Interaction Soundness for Service Orchestrations

Frank Puhlmann and Mathias Weske

Business Process Technology Group
Hasso-Plattner-Institute for I'T Systems Engineering
at the University of Potsdam
D-14482 Potsdam, Germany
{puhlmann,weske}Ghpi.uni-potsdam.de

Abstract. Traditionally, service orchestrations utilize services accord-
ing to a choreography where they are a part of. The orchestrations as
well as the choreographies describe pre-defined sequences of behavior.
This paper investigates if a given orchestration can be enacted without
deadlocks, i.e. is interaction sound, inside an environment made up of dif-
ferent services. In contrast to existing approaches, we utilize link passing
mobility to directly represent dynamic binding as found in service ori-
ented architectures. Thus, the sequences of interaction behavior are not
statically pre-defined but rather depend on the possible behavior of the
services in the environment.

1 Introduction

Service oriented architectures (SOA) comprise service orchestrations and chore-
ographies [I]. While orchestrations resemble the internal processes of services,
choreographies defines how different services should interact with each other. In
this paper we focus on orchestrations that are enacted inside an environment of
different services. Instead of reasoning on pre-defined sequences of interactions
as given by a choreography, we would rather like to know if a certain orchestra-
tions works seamlessly, i.e. without deadlocks, inside an environment made up of
different services as possible interaction partners. The services are not statically
connected to the orchestration, but are dynamically bound. For this dynamic
binding to take place, we consider a service broker able to return semantically
matching services that, however, might have different interaction behaviors. To
cope with these different behaviors, we present an approach to determine if a
certain orchestration is capable of interacting with a given set of dynamically
bound services regardless of a pre-defined behavior.

The approach introduced, denoted as interaction soundness, utilizes lazy
soundness for deciding deadlock freedom of orchestrations without considering
interactions with the environment [2]. Interaction soundness extends lazy sound-
ness by taking these interactions into account. As already motived in [I], the core
of a SOA is dynamic discovery and binding of interaction partners. Lazy sound-
ness has been chosen because it can be proven using bisimulation techniques of
a process algebra, the m-calculus. The 7-calculus in turn supports link passing

2 Frank Puhlmann and Mathias Weske

Stock Stock Stock
Exchange A Exchange B Exchange C

A A A A

Stock Exchange Repository

B =
------1--

4 B2

YV
Find & Bind
Stock Exchanges

Stock Broker

Fig. 1. Stock Exchange Choreography.

mobility, a key feature required for representing dynamic binding [3]. An ex-
tended discussion on our motivation for using the m-calculus can be found in
[4]. Furthermore, the paper builds on existing work on using the m-calculus for
business process management and service oriented architectures [5l6].

The remainder of the paper is structured as follows. We first motivate the
topic by introducing an example and refer to related work. Preliminaries are
introduced, including w-calculus as well as the representation of orchestrations
and choreographies in it. Based thereon, interaction soundness is defined. The
paper concludes with a demonstration of existing tool support and a discussion
of the achievements.

2 Motivation and Related Work

To motivate the topic, an example is shown in figure [I, denoted in a slightly
extended variant of the Business Process Modeling Notation (BPMN). The ex-
ample describes the orchestration of a Stock Broker service and its environment.
The stock broker offers the ability of bidding at two different stock exchanges
at the same time and place the order at the first stock exchange responding
positive, i.e. where the order can be placed. This functionality is realized inside
the orchestration using a discriminator pattern [7], denoted as a BPMN gateway
containing the number of required incoming edges. Since there are many stock
exchanges available with different properties such as fees, rates, and of course
business hours, a Stock Exchange Repository is contained as a service in the en-
vironment. It is invoked as the first task of the stock broker, Find & Bind Stock
Ezchanges. The repository has knowledge about a number of Stock Exchanges,
connected in the BPMN diagram using associations. Two of them matching the
requested conditions are returned to the stock broker. The stock broker is now
able to dynamically bind to the stock exchanges formerly unknown. This is de-
noted using in- and outgoing message flows at the activities Bid at first Stock

Interaction Soundness for Service Orchestrations 3

Ezchange and Bid at second Stock Exchange. Each stock exchange returns a
special token if the bid has been accepted. This token is used inside Place Or-
der to place the order at the corresponding stock exchange. Of course, only the
successful bidder should be able to place the order.

We now argue why reasoning regarding the soundness of the example is far
from trivial. First of all, the stock broker’s orchestration contains a discrimi-
nator. As already shown in [2], a discriminator leaves running (lazy) activities
behind, i.e. the second activity before the discriminator remains active after
the first one has completed. This might even be true if the final activity of the
orchestration has already been reached. In terms of Petri nets, token remain
in the net. According to the Petri net based soundness definition [8], however,
an orchestration that contains tokens after the final marking has been reached,
is not sound. Secondly, the orchestration is contained inside an environment,
where the services are dynamically bound at runtime. Thus, reasoning includes
all combinations of services that can be potentially bound.

To overcome these problems, we propose adapting lazy soundness based on
the m-calculus for interaction soundness. Lazy soundness takes care of lazy activ-
ities, thus solving the first problem (an extended discussion including other kinds
of soundness can be found in [2]). More importantly, the 7-calculus features link
passing mobility, required for describing and reasoning on dynamic binding [3].

Related work comprises for instance Martens using Petri nets [9], Bordeaux
and Salan using CCS [10], or Busi et al. using a proprietary process algebra [11].
However, these approaches do not adress dynamic binding. Recent research on
interaction patterns by Barros et al. in general [I2] and SOA in particular by
Guidi and Lucci [I3] showed that mobility is indeed required for service oriented
architectures.

3 Preliminaries

This section introduces the w-calculus and the representation of orchestrations
and environments in it.

3.1 The m-calculus

The m-calculus is an algebra for the formal description and analysis of concurrent,
interacting processes with support for link passing mobility. It is based on names
and interactions used by processes defined according to [14].

Definition 1 (Pi Calculus). The syntaz of the m-calculus is given by:

Pu=M|P|P |vzP|'P|P(ys, - yn)
M:=0|7n.P|M+M
ma=T() | 2(2) [7] [z =ylr .

4 Frank Puhlmann and Mathias Weske

P and M denote the processes and summations of the calculus. The informal
semantics is as follows: P|P’ is the concurrent execution of P and P’, vzP is the
restriction of the scope of the name z to P, !P is an infinite number of copies
of P, and P(y1,- - ,yn) denotes parametric recursion. 0 is inaction, a process
that can do nothing, M + M’ is the exclusive choice between M and M’'. The
actions of the calculus are given by 7. The output prefix Z(g).P sends a sequence
of names ¢ over the co-name T and then continues as P. The input prefix x(2)
receives a sequence of names over the name x and then continues as P with
7 replaced by the received names (written as {"%™¢/:}). Matching input and
output prefixes might communicate, leading to an interaction. The unobservable
prefix 7.P expresses an internal action of the process, and the match prefix
[x = y]m.P behaves as 7.P, if x is equal to y. Throughout this paper, upper
case letters are used for process identifiers and lower case letters for names. The
formal semantics of the m-calculus is based on a transition system. We only give
short definitions of the required concepts and refer to [I4/15] for details.

Definition 2 (Transition Sequence). A sequence of interactions on names
or unobservable actions is denoted as P — P', where o describes the sequence
of actions required to transform a process P to P'. O

Thus, a transition sequence describes how a certain state P of a process is
transfered to another denoted P’.

Definition 3 (Bound and Free Names). The w-calculus has two operators
for name binding, x(z) and vzP. In both cases the name z is bound inside
process P. Names which are not bound by a name binding operator are called
free names of a process. O

Bound names can not be accessed from processes outside of P. Free names
can be used for interactions between different processes. The free names of a
processes can furthermore be observed outside of the process P for reasoning on
bisimulation equivalence.

Definition 4 (Weak Open Bisimulation Equivalence). Informally, two -
calculus processes P and () are weak open bisimulation equivalent, denoted as

~° @, if they have the same observable behavior regarding their free names
while abstracting from all internal actions. O

Weak open bisimulation is used to prove interaction soundness later on. Formal
details can be found in [I5].

3.2 Orchestrations in the mw-calculus

Orchestrations can be formalized using set theory and w-calculus. The former
is used to denote the static structure of the orchestration called process graph;
the latter gives a formal semantics to a process graph. Since orchestrations are
usually denoted graphically, a breakdown from graphical representations over
process graphs up to m-calculus is possible.

Interaction Soundness for Service Orchestrations 5

Definition 5 (Process Graph). A process graph is a four-tuple consisting of
nodes, directed edges, types and attributes. Formally: P = (N, E, T, A) with
— N is a finite, non-empty set of nodes.
— EC (N x N) is a set of directed edges.
— T : N — 2TYPE 45 function mapping nodes to sets of types.
— A: N -» KEY xVALUE is a partial function mapping nodes to key/value
pairs. O

The nodes N of a process graph define the activities (incl. routing elements) of
an orchestration, and the directed edges E define dependencies between activi-
ties. Each node can have none, one, or more types assigned by the function T'.
Furthermore, each node can hold optional attributes represented by key/values
pairs assigned by the function A. Details will become more clear by looking at
the process graph of the stock broker from figure[I] We now utilize the identifiers
from the figure:
Ezample 1 (Process Graph of the Stock Broker Orchestration).
1. N ={B1,B2,B3, B4, B5, B6, B7, B8}
2. E ={(B1,B2), (B2, B3), (B3, B4), (B3, B5), (B4, B6), (B5, B6),
(B6, BT), (B7,B8) }
3. T = {(B1, {Start Event}), (B2, {Task}), (B3, {AND Gateway}), (B4, {Task}),
(B5, {Task}), (B6, {N-out-of-M-Join}), (B7, {Task}), (B8, {End Event})}
4. A = {(B6, (continue, 1))}

Each node of the orchestration is denoted as an element of IV, whereas sequence
flows between nodes are denoted in E. The types are simply represented as
the textual name of the corresponding BPMN element in 7. Other notations
like EPCs or UML2 Activity Diagrams cause other types. The discriminator is
denoted as a special kind of n—out—of-m—join with n = 1. This threshold is
denoted in the set A.

However, since a process graph only denotes a static structure of an orches-
tration, in particular even with different types for the nodes, a formal semantics
is given by mapping the process graph to m-calculus expressions. Therefore, we
assume each node of the process graph to represent one of the workflow patterns
[7]. The steps for mapping process graphs to m-calculus can then be sketched as
follows (see [2] for a complete description).

Algorithm 1 (Sketch: Mapping Process Graphs to m-calculus Pro-
cesses). A process graph P = (Py, Pg, Pr, P4) is mapped to the m-calculus
as follows:

1. Assign all nodes of P a unique m-calculus process identifier N1--- N|Py].

2. Assign all edges of P a unique w-calculus name el - - - e| Pg|.

3. Define the m-calculus processes according to the m-calculus mapping of the
workflow patterns found in [53] as given by the type of the corresponding
node. Each functional part of an activity is represented by the unobservable
prefix 7 since it is abstracted from concrete realizations.

4. Define a global process N = (vel,--- ,e|Pg|) Hli’{‘ Ni. O

Section [p| contains a m-calculus mapping of the example.

6 Frank Puhlmann and Mathias Weske

3.3 Environments in the w-calculus

Environments can be split into static ones with pre-defined bindings and such
supporting dynamic binding. For static environments, a corresponding concept
to a process graph, called interaction graph IG, can be introduced. An inter-
action graph relates several process graphs by interaction flow, according to
Message Flow in BPMN.

However, the focus of this paper is on environments that support dynamic
binding as given in the example. These environments are closely linked to the
service interaction patterns by Barros et al. [I2]. The patterns describe pos-
sible interaction behavior between services. To our knowledge, there exists no
graphical notation that supports the representation of dynamic binding. Since a
graphical representation is missing, we define the environments from scratch in
m-calculus. This is done according to [3], where correlations and dynamic service
invocation in 7-calculus have been introduced. A synchronous service invocation
is denoted in the m-calculus as:

A=b
B=b

(
(

where A is the service requester and B is the service provider. The formalization
leaves it open if A knows the link b at design time or acquired it during runtime.
If the system is defined as

9)-A'

ms
msg).B’,

S=(b)(A|B),

A and B share the link b since design time. Using link passing mobility in 7-
calculus, we can model a repository R = lookup(b).R that transmits the link at
runtime:

S = (vlookup)(lookup(b).A | (vb)(B | R)) .

An overview of formalizing more complex service interaction patterns in -
calculus including further references is given in [6].

4 Interaction Soundness

This section derives interaction soundness for orchestrations based on lazy sound-
ness. Lazy soundness proves an orchestration containing lazy activities to be free
of deadlocks and livelocks. Interaction soundness extends lazy soundness by in-
corporating the interactions between the orchestration and the environment.

4.1 Lazy Soundness

Lazy soundness requires structural soundness and semantic reachability. A pro-
cess graph representing an orchestration is called structurally sound if it has
exactly one initial node, exactly one final node and all nodes lie on a path from
the initial to the final node.

Interaction Soundness for Service Orchestrations 7

Definition 6 (Structural Sound). A process graph P = (N, E,T, A) is struc-
tural sound if and only if:

1. There is exactly one initial node N; € N.
2. There is exactly one final node N, € N.
3. Every node is on a path from N; to N,. O

Semantic reachability extends reachability by taking the semantics of the nodes
into account.

Definition 7 (Semantic Reachability). A node N1 € N of a process graph
P = (N,E,T,A) is semantically reachable from another node No € N, denoted
as N1 ~ N, if and only if there exists a path leading from Ny to N according
to the semantics of all nodes.

Regarding the mapping of a w-calculus process from a process graph, a w-calculus
process P; representing a node is semantically reachable from another 7-calculus
process P, representing a node, if and only if there exists a transition sequence
from the functional abstraction 7 of P; to the functional abstraction 7 of process
P,. Lazy soundness is now defined as follows:

Definition 8 (Lazy Sound). A structural sound process graph P = (N, E, T, A)
1s lazy sound if and only if:

1. The final node N, must be semantically reachable from every node n € N
semantically reachable from the initial node until N, has been reached for
the first time. Formally: ¥n € N with N; ~» n : n ~» N, holds until N, has
been reached for the first time.

2. The final node N, is reached exactly once.

Definition [8| states that a lazy sound process graph representing a business pro-
cess is deadlock and livelock free as long as the final node has not been executed
(8l[). Once the final node has been executed, other nodes might still be exe-
cuted, however they do not semantically reach the final node again . Lazy
soundness can be proven by tracing the initial and the final activity of a process
graph mapped to m-calculus processes.

4.2 Interaction Soundness for Service Orchestrations

Interaction soundness is defined for service graphs that enhance a process graph
with interaction behavior.

Definition 9 (Service Graph). A service graph extends a process graph by
adding in- or outbound interaction edges used as a behavioral interface. Formally,
SG = (PS,C,L):

— PS = (Nps, Eps,Tps,Aps) is a structural sound process graph.
— C C(Nps x L) x (L x Npg) is a set of directed interaction edges.
— L C(C x LABEL) is a set of labels of directed interaction edges. O

8 Frank Puhlmann and Mathias Weske

PS is an orchestration describing the internal process of a service. Interactions
with the environment are denoted by C, representing in- and outgoing commu-
nication (e.g. Message Flows in BPMN). The symbol L is used as a connector
to the environment. L attaches labels based on 7-calculus names used to denote
channels and data (examples can be found in section .

A counterpart to a service graph is given by an environment that can be
utilized by the service graph.

Definition 10 (Environment). Let SG be a service graph. An environment
E for SG is given if E utilizes at least one in- or outgoing interaction edge C
of SG by providing a matching process structure.

Furthermore, a service graph SG unified with an environment FE is denoted as
SG W E. Interaction soundness is now given by:

Definition 11 (Interaction Soundness). A service graph SG is interaction
sound regarding environment E if and only if SGW E is lazy sound.

Interaction soundness states that a service graph representing an orchestration
is deadlock and livelock free under consideration of all related interactions with
the environment as long as the final activity of the orchestration has not been
reached.

4.3 Reasoning on Interaction Soundness

Since interaction soundness is defined using service graphs and environments
that do not yet have a formal semantics like process graphs, we now show how
to enhance them for reasoning. First of all, the 7-calculus mapping of the process
graph contained in the service graph is annotated with m-calculus names used
for interaction with the environment. This is done according to the labels and
directed interaction edges of the service graph. Secondly, the environment is
defined using m-calculus processes being able to interact with the w-calculus
mapping of the service graph according to [3l6]. This is currently a manual task.

Once the m-calculus representation of a system consisting of the w-calculus
mapping of a service graph and an environment has been defined, it can be
enhanced for reasoning on lazy soundness as described in [2]. Basically the -
calculus process representing the initial activity of the orchestration is enhanced
with the free name i and the m-calculus process representing the final activity is
enhanced with the free name 6. Due to that, we are able to observe the occurrence
of the initial activity and the final activity.

The distinction between interaction soundness and lazy soundness is given
by the fact that not only the structure of the service graph is checked for con-
formance, but also the agile interaction with the environment using link passing
mobility. For the 7-calculus mapping of an orchestration and an environment to
be interaction sound, ¢ and @ have to be observed exactly once for all possible
transition sequences, including the ones between the participants. Thereby, 7 is
just a helper to denote the start of the orchestration. The interesting part is

Interaction Soundness for Service Orchestrations 9

0. If 0 is not observed for all possible transition sequences, the orchestration
contains a deadlock or livelock since property (1) of definition |§] is violated. If
0 is observed more than once, property (2) of definition [§]is violated, i.e. the
orchestration contains uncontrolled loop or parallel process structures. To prove
the 7-calculus representation of an orchestrations and an environment to be in-
teraction sound, it is compared for weak open bisimulation against a manually
proved lazy sound m-calculus process given by Spazy = ©.7.0.0.

Proposition 1. A w-calculus representation SY S of a service choreography con-
sisting of (1) a mw-calculus mapping of an orchestration annotated with the free
names i for the w-calculus process representing the initial and o for the mw-calculus
process representing the final activity of the orchestration, and (2) a w-calculus

representation of a corresponding environment is interaction sound if and only
if SY S ~° f;IUAQZ)f.

5 Example and Tool Support

This section discusses how the theoretical results described in the last section can
be applied using existing m-calculus tools like the Mobility Workbench (MWB)
[16]. We utilize the example shown in figure

The 7w-calculus representation of the stock broker’s orchestration is generated
from the BPMN diagram using a tool chain developed at our groupﬂ The repos-
itory and different stock exchanges have been modeled manually, since their
agile interaction behavior can not be modeled in BPMN. Interaction between
the different participants is represented using w-calculus names. The 7-calculus
processes corresponding to figure (1] are printed below. To enable direct reason-
ing, the notation of the Mobility Workbench has been used, i.e. output prefixes
are written as 'z instead of T and " denotes v. Processes in the m-calculus are
denoted as agents.

Ezxample 2. Pi-Calculus Processes for the Stock Exchange Choreography.

agent SE_A(ch) = (“o)ch(b).t.’b<o>.0.SE_A(ch)
agent SE_B(ch) = (“o)ch(b).t.’b<o>.0.SE_B(ch)
agent SE_C(ch) = (“o)ch(b).t.’b<o>.0.SE_C(ch)

agent R(r,s1,s2,s3)=r(ch).’ch<s1>.r(ch).’ch<s2>.R(r,s1,s2,s3) +
r(ch).’ch<s2>.r(ch).’ch<s3>.R(r,s1,s2,s3) + r(ch).’ch<s1>.r(ch).’ch<s3>.R(r,s1,s2,s3)

agent B(i,o,r)=("el,e2,e3,e4,e5,e6,e7,e8)(Bl(el,i) | B2(el,e2,r) | B3(e2,e3,e4) | B4(e3,e5) |
B5(e4,e6) | B6(e5,e6,e7) | B7(e7,e8) |B8(e8,0))

agent Bil(el,i)=i.t.’el.0

agent B2(el,e2,r)=("ch)el.’r<ch>.ch(sl).’r<ch>.ch(s2).t.(’e2<s1,s2>.0 | B2(el,e2,r))

agent B3(e2,e3,e4)=e2(s1,s2).t.(’e3<s1>.0 | ’e4<s2>.0 | B3(e2,e3,e4))

agent B4(e3,e5)=("b)e3(s).’s.b(0).t.(’eb<o>.0 | B4(e3,eb))

agent B5(e4,e6)=("b)e4(s).’s.b(0).t.(’e6<0>.0 | B5(e4,eb6))

agent B6(e5,e6,e7)=("h,run) (B6_1(e5,e6,e7,h,run) | B6_2(e5,e6,e7,h,run))

agent B6_1(e5,e6,e7,h,run)=e5(0).’h<0>.0 | e6(0).’h<0>.0

agent B6_2(e5,e6,e7,h,run)=h(o0).’run<o>.h(o).B6(e5,e6,e7) | run(o).t.’e7<o0>.0

agent B7(e7,e8)=e7(0).’0.t.(’e8.0 | B7(e7,e8))

agent B8(e8,0)=e8.t.’0.B8(e8,0)

! nttp://bpt.hpi.uni-potsdam.de/twiki/bin/view/Piworkflow/Reasoner

http://bpt.hpi.uni-potsdam.de/twiki/bin/view/Piworkflow/Reasoner

10 Frank Puhlmann and Mathias Weske

agent SYS(i,o) = ("s1,s2,s3,r)(SE_A(s1) | SE_B(s2) | SE_C(s3) | R(r,s1,s2,s3) | B(i,o,r))
agent S_LAZY(i,o)=i.t.’0.0

The first three lines of the example denote simple kinds of services that are used
for reasoning. They simply create an order token o, wait for a connection via
ch(b), where b is a response channel used to signal back the o token. In between,
however, complex computation takes place that is abstracted from by 7. Note
that the different services do not differ in their interaction behavior right now,
thus we could utilize each of them inside our orchestration.

The process R denotes a very simple kind of a repository that simply returns
two arbitrary services. We omitted a complex structure based on lists that would
allow arbitrary services to register and to de-register. The stock broker’s orches-
tration is represented in the third block. B is a w-calculus process containing all
activities of the stock broker, that in turn are represented according to figure
by B1...BS8. Note the processes B2, where the stock exchanges are found at
the repository (’r<ch>.ch(s1).’r<ch>.ch(s2)), B4 and B5, where the stock
exchanges are dynamically bound and invoked (’s.b(0)). Furthermore, the
successful bidding activity forwards the order token to B7, where the order is
finally placed. To allow activities of the orchestration to be observed according
to lazy soundness, B1 and B8 are enhanced with i and ’o accordingly. The
process SY S(i,0) places all participants into a system leaving only ¢ and o as
free names. SY'S can then be compared to S_.LAZY required for deciding lazy
soundness.

The formalization given allows reasoning on the orchestration and the envi-
ronment. The problems motivated in section [2| are solved using the w-calculus
representation. Lazy (left—behind) activities before the discriminator are han-
dled using lazy soundness. The w-calculus mapping of the discriminator, found
in process B6, enables the outgoing sequence flow (denoted using e7) exactly
once for the first incoming sequence flow (here €5 or e6). The second incoming
sequence flow is simply captured. Furthermore, dynamic binding of different ser-
vices is represented using link passing mobility as shown in the example. A tool
session using MWB to prove interaction soundness is shown below:

MWB>weq SYS(i,o) S_LAZY(i,o)
The two agents are equal.

The orchestration of the stock broker inside the environment represented by
SY'S is weak open bisimulation equivalent to S_LAZY | hence the orchestration
is interaction sound. Since the orchestration includes the interactions with the
repository and stock exchanges, all possible behaviors of the services are accept-
able and will not lead to a deadlock. But what happens if one of the possible
interaction partners, e.g. one of the services, shows a different interaction behav-
ior? This can be investigated for instance by changing the definition of SE_A(ch)
to wait for a confirmation of the bidding via b before proceeding.

MWB>agent SE_A(ch) = (“o)ch(b).b(confirm).t.’b<o>.0.SE_A(ch)

MWB>weq SYS(i,o) S_LAZY(i,o)
The two agents are equal.

Interaction Soundness for Service Orchestrations 11

Once again, the orchestration is interaction sound. This is even true if the ” defec-
tive” service represented by agent SFE_A(ch) is dynamically bound to our orches-
tration. In this case, always the second service will be utilized (due to the dis-
criminator). Hence, the orchestration will not deadlock even if a non—matching,
defective service is contained in the environment. However, if we introduce a
second defective service by changing SE_B(ch), the possibility of selecting and
binding to two defective services exists, thus leading to a serious problem:
MwB>agent SE_B(ch) = (“o)ch(b).b(confirm).t.’b<o>.0.SE_B(ch)

MWB>weq SYS(i,o) S_LAZY(i,o)
The two agents are NOT equal.

The orchestration contained in the modified system is not interaction sound
anymore, since there exist possible combinations of services in it that will lead
to deadlock situations.

6 Conclusion

In this paper it has been shown how orchestrations that dynamically bind to
services in a given environment can be proved to be interaction sound. The ap-
proach presented is generic in a sense that it is not limited to certain kinds of
orchestrations or interactions. This is due to the possibility of representing all
routing and interaction patterns, either workflow or service interaction ones, in
a precise way in m-calculus [Bl6]. Thus, existing orchestrations can be formal-
ized and analyzed. The soundness criterion used for interaction soundness, lazy
soundness, furthermore supports lazy activities. Since orchestrations can contain
lazy activities, these do not disturb the reasoning.

The approach presented in this paper is a starting point for investigating
formal properties of dynamic bindings. First of all, existing graphical notations
like BPMN do not support the representation of systems containing dynamic
binding. Without a graphical representation, user acceptance is limited. So one
direction of further work is creating such a notation. Second, tool support for
m-calculus is currently limited. The existing tools are not optimized for reasoning
on service orchestrations. For instance, they use depth-first search strategies that
cause problems regarding the detection of certain loop constructs.

References

1. Burbeck, S.: The Tao of E-Business Services. Available at: http://www-128.ibm.
com/developerworks/library/ws-tao/| (2000)

2. Puhlmann, F.; Weske, M.: Investigations on Soundness Regarding Lazy Activities.
In Dustdar, S., Fiadeiro, J., Sheth, A., eds.: Proceedings of the 4th International
Conference on Business Process Management (BPM 2006), volume 4102 of LNCS,
Berlin, Springer Verlag (2006) 145-160

3. Overdick, H., Puhlmann, F., Weske, M.: Towards a Formal Model for Agile Service
Discovery and Integration. In Verma, K., Sheth, A., Zaremba, M., Bussler, C., eds.:
Proceedings of the International Workshop on Dynamic Web Processes (DWP
2005). IBM technical report RC23822, Amsterdam (2005)

http://www-128.ibm.com/developerworks/library/ws-tao/
http://www-128.ibm.com/developerworks/library/ws-tao/

12

10.

11.

12.

13.

14.

15.

16.

Frank Puhlmann and Mathias Weske

Puhlmann, F.: Why do we actually need the Pi-Calculus for Business Process
Management? In Abramowicz, W., Mayr, H., eds.: 9th International Conference on
Business Information Systems (BIS 2006), volume P-85 of LNI, Bonn, Gesellschaft
fir Informatik (2006) 77-89

Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Pat-
terns. In van der Aalst, W., Benatallah, B., Casati, F., eds.: Proceedings of the
3rd International Conference on Business Process Management, volume 3649 of
LNCS, Berlin, Springer-Verlag (2005) 153-168

Decker, G., Puhlmann, F., Weske, M.: Formalizing Service Interactions. In Dust-
dar, S., Fiadeiro, J., Sheth, A., eds.: Proceedings of the 4th International Confer-
ence on Business Process Management (BPM 2006), volume 4102 of LNCS, Berlin,
Springer Verlag (2006) 414-419

Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns. Dis-
tributed and Parallel Databases 14 (2003) 5-51

Aalst, W.: Verification of Workflow Nets. In Azéma, P., Balbo, G., eds.: Application
and Theory of Petri Nets, volume 1248 of LNCS, Berlin, Springer-Verlag (1997)
407-426

Martens, A.: Analyzing Web Service based Business Processes. In Cerioli, M., ed.:
Proceedings of Intl. Conference on Fundamental Approaches to Software Engi-
neering (FASE’05). Volume 3442 of Lecture Notes in Computer Science., Springer-
Verlag (2005)

Bordeaux, L., Salaiin, G.: Using Process Algebra for Web Services: Early Results
and Perspectives. In Shan, M.C., Dayal, U., Hsu, M., eds.: TES 2004, volume 3324
of LNCS, Berlin, Springer-Verlag (2005) 54-68

Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
Orchestration: A Synergic Approach to System Design. In Benatallah, B., Casati,
F., Traverso, P., eds.: Proceedings of the 3rd International Conference on Service-
oriented Computing, volume 3826 of LNCS, Berlin, Springer-Verlag (2005) 228-240
Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In van
der Aalst, W., Benatallah, B., Casati, F., eds.: Proceedings of the 3rd Interna-
tional Conference on Business Process Management, volume 3649 of LNCS, Berlin,
Springer-Verlag (2005) 302-318

Guidi, C., Lucchi, R.: Mobility mechanisms in Service Oriented Computing. In:
Proc. of 8th International Conference on on Formal Methods for Open Object-
Based Distributed Systems (FMOODSO06). (2006 (to appear))

Sangiorgi, D., Walker, D.: The m-calculus: A Theory of Mobile Processes. Paper-
back edn. Cambridge University Press, Cambridge (2003)

Sangiorgi, D.: A Theory of Bisimulation for the Pi-Calculus. In: CONCUR ’93:
Proceedings of the 4th International Conference on Concurrency Theory, Berlin,
Springer-Verlag (1993) 127-142

Victor, B., Moller, F., Dam, M., Eriksson, L.H.: The Mobility Workbench. Avail-
able at: http://www.it.uu.se/research/group/mobility/mwb (2005)

http://www.it.uu.se/research/group/mobility/mwb

	Interaction Soundness for Service Orchestrations
	Frank Puhlmann and Mathias Weske

