao of E-Business Services, 2000.
http://www-128.ibm.com/developerworks/library/ws-tao/

[42] BUSI, N.; GORRIERI, R.; GUIDI, C.; LUCCHI, R.; ZAVATTARO, G.: Choreography and
Orchestration: A Synergic Approach to System Design. In BENATALLAH, B.; CASATI,
F.; TRAVERSO, P. (Eds.): Service-Oriented Computing – ICSOC 2005, volume 3826 of
LNCS. Springer Verlag, Berlin, 2005, pages 228–240

[43] CANAL, C.; PIMENTEL, E.; TROYA, J. M.: Compatibility and inheritance in software
architectures. In Science of Computer Programming 41(2), 2001: pages 105–138

[44] CARDELLI, L.; GORDON, A.: Mobile Ambients. In NIVAT, M. (Eds.): Foundations of
Software Science and Computation Structures, volume 1378 of LNCS. Springer Verlag,
Berlin, 1998, pages 140–155

[45] CERF, V.: RFC 20, ASCII format for Network Interchange, 1969.
http://www.ietf.org/rfc/rfc20.txt

[46] CHRISTENSEN, E.; CURBERA, F.; MEREDITH, G.; SANJIVA, W.: Web Service Descrip-
tion Language (WSDL) 1.1. IBM, Microsoft, March 2001. W3C Note,
http://www.w3.org/TR/wsdl

[47] COOK, W. R.; PATWARDHAN, S.; MISRA, J.: Workflow Patterns in Orc. In CIANCAR-
INI, P.; WIKLICKY, H. (Eds.): Coordination Models and Languages, volume 4038 of
LNCS. Springer Verlag, 2006, pages 82–96

[48] CURTIS, B.; KELLNER, M. I.; OVER, J.: Process Modeling. In Communications of the
ACM 35(9), 1992: pages 75–90

http://www.bpmn.org/Documents/BPMN%20V1-0%20May%203%202004.pdf
http://www.bpmn.org/Documents/BPMN%20V1-0%20May%203%202004.pdf
http://lamp.epfl.ch/~sbriais/abc/abc.html
http://www-128.ibm.com/developerworks/library/ws-tao/
http://www.ietf.org/rfc/rfc20.txt
http://www.w3.org/TR/wsdl

BIBLIOGRAPHY 213

[49] DAVULCU, H.; KIFER, M.; RAMAKRISHNAN, C.; RAMAKRISHNAN, I.: Logic Based
Modeling and Analysis of Workflows. In Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems. ACM Press, 1998,
pages 25–33

[50] DAYAL, U.; HSU, M.; LADIN, R.: Organizing Long-Running Activities with Triggers
and Transactions. In Proceedings of the 1990 ACM SIGMOD international conference
on Management of data. ACM Press, New York, 1990, pages 204–214

[51] DEHNERT, J.; RITTGEN, P.: Relaxed Soundness of Business Processes. In DITTRICH,
K.; GEPPERT, A.; NORRIE, M. (Eds.): anced Information Systems Engineering: 13th
International Conference (CAiSE 2001), volume 2068 of LNCS. Springer Verlag, Berlin,
2001, pages 157–170

[52] DEREMER, F.; KRON, H.: Programming-in-the-Large versus Programming-in-the-
Small. In IEEE Transactions on Software Engineering SE-2(2), 1976

[53] DONG, Y.; SHEN-SHENG, Z.: Approach for workflow modeling using π-calculus. In
Journal of Zhejiang University Science 4(6), 2003: pages 643–650

[54] EHRIG, H.; MAHR, B.; CORNELIUS, F.; GROSSE-RHODE, M.; ZEITZ, P.:
Mathematisch-strukturelle Grundlagen der Informatik. Springer Verlag, Berlin, 2. edi-
tion, 2001

[55] EMMERICH, W.; GRUHN, V.: FUNSOFT nets: a Petri-net based software process model-
ing language. In IWSSD ’91: Proceedings of the 6th international workshop on Software
specification and design. IEEE Computer Society Press, Los Alamitos, CA, USA, 1991,
pages 175–184

[56] ENGBERG, U.; NIELSEN, M.: A Calculus of Communication Systems with Label Pass-
ing. Technical report DAIMI PB-208, University of Aarhus, 1986

[57] FARAHBOD, R.; GLÄSSER, U.; VAJIHOLLAHI, M.: Specification and Validation of the
Business Process Execution Language for Web Services. In ZIMMERMANN, W.; THAL-
HEIM, B. (Eds.): Abstract State Machines 2004. Advances in Theory and Practice: 11th
International Workshop (ASM 2004), volume 3052 of LNCS. Springer Verlag, Berlin,
2004, pages 78–94

[58] FERRARA, A.: Web Services: A Process Algebra Approach. In ICSOC ’04: Proceedings
of the 2nd international conference on Service oriented computing. ACM Press, New
York, NY, USA, 2004, pages 242–251

[59] FIELDING, R.: Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine, CA, USA, 2000.
http://www.ics.uci.edu/∼fielding/pubs/dissertation/top.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

214 On the Application of a Theory for Mobile Systems to Business Process Management

[60] FISTEUS, J.; FERNÁNDEZ, L.; KLOOS, C.: Formal Verification of BPEL4WS Business
Collaborations. In BAUKNECHT, K.; BICHLER, M.; PRÖLL, B. (Eds.): E-Commerce
and Web Technologies: 5th International Conference (EC-Web 2004), volume 3182 of
LNCS. Springer Verlag, Berlin, 2004, pages 76–85

[61] FOURNET, C.; GONTHIER, G.: The reflexive CHAM and the join-calculus. In POPL ’96:
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. ACM Press, New York, NY, USA, 1996, pages 372–385

[62] FU, X.; BULTAN, T.; SU, J.: Analysis of interacting BPEL web services. In WWW ’04:
Proceedings of the 13th international conference on World Wide Web. ACM Press, New
York, NY, USA, 2004, pages 621–630

[63] GEORGAKOPOULOS, D.; HORNICK, M.; SHETH, A.: An Overview of Workflow Man-
agement: From Process Modeling to Workflow Automation Infrastructure. In Distributed
and Parallel Databases 3(2), 1995: pages 119–153

[64] GLABBEEK, R.; WEIJLAND, W.: Branching Time and Abstraction in Bisimulation Se-
mantics. In Journal of the ACM 43(3), 1996: pages 555–600

[65] GORRIERI, R.; GUIDI, C.; LUCCHI, R.: Reasoning About Interaction Patterns in Chore-
ography. In BRAVETTI, M.; KLOUL, L.; ZAVATTARO, G. (Eds.): Formal Techniques
for Computer Systems and Business Processes, volume 3670 of LNCS. Springer Verlag,
Berlin, 2005, pages 333–348

[66] GOTTSCHALK, K.: Web Services Architecture Overview, 2000.
http://www-128.ibm.com/developerworks/webservices/library/
w-ovr/

[67] GUIDI, C.; LUCCHI, R.: Mobility Mechanisms in Service Oriented Computing. In GOR-
RIERI, R.; WEHRHEIM, H. (Eds.): Formal Methods for Open Object-Based Distributed
Systems, volume 4037 of LNCS. Springer Verlag, Berlin, 2006, pages 233–250

[68] GUIDI, C.; LUCCHI, R.; GORRIERI, R.; BUSI, N.; ZAVATTARO, G.: SOCK: A Calcu-
lus for Service Oriented Computing. In DAM, A.; LAMERSDORF, W. (Eds.): Service-
Oriented Computing – ICSOC 2006, volume 4294 of LNCS. Springer Verlag, Berlin,
2006, pages 327–338

[69] HADDAD, S.; POITRENAUD, D.: Theoretical Aspects of Recursive Petri Nets. In DO-
NATELLI, S.; KLEIJN, J. (Eds.): Applications and Theory of Petri Nets 1999, volume
1639 of LNCS. Springer Verlag, Berlin, 1999, pages 228–247

[70] HINZ, S.; SCHMIDT, K.; STAHL, C.: Transforming BPEL to Petri nets. In AALST, W.;
BENATALLAH, B.; CASATI, F. (Eds.): Business Process Management, volume 3649 of
LNCS. Springer Verlag, Berlin, 2005, pages 220–235

[71] HOARE, C.: Communicating Sequential Processes. In Communications of the ACM
21(8), 1978: pages 666–677

http://www-128.ibm.com/developerworks/webservices/library/w-ovr/
http://www-128.ibm.com/developerworks/webservices/library/w-ovr/

BIBLIOGRAPHY 215

[72] HOARE, C.: Communicating Sequential Processes. Prentice Hall, New York, 1985

[73] HOLLINGSWORTH, D.: The Workflow Reference Model. Technical report, Workflow
Management Coalition, Hampshire, 1995.
http://www.wfmc.org/standards/docs/tc003v11.pdf

[74] HUHNS, M.; SINGH, M.: Workflow Agents. In IEEE Internet Computing July 1998:
pages 94–96

[75] HÜNDLING, J.; WESKE, M.: Web Services: Foundation and Composition. In EM -
Electronic Markets Journal 13(2), June 2003: pages 108–119.
http://www.electronicmarkets.org/modules/pub/view.php/
electronicmarkets-378

[76] IBM: Web Services Flow Language (WSFL 1.0), May 2001

[77] JENSEN, K.: Coloured Petri Nets. Springer Verlag, Berlin, 2. edition, 1997

[78] KELLER, G.; NÜTTGENS, M.; SCHEER, A.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical report 89, Institut für
Wirtschaftsinformatik, Saarbrücken, 1992

[79] KNOLMAYER, G.; ENDL, R.; PFAHRER, M.: Modeling Processes and Workflows by
Business Rules. In AALST, W.; DESEL, J.; OBERWEIS, A. (Eds.): Business Pro-
cess Management: Models, Techniques, and Empirical Studies, volume 1806 of LNCS.
Springer Verlag, Berlin, 2000, pages 16–29

[80] KNUTH, D. E.: The Art of Computer Programming, Volume 1. Addison–Wesley, 3.
edition, 1997

[81] LAKOS, C.: From Coloured Petri nets to Object Petri nets. In DE MICHELIS, G.; DIAZ,
M. (Eds.): Application and Theory of Petri Nets 1995, volume 935 of LNCS. Springer
Verlag, 1995, pages 278–297

[82] LANEVE, C.; ZAVATTARO, G.: Foundations of Web Transactions. In SASSONE, V.
(Eds.): Foundations of Software Science and Computational Structures, volume 3441 of
LNCS. Springer Verlag, Berlin, 2005, pages 282–298

[83] LEYMANN, F.; ROLLER, D.: Production Workflow: Concepts and Techniques. Prentice
Hall PTR, New Jersey, 2000

[84] MARTENS, A.: On Compatibility of Web Services. In Petri Net Newsletter 65, 2003:
pages 12–20

[85] MARTENS, A.: Analyzing Web Service based Business Processes. In CERIOLI, M.
(Eds.): Fundamental Approaches to Software Engineering (FASE’05), volume 3442 of
LNCS. Springer Verlag, April 2005, pages 19–33

http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.electronicmarkets.org/modules/pub/view.php/electronicmarkets-378
http://www.electronicmarkets.org/modules/pub/view.php/electronicmarkets-378

216 On the Application of a Theory for Mobile Systems to Business Process Management

[86] MASSUTHE, P.; REISIG, W.; SCHMIDT, K.: An Operating Guideline Approach to the
SOA. In Annals of Mathematics, Computing & Teleinformatics 1(3), 2005: pages 35–43

[87] MASSUTHE, P.; SCHMIDT, K.: Operating Guidelines - an Automata-Theoretic Foun-
dation for the Service-Oriented Architecture. In Proceedings of the 5th International
Conference on Quality Software (QSIC’05) 2005: pages 452–457

[88] MAZZARA, M.; LANESE, I.: Towards a Unifying Theory for Web Service Composition.
In BRAVETTI, M.; NÚÑEZ, M.; ZAVATTARO, G. (Eds.): Web Services and Formal Meth-
ods, volume 4184 of LNCS. Springer Verlag, Berlin, 2006, pages 257–272

[89] Microsoft: XLang Web Services for Business Process Design, 2001

[90] MILNER, R.: An Algebraic Definition of Simulation between Programs. In Proceed-
ings of the 2nd International Joint Conference on Artifical Intelligence. British Computer
Society, 1971, pages 481–489

[91] MILNER, R.: Flowgraphs and Flow Algebras. In Journal of the ACM 26(4), 1979: pages
794–818

[92] MILNER, R.: A Calculus of Communicating Systems, Volume 94 of LNCS. Springer
Verlag, 1980

[93] MILNER, R.: Lectures on a Calculus for Communicating Systems. In BROOKES, S.;
ROSCOE, A.; WINSKEL, G. (Eds.): Seminar on Concurrency: Carnegie-Mellon Univer-
sity Pittsburgh, volume 197 of LNCS. Springer Verlag, Berlin, 1985, pages 197–220

[94] MILNER, R.: Communication and Concurrency. Prentice Hall, New York, 1989

[95] MILNER, R.: Functions As Processes. In PATERSON, M. (Eds.): Automata, Languages,
and Programming, volume 443 of LNCS. Springer Verlag, 1990, pages 167–180

[96] MILNER, R.: The polyadic π–Calculus: A tutorial. In BAUER, F. L.; BRAUER, W.;
SCHWICHTENBERG, H. (Eds.): Logic and Algebra of Specification. Springer Verlag,
Berlin, 1993, pages 203–246

[97] MILNER, R.: Communicating and Mobile Systems: The π-calculus. Cambridge Univer-
sity Press, Cambridge, 1999

[98] MILNER, R.: Bigraphical Reactive Systems. In ACETO, L.; INGÓLFSDÓTTIR, A. (Eds.):
Foundations of Software Science and Computation Structures, volume 3921 of LNCS.
Springer Verlag, London, UK, 2001, pages 16–35

[99] MILNER, R.; PARROW, J.; WALKER, D.: A Calculus of Mobile Processes, Part I/II. In
Information and Computation 100, September 1992: pages 1–77

[100] MOLDT, D.; VALK, R.: Object Oriented Petri Nets in Business Process Modeling. In
AALST, W.; DESEL, J.; OBERWEIS, A. (Eds.): Business Process Management, volume
1806 of LNCS. Springer Verlag, Berlin, 2000, pages 254–273

BIBLIOGRAPHY 217

[101] MOLDT, H., DANIEL UND RÖLKE: Pattern Based Workflow Design Using Reference
Nets. In AALST, W.; HOFSTEDE, A.; WESKE, M. (Eds.): Business Process Manage-
ment, volume 2678 of LNCS. Springer Verlag, Berlin, 2003, pages 246–260

[102] MULYAR, N.; AALST, W.: Patterns in Colored Petri nets. BETA Working Paper Series
WP 139, Eindhoven University of Technology, Eindhoven, 2005

[103] NESTMANN, U.: Welcome to the Jungle: A Subjective Guide to Mobile Process Calculi.
In BAIER, C.; HERMANNS, H. (Eds.): CONCUR 2006 – Concurrency Theory, volume
4137 of LNCS. Springer Verlag, Berlin, 2006, pages 52–63

[104] NEWCOMER, E.; LOMOV, G.: Understanding SOA with Web Services. Addison–Wesley,
2005

[105] OASIS: UDDI Version 3.0.2, October 2004

[106] OMG: UML 2.0 Superstructure Final Adopted specification, 2003

[107] PARK, D.: Concurrency and Automata on Infinite Sequences. In DEUSSEN, P. (Eds.):
Theoretical Computer Science: 5th GI-Conference , volume 104 of LNCS. Springer Ver-
lag, Berlin, 1981, pages 167–183

[108] PARROW, J.: An Introduction to the π–Calculus. In BERGSTRA, J.; PONSE, A.;
SMOLKA, S. (Eds.): Handbook of Process Algebra. Elsevier, 2001, pages 479–543

[109] PARROW, J.; VICTOR, B.: The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. In Proceedings of the 13th Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society, Washington, DC, USA, 1998, pages 176–

[110] PETRI, C. A.: Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle
Mathematik, Bonn, 1962

[111] ROSCOE, A.: Theory and Practice of Concurrency. Prentice Hall, 2005

[112] RUSELL, N.; HOFSTEDE, A.; AALST, W.; MULYAR, N.: Workflow Control Flow
Patterns: A Revised View.
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/
BPM-06-22.pdf

[113] RUSSELL, N.; HOFSTEDE, A.; EDMOND, D.; AALST, W.: Workflow Data Patterns.
QUT Technical Report FIT-TR-2004-01, Queensland University of Technology, Bris-
bane, 2004.
http://is.tm.tue.nl/research/patterns/download/data
patterns%20BETA%20TR.pdf

[114] RUSSELL, N.; HOFSTEDE, A.; EDMOND, D.; AALST, W.: Workflow Resource Patterns.
BETA Working Paper Series WP 127, Eindhoven University of Technology, Eindhoven,
2004.

http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-22.pdf
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-22.pdf
http://is.tm.tue.nl/research/patterns/download/data_patterns%20BETA%20TR.pdf
http://is.tm.tue.nl/research/patterns/download/data_patterns%20BETA%20TR.pdf

218 On the Application of a Theory for Mobile Systems to Business Process Management

http://is.tm.tue.nl/research/patterns/download/Resource%
20Patterns%20BETA%20TR.pdf

[115] SALAÜN, G.; BORDEAUX, L.; SCHAERF, M.: Describing and Reasoning on Web Ser-
vices using Process Algebra. In ICWS ’04: Proceedings of the IEEE International Con-
ference on Web Services (ICWS’04). IEEE Computer Society, Washington, DC, USA,
2004, pages 43–

[116] SANGIORGI, D.: A Theory of Bisimulation for the Pi-Calculus. In BEST, E. (Eds.):
CONCUR’93, volume 715 of LNCS. Springer Verlag, Berlin, 1993, pages 127–142

[117] SANGIORGI, D.: An Investigation into Functions as Processes. In MAIN, M.; MELTON,
A.; MISLOVE, M.; SCHMIDT, D. (Eds.): Mathematical Foundations of Programming
Semantics, volume 802 of LNCS. Springer Verlag, 1994, pages 143–159

[118] SANGIORGI, D.; WALKER, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge, paperback edition, 2003

[119] SCHLINGLOFF, B.; MARTENS, A.; SCHMIDT, K.: Modeling and Model Checking Web
Services. In Electronic Notes in Theoretical Computer Science: Issue on Logic and Com-
munication in Multi-Agent Systems 126, 2005: pages 3–26

[120] STEFANSEN, C.: Expressing Workflow Patterns in CCS, 2005. PhD report,
http://www.stefansen.dk/papers/workflowpatterns.pdf

[121] STOERRLE, H.: Semantics of Control-Flow in UML 2.0 Activities. In VLHCC ’04: Pro-
ceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric Computing
(VLHCC’04). IEEE Computer Society, Washington, DC, USA, 2004, pages 235–242

[122] TURING, A.: On Computable Numbers, with an Application to the Entscheidungsprob-
lem. In Proceedings of the London Mathematical Society 2(42), 1936: pages 230–265

[123] TURNER, D. N.: The Polymorphic Pi-calculus: Theory and Implementation. PhD thesis,
University of Edinburgh, Edinburgh, 1995

[124] VALK, R.: Self-Modifying Nets, a Natural Extension of Petri Nets. In AUSIELLO,
G.; BÖHM, C. (Eds.): Automate, Languages, and Programming, volume 62 of LNCS.
Springer Verlag, Berlin, 1978, pages 464–476

[125] VICTOR, B.; MOLLER, F.; DAM, M.; ERIKSSON, L.-H.: The Mobility Workbench,
2005.
http://www.it.uu.se/research/group/mobility/mwb

[126] W3C: Web Services Glossary, 2004.
http://www.w3.org/TR/ws-gloss/

[127] W3C.org: Web Service Choreography Interface (WSCI), 1. edition, August 2002.
http://www.w3.org/TR/wsci/

http://is.tm.tue.nl/research/patterns/download/Resource%20Patterns%20BETA%20TR.pdf
http://is.tm.tue.nl/research/patterns/download/Resource%20Patterns%20BETA%20TR.pdf
http://www.stefansen.dk/papers/workflowpatterns.pdf
http://www.it.uu.se/research/group/mobility/mwb
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/wsci/

BIBLIOGRAPHY 219

[128] W3C.org: Web Service Choreography Description Language (WS-CDL), 1. edition, April
2004.
http://www.w3.org/TR/ws-cdl-10/

[129] WESKE, M.: Deadlocks in Computersystemen. Thomson Publishing, Bonn, 1995

[130] WESKE, M.: Workflow Management Systems: Formal Foundation, Conceptual Design,
Implementation Aspects. Habilitationsschrift, Fachbereich Mathematik und Informatik,
Universität Münster, Münster, 2000

[131] WESKE, M.; VOSSEN, G.; PUHLMANN, F.: Handbook on Architectures of Information
Systems, Springer Verlag, Berlin, Chapter Workflow Languages. 2. edition, 2005, pages
369–390

[132] WHITE, S. A.: Introduction to BPMN. Technical report, IBM, 2004.
http://bpmn.org/Documents/Introduction%20to%20BPMN.pdf

[133] WHITE, S. A.: Process Modeling Notations and Workflow Patterns. Technical report,
IBM, 2004.
http://www.bpmn.org/Documents/Notations%20and%20Workflow%
20Patterns.pdf

[134] WOHED, P.; AALST, W.; DUMAS, M.; HOFSTEDE, A.; RUSSELL, N.: On the Suitability
of BPMN for Business Process Modelling. In DUSTDAR, S.; FIADEIRO, J.; SHETH, A.
(Eds.): Business Process Management, volume 4102 of LNCS. Springer Verlag, Berlin,
2006, pages 161–176

[135] WONG, P. Y.; GIBBONS, J.: A Process Algebraic Approach to Workflow Verification,
2006. Unpublished report,
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/
pattern.pdf

[136] WOODLEY, T.; GAGNON, S.: BPM and SOA: Synergies and Challenges. In NGU, A.;
KITSUREGAWA, M.; NEUHOLD, E.; CHUNG, J.; SHENG, Q. (Eds.): Web Information
Systems Engineering – WISE 2005: 6th International Conference on Web Information
Systems Engineering, volume 3806 of LNCS. Springer Verlag, Berlin, 2005, pages 679–
688

[137] WYNN, M.; EDMOND, D.; AALST, W.; HOFSTEDE, A.: Achieving a General, Formal
and Decidable Approach to the OR-join in Workflow using Reset nets. In CIARDO, G.;
DARONDEAU, P. (Eds.): Applications and Theory of Petri Nets 2005, volume 3536 of
LNCS. Springer Verlag, Berlin, 2005, pages 423–443

http://www.w3.org/TR/ws-cdl-10/
http://bpmn.org/Documents/Introduction%20to%20BPMN.pdf
http://www.bpmn.org/Documents/Notations%20and%20Workflow%20Patterns.pdf
http://www.bpmn.org/Documents/Notations%20and%20Workflow%20Patterns.pdf
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/pattern.pdf
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/pattern.pdf

	Abstract
	Publications
	Acknowledgements
	I Foundations
	Introduction to Part I
	The Shifting Focus
	Shifting Requirements
	From Static to Dynamic Systems
	From Central Engines to Distributed Services
	From Closed to Open Environments

	Advancing Theories
	Sequential Systems
	Parallel Systems
	Mobile Systems

	Scope and Scientific Contribution
	Scoping
	Contribution
	Structure

	The Pi-Calculus
	Classification
	Syntax and Semantics
	Bindings
	Structural Congruence
	Reduction Semantics
	Flow Graphs

	Bisimulation
	LTS Semantics
	Ground Bisimulation
	Open Bisimulation

	Business Process Management
	Workflow
	Workflow Perspectives
	Formal Foundations

	Service-oriented Architectures
	Orchestrations and Choreographies
	Formal Foundations

	Graphical Notation
	Business Process Diagrams
	Formal Foundations

	II Investigations
	Introduction to Part II
	Data
	Structures
	Basic Structures
	Iterators

	Values, Types, and Functions
	Booleans and Bytes
	Natural Numbers
	Syntactical Extensions
	Derived Values and Structures

	Data Patterns
	Data Visibility Patterns
	Data Interaction Patterns
	Data Transfer Patterns
	Data-based Routing Patterns

	Processes
	Representation
	Structure
	Behavior
	Processes and Instances

	Process Patterns
	Basic Control Flow Patterns
	Advanced Branching and Synchronization Patterns
	Structural Patterns
	Multiple Instance Patterns
	State Based Patterns
	Cancellation Patterns
	Additional Pattern

	Properties
	Structural Soundness
	Lazy Soundness
	Weak Soundness
	Relaxed Soundness

	Interactions
	Representation
	Correlations and Dynamic Binding
	Structure
	Behavior

	Interaction Patterns
	Single Transmission Bilateral Interaction Patterns
	Single Transmission Multilateral Interaction Patterns
	Multi Transmission Interaction Patterns
	Routing Patterns

	Properties
	Interaction Soundness
	Interaction Equivalence

	III Results
	Introduction to Part III
	Unification
	Formal Models
	The Customer
	The Bank
	The Broker
	The Loan Broker Interaction

	Simulation
	Reasoning
	Lazy Soundness of the Customer
	Interaction Soundness of the Customer
	Interaction Equivalence of the Banks
	Conclusion

	Discussion
	Revisiting the Shifting Focus
	Dynamic Binding
	Composition and Visibility
	Change

	Formal Foundations
	Minimum Bisimulation Equivalence Requirements
	Efforts for Bisimulation
	Expressiveness of Bisimulations for Soundness
	Drawbacks of (Bi)-Simulation for Service Equivalence
	Drawbacks of the Pi-Calculus Semantics

	Related Work
	Data, Process, and Interaction Patterns
	Extended BPMN
	Abstract Views of Processes and Interactions with Dynamic Binding
	Lazy Soundness
	Interaction Soundness and Equivalence
	Related Formalizations
	Work in Progress

	Conclusion
	Summary
	Future Work
	Concluding Remarks

	IV Appendix
	Examples
	Processes
	Lazy Soundness
	Weak Soundness
	Relaxed Soundness

	Interactions
	Interaction Soundness
	Interaction Equivalence

	Unification
	Lazy Soundness of the Customer
	Interaction Soundness of the Customer
	Interaction Equivalence of the Banks
	Debugging Session

	Bibliography

